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Abstract: Contrastive learning has received increasing attention in the field of skeleton-based ac-
tion representations in recent years. Most contrastive learning methods use simple augmentation
strategies to construct pairs of positive samples. When using such pairs of positive samples to learn
action representations, deeper feature information cannot be learned, thus affecting the performance
of downstream tasks. To solve the problem of insufficient learning ability, we propose an asymmetric
data augmentation strategy and attempt to apply it to the training of 3D skeleton-based action
representations. First, we carefully study the different characteristics presented by different skeleton
views and choose a specific augmentation method for a certain view. Second, specific augmentation
methods are incorporated into the left and right branches of the asymmetric data augmentation
pipeline to increase the convergence difficulty of the contrastive learning task, thereby significantly
improving the quality of the learned action representations. Finally, since many methods directly
act on the joint view, the augmented samples are quite different from the original samples. We use
random probability activation to transform the joint view to avoid extreme augmentation of the joint
view. Extensive experiments on NTU RGB + D datasets show that our method is effective.

Keywords: action representation; contrastive learning; data augmentation; self-supervised

1. Introduction

Due to the complexity of human actions, video-based representations of human ac-
tions have received increasing attention in the field of computer vision. With the popularity
of depth sensors [1] and the development of pose estimation algorithms [2–4], it is possible
to extract skeleton data with robustness in complex environments. Therefore, action repre-
sentation algorithms based on skeleton data have received significant attention. However,
most of the existing skeleton-based action representation algorithms [5–9] adopt supervised
training methods, which require precise annotation of training samples, but this process is
expensive and time-consuming. Self-supervised methods are increasingly showing their
advantages, in which the information of unlabeled training samples themselves is used
to learn action representations. Earlier methods have focused on exploiting the sample
structural integrity of pretext tasks to learn action representations [10–13]. Unlike before,
most recent methods are implemented based on the contrastive learning framework [14–18].
In these methods, with strong generalization through simple pretext tasks, some feature rep-
resentations can be learned and easily extended to downstream tasks such as classification
and recognition.

In action representation algorithms based on contrastive learning, data augmentation
is one of the important components, which plays a crucial role in the performance of con-
trastive learning. Several studies [19,20] have shown that excellent data augmentation can
obtain abundant semantic information, which can significantly improve the generalization
ability of learned representations. However, an unsuitable data augmentation strategy will
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lead to a large difference between the augmented samples and the original data, which will
affect the performance of the training results. In addition, the edges in the skeleton graph
are fixed, and the joints represented by the graph nodes contain less information, so it is
difficult for general data augmentation strategies to generate better pairs of positive sam-
ples. Therefore, a data augmentation strategy that can effectively improve the performance
of contrastive learning needs to be explored and designed.

Inspired by CrosSCLR [16], in this paper, a new data augmentation strategy is used to
solve the above problems. An asymmetric data augmentation pipeline is designed, and the
architecture is shown in Figure 1. The pipeline consists of two branches, left and right. In the
left branch, seven basic data augmentation methods are integrated, and five methods, such as
rotation and Gaussian blur, are randomly applied for probability activation. The two basic
methods of crop and shear are integrated in the right branch. The advantage of this design is
that it can not only ensure sufficient differences between the generated sample pairs but also
avoid the generation of extreme samples. First, a skeleton sequence is input to the left and
right branches of the asymmetric augmentation pipeline. After being processed by various
augmentation methods in the branches, a pair of good sample pairs x1 and x2 is generated
for subsequent learning tasks. Under the premise of avoiding excessively distorted samples,
the data augmentation strategy designed in this paper is applied to the skeleton graph, which
can incorporate as many data augmentation methods as possible. This strategy increases
the difference between pairs of samples, thereby improving the convergence difficulty of the
contrastive learning task and reducing the distribution shift between self-supervised pre-
training and supervised fine-tuning caused by extreme augmentation. Representations learned
through this strategy are highly robust to semantically irrelevant variations, further improving
the performance of contrastive learning.
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Figure 1. Asymmetric data augmentation pipeline. 
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mainly focus on three aspects: (1) For the sequential structure of the skeleton, by using a 
recurrent neural network (RNN) [24–26], its temporal features can be more effectively uti-
lized, but recurrent neural networks have the disadvantage of a vanishing gradient [27]. 
(2) Methods based on convolutional neural networks (CNNs) [5,28,29] first convert the 
skeleton sequence into a pseudo-image representation and use it as the input of the net-
work, thereby transforming the action recognition into the image classification. (3) The 
method of graph convolutional networks (GCNs) constructs a spatio-temporal graph [6] 
to represent the 3D skeleton, and then uses graph convolution to simultaneously encode 
the temporal and spatial dimensions of the skeleton graph to better represent the temporal 
and spatial structures of action features. Some improved methods [7,30,31] incorporate an 
attention mechanism into the spatio-temporal graph to adaptively capture the associated 
features of the joints in the spatio-temporal space. Although these models achieve excel-
lent performance in skeleton-based action recognition, they rely on expensive action se-
quence annotations. 

2.2. Self-Supervised Action Representation 
In self-supervised methods, unlabeled data are used to learn feature representations. 

Generally, pretext tasks are designed to generate supervision, and the quality of the pre-
text tasks affects the performance of the model. In the last few years, numerous self-su-
pervised representation learning works based on contrastive learning have emerged, such 
as MoCo [17], MoCo v2 [18], SimCLR [32], BYOL [33], contrastive cluster [34], DINO [35], 
and SimSiam [36]. These methods show the same or even better performance than super-

Figure 1. Asymmetric data augmentation pipeline.

The main contributions of this paper are as follows:

1. Each view describes different types of skeleton data. We use specific data augmen-
tation methods for each view according to the characteristics of different views and
combine these methods.

2. We propose a new data augmentation strategy for skeleton sequences. An asymmetric
augmentation pipeline with left and right branches is designed, where each branch is
composed of different data augmentation methods.
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3. We conduct extensive experiments on two large-scale 3D skeleton datasets (NTU RGB
+ D 60 and NTU RGB + D 120) to demonstrate the effectiveness of the proposed data
augmentation strategy.

The overall structure of this article is summarized as follows. In Section 2, the main-
stream methods of action representation in supervised learning are briefly introduced, and
then the research progress of contrastive learning and the latest achievements of skeleton
action representation based on contrastive learning are described. In Section 3, we focus
on our asymmetric data augmentation strategy and apply it to the skeleton action repre-
sentation framework of self-supervised single view and multiple views to improve the
performance of the model. In order to evaluate the proposed method, we select a widely
used evaluation protocol and present the results of the model on different datasets in
Section 4. Finally, in Section 5, we present the conclusions of this research work and outline
further development directions.

2. Related Work

In this section, we study the mainstream supervised action representation methods
and learn about the shortcomings of supervised learning. At the same time, we study
the contrastive learning method in self-supervised learning, and the skeleton action repre-
sentation method based on contrastive learning. The research of these methods lays the
foundation for the work in this paper.

2.1. Action Representation

Early skeleton-based action representation algorithms usually utilize handcrafted
features [21–23] to model the geometric relationships between joints. Recent methods
mainly focus on three aspects: (1) For the sequential structure of the skeleton, by using
a recurrent neural network (RNN) [24–26], its temporal features can be more effectively
utilized, but recurrent neural networks have the disadvantage of a vanishing gradient [27].
(2) Methods based on convolutional neural networks (CNNs) [5,28,29] first convert the
skeleton sequence into a pseudo-image representation and use it as the input of the net-
work, thereby transforming the action recognition into the image classification. (3) The
method of graph convolutional networks (GCNs) constructs a spatio-temporal graph [6]
to represent the 3D skeleton, and then uses graph convolution to simultaneously encode
the temporal and spatial dimensions of the skeleton graph to better represent the temporal
and spatial structures of action features. Some improved methods [7,30,31] incorporate
an attention mechanism into the spatio-temporal graph to adaptively capture the associ-
ated features of the joints in the spatio-temporal space. Although these models achieve
excellent performance in skeleton-based action recognition, they rely on expensive action
sequence annotations.

2.2. Self-Supervised Action Representation

In self-supervised methods, unlabeled data are used to learn feature representations.
Generally, pretext tasks are designed to generate supervision, and the quality of the pre-
text tasks affects the performance of the model. In the last few years, numerous self-
supervised representation learning works based on contrastive learning have emerged, such
as MoCo [17], MoCo v2 [18], SimCLR [32], BYOL [33], contrastive cluster [34], DINO [35],
and SimSiam [36]. These methods show the same or even better performance than su-
pervised methods in downstream tasks. For example, MoCo constructs a pair of positive
samples and a dynamic queue of negative samples for contrastive learning. Inspired by
SimCLR, MoCo v2 adds an MLP projection head and a more complex data augmentation
method on the basis of MoCo to achieve better performance. In this paper, we follow the
MoCo v2 framework to implement our method.

In action representation, the contrastive learning method has also been gradually
introduced to improve the performance of the algorithms. a momentum encoder and a dy-
namic queue of negative samples are used for contrastive learning of skeleton sequences,
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while multiple data augmentation strategies are employed to learn skeleton features [15].
This method demonstrates the huge potential of self-supervised action representations.
In MS2L [14], three tasks, namely, a motion prediction generation task, a jigsaw puzzle
recognition task, and skeleton transformation-based contrastive learning, are integrated.
An encoder-decoder structure with recurrent layers is designed to learn more general
representations. This method solves the overfitting problem of learning skeleton represen-
tations in a single reconstruction task. AimCLR [37] proposes an extreme augmentation
strategy for motion patterns that forces the model to learn more general representations by
providing harder sample pairs. The method further explores data augmentation strategies.
a new drop mechanism is used to solve the overfitting problem in self-supervised learning.
ISC [38] uses both graph-based and sequence-based methods to describe skeleton data.
The method learns skeleton features in a cross-contrastive manner and explores different
skeleton-specific augmentation methods. CrosSCLR [16] proposes cross-view contrastive
learning, which exploits the complementary information between views to mine positive
sample pairs from similar negative samples to better extract skeleton features. This method
solves the unreasonable problem of forcibly removing negative samples with a strong
similarity to traditional contrastive learning.

3. Method

In this paper, the ST-GCN [6] block is used as the encoder, and MOCO v2 [18] is
used as the basic framework for contrastive learning to optimize the encoder training.
To improve the performance of contrastive learning, we designed an asymmetric data
augmentation strategy for skeleton data. Our goal is to use the asymmetric augmentation
strategy as a pretext task to make the results of contrastive learning more robust and achieve
better performance in the downstream task of action recognition. In Section 3.1, we apply
the asymmetric data augmentation strategy to a basic framework for action representa-
tion learning that uses single-view (joint) information for action representation learning.
In Section 3.2, we apply the asymmetric data augmentation strategy to a composite frame-
work for action representation, which uses multi-view (joint + motion) information and
cross-view consistency knowledge mining to learn action representations. In Section 3.3, we
focus on several typical basic augmentation methods used in the asymmetric augmentation
strategy. In Section 3.4, we present a detailed description and theoretical analysis of the
proposed asymmetric data augmentation strategy.

3.1. Basic Framework for Action Representation Based on Asymmetric Augmentation

The basic framework based on the asymmetric augmentation strategy uses the infor-
mation of a single-view (joint) to learn the feature representation. To aid in understanding,
we describe the detailed training process of the proposed method in Algorithm 1. As shown
in Figure 2, the basic framework is mainly composed of the following components:

1. Data augmentation: Skeleton sequences are randomly transformed into x, x̂, as pairs
of positive samples. Different data augmentation methods are combined in the left
and right branches of the asymmetric augmentation pipeline, as shown in the yellow
area in Figure 2.

2. Feature encoding: x and x̂ are embedded into the hidden space by encoders fθq and
fθk : h = fθq(x) and ĥ = fθk (x̂), where h, ĥ ∈ Rch . fθk is momentum updated by
Equation (1),

θk ← mθk + (1−m)θq (1)

where θq and θk are the parameters of encoders fθq and fθk respectively, and mε[0, 1)
is the momentum coefficient.

3. Nonlinear mapping: MLP projection heads gθq and gθk are used to map latent vectors

h and ĥ to the low-dimensional space: z = gθq

(
h
)

, ẑ = gθk

(
ĥ
)

, z,ẑ ∈ Rcz .
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4. Queue update: a queue M =
{

k(j)

}K

j=1
that stores a large number of negative samples

is maintained to avoid redundant computation and iteratively updated by ẑ.
5. Contrast loss: InfoNCE [39] is used to train the network:

L = −log
exp(z·ẑ/τ)

exp(z·ẑ/τ) + ∑M
i=1 exp(z·mi/τ)

(2)

where τ is the temperature hyperparameter [40].

Algorithm 1. Main algorithm of Basic framework

Input: Temperature τ, momentum coefficient m, mini-batch size n, query encoder fθq , key
encoder fθk

, queue size K
Output: The pre-trained encoder fθq .
# Initialization
Randomly initialize parameters θq of fθq , and copy to fθk

(parameters θk)

Randomly initialize negative keys
{

k(j)

}K

j=1
in queue.

for a sample mini-batch
{

x(i)
}n

i=1
do

for all iε{1, . . . , n} do
# Select asymmetric augmentation strategy to perform two random augments

x(i) = Aug1
(

x(i)
)

, x̂(i) = Aug2
(

x(i)
)

# Feature encoding

h(i) = fθq

(
x(i)
)

, ĥ(i) = fθk

(
x̂(i)
)

# Nonlinear mapping

z(i) = gθq (h(i)), ẑ(i) = gθk

(
ĥ(i)
)

detach ẑ(i)
end for
# Calculate contrastive loss L for mini-batch and update encoders

L = − 1
n Σn

i=1 log
exp(z(i) ·ẑ(i)/τ)

exp(z(i) ·ẑ(i)/τ)+ΣK
j=1 exp(z(i) ·k(j)/τ)

Update fθq to minimize L
Update fθk

with momentum: θk ← mθk + (1−m)θq
# Update queue

Enqueue keys of current mini-batch
{

ẑ(i)
}n

i=1
Dequeue the oldest mini-batch of keys

end for
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Figure 2. Basic framework based on asymmetric data augmentation strategy. 
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3.2. Composite Framework for Action Representation Based on Asymmetric Augmentation

In the basic framework of contrastive learning, instance discrimination only uses
a pair of positive samples, and the embeddings of other samples will be forcibly removed
in the embedding space even if they have a high similarity with the embeddings of the
original samples, which is unreasonable. To enable samples of the same class to be closely
distributed in the embedding space, a multi-view optimized contrastive learning composite
framework is proposed. The overall algorithm of the composite framework is shown in
Algorithm 2. The views [30,41] of the skeleton can be easily obtained. Motion is represented
as the temporal displacement between frames, and bone is the distance between two
neighboring joints in the same frame. This paper uses three views: joint, motion, and bone.

Multi-view optimization utilizes the high similarity of samples in one view to guide
the learning process in another view. Other positive samples are first mined using a high-
confidence knowledge mining mechanism (KM), which selects the most similar pairs as
positive pairs to increase the set of positive samples. Then, high-confidence knowledge
is exchanged between different views to learn a consistent embedding distribution across
views. Specifically, as shown in Figure 3, xu and xv are two views generated by the
data x, and they are subjected to single-view contrastive learning representation (single-
viewCLR) after data augmentation to obtain embeddings zu, zv. Sets Su, Sv are obtained
by calculating the similarity between z and M by the dot product, and then mining high-
confidence knowledge from the two views according to the similarity set. When the
high-confidence positive samples of view v and their distribution are used to guide the
learning of view u, the total loss is shown in Equation (3) [16]:

Lv→u = −log
exp(zu·ẑu/τ) + ∑jεKv

+
exp(su

j sv
j )/τ)

exp(zu·ẑu/τ) + ∑jεK exp(su
j sv

j )/τ)
(3)

where Lv→u represents the conversion of the contrast context of zv to that of zu; su
j , sv

j are
the embedding contexts of zu, zv.
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# High-confidence Knowledge Mining 
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end for 
# Calculate contrastive loss ℒv→u for mini-batch 

ℒ𝑣𝑣→𝑢𝑢 = −
1
𝑛𝑛� log

exp�𝑧𝑧(̅𝑖𝑖)
𝑢𝑢 ∙ �̂�𝑧(𝑖𝑖)

𝑢𝑢 /𝜏𝜏� + ∑ 𝑒𝑒𝑥𝑥𝑒𝑒(𝑠𝑠𝑗𝑗𝑢𝑢𝑠𝑠𝑗𝑗𝑣𝑣)/𝜏𝜏𝑗𝑗𝑗𝑗𝐾𝐾+𝑣𝑣 )
exp�𝑧𝑧(̅𝑖𝑖)

𝑢𝑢 ∙ �̂�𝑧(𝑖𝑖)
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The loss functions using two views or more are shown in Equations (4) and (5) [16]:

Lcross = Lu→v + Lv→u (4)

Lcross = ΣU
u ΣU

v Lu→v (5)

where U is the number of views, and v 6= u.
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Algorithm 2. Main algorithm of Composite framework

Input: Temperature τ, momentum coefficient m, mini-batch size n, query encoder fθq , key
encoder fθk

, queue size K,
Output: The pre-trained encoder fθq .

Randomly initialize negative keys
{

k(j)

}K

j=1
in queue.

for a sample mini-batch
{

x(i)
}n

i=1
do,

for all iε{1, . . . , n} do
# single-view contrastive learning representation

zu
(i), ẑu

(i) = single− viewCLR
(

xu
(i)

)
zv
(i), ẑv

(i) = single− viewCLR
(

xv
(i)

)
# Calculate the sample similarity

Su =
{

su
j

}
j∈K

=
{

zu
(i)·k

u
(j)

}
j∈K

, Sv =
{

sv
j

}
j∈K

=
{

zv
(i)·k

v
(j)

}
j∈K

# High-confidence Knowledge Mining
(Su

+, Ku
+) = Γ(Su), (Sv

+, Kv
+) = Γ(Sv),

end for
# Calculate contrastive loss Lv→u for mini-batch

Lv→u = − 1
n Σn

i=1 log
exp

(
zu
(i) ·ẑu

(i)/τ
)
+∑jεKv

+
exp

(
su

j sv
j

)
/τ)

exp
(

zu
(i) ·ẑu

(i)/τ
)
+∑j∈K exp

(
su

j sv
j

)
/τ)

end for

3.3. Augmentation Methods in Asymmetric Strategy

This paper uses seven data augmentation methods to learn robust action feature rep-
resentations by appropriately perturbing skeleton sequences. Among the seven methods,
there are four spatial augmentation methods [15]: rotation, shear, joint mask (JM), and chan-
nel mask (CM); one temporal augmentation method: crop [42]; and two spatio-temporal
augmentation methods [15]: Gaussian noise (GN) and Gaussian blur (GB). We selected
several typical methods for a detailed introduction.

1. Crop. In image classification tasks, crop randomly samples a part of the original
image and then resizes this part to the original image size. This method is often called
random cropping. For skeletons in a time sequence, some frames are firstly padded
into the sequence symmetrically and then randomly cropped to the original length.
The padding length is defined as T/γ, and γ is the padding ratio. This paper set γ = 6.

2. Shear. Shear augmentation is a linear transformation in the spatial dimension. Each
joint is moved in a fixed direction, i.e., the shape of the 3D coordinates of body joints
will be slanted with a random angle. The transformation matrix is defined as

A =

 1 a12 a13
a21 1 a23
a31 a32 1

 (6)

where a12, a13, a21, a23, a31, and a32 are the shear factors randomly sampled from
[−β, β]; β is the shear amplitude, which was set to 0.5 in this paper. Then, the
sequence is multiplied by the transformation matrix a in the channel dimension.

3. Gaussian blur (GB). As an effective augmentation method to reduce the level of detail
and noise of images, Gaussian blur can be applied to the skeleton sequence to smooth
noisy joints and decrease action details. We randomly sample σ ∈ [0.1, 2.0] for the
Gaussian kernel, which is a sliding window with a length of 15. Joint coordinates
of the original sequence are blurred at 50% chance by the kernel G(·) below:

G(t) = exp
(
− t2

2σ2

)
,t ∈ {−7,−6, . . . , 6, 7}, (7)
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where t denotes the relative position from the center skeleton, and the length of the
kernel is set to 15, corresponding to the total span of t.

4. Joint mask (JM). We apply a zero-mask to a number of body joints in skeleton frames
(i.e., replace all coordinates by zeros), which encourages the model to learn different
local regions (i.e., except for the masked region) that probably contain crucial action
patterns. To be more specific, we randomly choose a certain number of body joints
(number of joints V ∈ {5, 6, . . . , 15}) from random frames (number of frames L ∈
{50, 51, . . . , 100}) in the original skeleton sequence to apply the zero-mask.

3.4. Asymmetric Data Augmentation Strategy

The advantage of contrastive learning is that it can fully learn the deep feature in-
formation of the samples. To fully learn deep features, an excellent data augmentation
strategy needs to be designed to construct a robust pair of positive samples for each train-
ing sample. If multiple data augmentation methods are effectively combined to increase
the difficulty of model learning, the learning effect will be significantly improved [32].
Therefore, suitable data augmentation strategies are beneficial for representation learning.
However, some extreme data augmentation methods are directly used, which will make
the augmented samples differ greatly from the original samples, resulting in inconsistent
data representation in the self-supervised pre-training and fine-tuning stages, meaning the
learned features cannot improve performance.

Based on the above problems, we propose a data augmentation strategy that combines
multiple augmentation methods for skeleton sequences. This strategy combines seven data
augmentation methods differently in the left and right branches of the data augmentation
pipeline. Figure 1 shows the asymmetric data augmentation pipeline, where seven basic
augmentation methods including crop, shear, rotation, Gaussian noise, Gaussian blur, joint
mask, and channel mask are included in the left branch. Rotation, Gaussian noise, Gaussian
blur, joint mask, and channel mask are randomly activated with a certain probability. Two
basic augmentation methods, crop and shear, are included in the right branch.

The new data augmentation strategy is designed for the different characteristics of the
three skeleton views. Crop is aimed at the temporal information of the skeleton sequence,
i.e., interfering with the motion information, so it is beneficial to the augmentation of the
motion view. Shear skews the 3D coordinate shape of the joint at random angles, thus
changing the length of the bone, mainly for the augmentation of the bone view. The joint is
the core feature information of the skeleton, which provides the 2D or 3D space coordinates
of the joint point, and the remaining methods are mainly used to augment the joint view.
a variety of methods directly acting on the joint view will result in a large difference between
the augmented sample and the original sample, so the transformation of the joint view is
performed using random probability activation. In this way, it can not only ensure that the
augmentation strategy is not extreme but also make the positive sample pairs have enough
differences, so that the effect of contrastive learning is more significant. Experimental
results show that the network pre-trained with the asymmetric data augmentation pipeline
achieves better performance in downstream tasks.

4. Results

Exhaustive ablation studies were conducted on NTU RGB + D 60 to examine the
importance and effectiveness of different components of asymmetric data augmentation.
Then, we used the linear evaluation protocol to evaluate the performance of the proposed
data augmentation strategy on two large 3D skeleton datasets and compared it with similar
advanced methods.

4.1. Dataset

The human (skeleton) action recognition datasets NTU-RGB + D 60 and NTU-RGB +
D 120 proposed by the Rose Lab of Nanyang Technological University were used in this
research. These two datasets both contain RGB videos, depth map sequences, 3D skeleton
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data, and infrared (IR) videos for each sample. We used 3D skeleton data for the study
of action representation learning.

NTU-RGB + D 60 (NTU-60) [43] is a widely used and challenging large-scale dataset
for action recognition tasks. The dataset contains 60 action classes with a total of 56,880
samples. There are two evaluation protocols: (1) In cross-subject (xsub), the training data
come from 20 subjects, and the testing data come from another 20 subjects. The training
set has 40,320 samples, and the test set has 16,560 samples. (2) In cross-view (xview), the
training set and test set are divided according to the camera number. The samples collected
by camera 1 are used as the test set, while the samples collected by cameras 2 and 3 are
used as the training set, and the number of samples is 18,960 and 37,920, respectively.

NTU-RGB + D 120 (NTU-120) [44] is an extension of NTU RGB + D 60 and contains
113,945 skeleton sequences in 120 action classes. This dataset contains 32 setups, each
denoting a specific location and background. There are two evaluation protocols: (1) In
cross-subject (xsub), the training data and validation data are collected from different
subjects. a total of 63,026 samples are used for training, and 50,919 samples are used for
testing. (2) In cross-setup (xset), the samples with even IDs are used as the training set,
while the samples with odd IDs are used as the test set, and the number of samples is 54,471
and 59,477, respectively.

4.2. Experimental Settings

All the experiments were conducted using the PyTorch [45] framework. Invalid
frames in each skeleton sequence were first removed, and then each sequence was resized
to a length of 50 frames using a linear interpolation method. The mini-batch size was set to
128. Three views were used in the experiments: joint, motion, and bone.

Data Augmentation. In the asymmetric data augmentation pipeline, we used seven
augmentation methods: crop, shear, rotation, Gaussian blur, etc. In the left branch, rotation
was randomly activated with a probability of 0.5, Gaussian blur, Gaussian noise, channel
mask, and joint mask were activated with a probability of 0.5, and each of the four methods
was activated with a probability of 0.25. In the left and right branches, crop and shear were
used, and the padding ratio and shear factor were set to 6 and 0.5, respectively.

Unsupervised Pre-training. For model training, the size of the queue M in the MOCO
v2 framework was set to 32,768, the momentum value was set to 0.9, and the weight decay
was set to 0.0001. The model was trained for 300 epochs with a learning rate of 0.1 for
the first 250 epochs and 0.01 from the 251st epoch. ST-GCN was adopted as the encoder.
The encoder was trained using Equation (2) for the first 150 epochs and Equation (5) from
the 150th epoch. At the same time, K = 1 was set as the default value in the knowledge
mining mechanism. The detailed experimental argument setting is shown in Table 1.

Table 1. Experimental arguments setting.

Arguments Value

sequence size 50 frames

batch size 128

view joint, motion, bone

base encoder st-gcn

queue size 32,768

momentum 0.9

weight decay 0.0001

epoch 300



Sensors 2022, 22, 8989 10 of 14

Table 1. Cont.

Arguments Value

learning rate 0.1 (before 250 epoch)|0.01 (after 250 epoch)

loss function Equation (2) (before 150 epoch)|Equation (5)
(after 150 epoch)

knowledge mining 1

padding ratio 6

shear factor 0.5

Linear Evaluation Protocol. This paper followed the widely used linear evaluation
protocol for linear evaluation of the action recognition task. Specifically, we trained a linear
classifier (a fully connected layer followed by a softmax layer) supervised with a fixed
encoder to evaluate the features learned by the model.

Performance Metrics. Top-1 accuracy: Only the action category with the highest
predicted value of the model is checked. If the predicted category is the same as the label
category, the prediction is correct; otherwise, the prediction is wrong. The ratio of the
number of correct predictions to the total number of predictions is the Top-1 accuracy.

4.3. Ablation Study

Experiments were conducted on the NTU-60 dataset, following the unsupervised
pre-training and linear evaluation protocol in Section 4.2, to verify the effectiveness of the
asymmetric data augmentation strategy proposed in this paper.

Basic augmentation is symmetric augmentation using only two methods of crop and
shear, and extreme augmentation is symmetric augmentation using seven augmentation
methods simultaneously. As shown in Table 2, the accuracy using the basic augmentation
strategy reached 77.8% and 83.4% on xsub and xview, respectively. After using our pro-
posed strategy, the accuracy improved by 1.2% on both evaluation protocols. The results
show that our proposed asymmetric augmentation strategy effectively improved the per-
formance of the model. Keeping the combination strategy in the right branch unchanged,
each augmentation method in the left branch of the asymmetric augmentation pipeline
was removed in turn, and then the model was trained. The results show that each data
augmentation method makes a corresponding contribution to the data augmentation of the
skeleton. The results show that the random activation strategy of Gaussian blur, Gaussian
noise, joint mask, and channel mask is the most effective augmentation method.

Table 2. Ablation experiments for data augmentation strategy on NTU-60 dataset.

Asymm. Aug. Augmentations xsub (%) xview (%)

× Basic augmentation 77.8 83.4

× Extreme
augmentation 76.5 83.1

√
No Crop 77.7 82.3

√
No Shear 77.3 83.6

√
No Rotation 78.8 84.3

√
No GN/GB/JM/CM 76.3 81.9

√
Ours 79.0 84.6

We plotted the model training loss curve for the joint view, as shown in Figure 4.
From the training curve, it can be inferred that our method further increases the difference
between pairs of positive samples in contrastive learning to prevent premature saturation
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of the network training loss. The network is forced to pay more attention to the dynamical
commonality of skeleton sequences to learn the similarity between samples.
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4.4. Comparison

We compared our method with other state-of-the-art methods using a linear evaluation
protocol. Table 3 describes the linear evaluation results of our model at different epochs
on the NTU-60 xsub dataset. Under the same training time point, our method always
outperforms 3s-CrosSCLR and 3s-SkeletonCLR. At 100 epochs, it even achieves the same
results as 3s-SkeletonCLR at 300 epochs, which shows that our method can effectively
improve the performance of the model.

Table 3. Linear evaluation results on NTU-60 xsub for different epochs.

Method 100 ep 150 ep 200 ep 300 ep

3s-SkeletonCLR [16] 71.3 73.8 74.1 74.1
3s-CrosSCLR [16] 70.0 72.8 76.0 77.2

ours 74.1 76.0 77.9 79.0

Linear Evaluation Results on NTU-60. As shown in Table 4, our method outperforms
all other methods [16,37,46], leading 3s-SkeletonCLR by 4.0% and 4.8% under the xsub and
xview protocols, respectively. The results show that good data augmentation enables the
model to learn better feature representations, thereby improving the recognition accuracy.

Table 4. Linear evaluation results on NTU-60 dataset.

Method xsub (%) xview (%)

3s-SkeletonCLR [16] 75.0 79.8
3s-Colorization [46] 75.2 83.1
3s-CrosSCLR [16] 77.8 83.4
3s-AimCLR [37] 78.9 83.8

ours 79.0 84.6

Linear Evaluation Results on NTU-120. As shown in Table 5, our method outperforms
other self-supervised methods on NTU-120, leading 3s-CrosSCLR by 0.6% and 3.2% under
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the xsub and xset protocols, respectively, achieving 68.5% and 69.9% accuracy. The re-
sults show that our method is also competitive on multi-class, large-scale skeleton action
recognition datasets.

Table 5. Linear evaluation results on NTU-120 dataset.

Method xsub (%) xset (%)

P&C [11] 42.7 41.7

AS-CAL [15] 48.6 49.2

3s-CrosSCLR [16] 67.9 66.7

ISC [38] 67.9 67.1

3s-AimCLR [37] 68.2 68.8

ours 68.5 69.9

The experimental results show that the model trained by the proposed asymmetric
data augmentation strategy achieved remarkable results on two large-scale skeleton action
recognition datasets, NTU-60 and NTU-120, further validating the effectiveness of our
proposed method. At the same time, this shows that the design of the data augmentation
method plays a very important role in the effect of self-supervised learning.

5. Conclusions and Future Work

This paper proposes an asymmetric data augmentation strategy to appropriately
transform skeleton data to explore new motion patterns. Multiple data augmentation
methods are used in combination to increase the difficulty of learning a contrastive learning
model to learn high-quality action representations. a widely used linear evaluation protocol
was used to verify the effectiveness of our method. Our method achieved 79.0% and
84.6% Top-1 recognition accuracy on the two evaluation protocols of NTU-RGB + D 60.
The Top-1 performance indicators of 68.5% and 69.9% were obtained on the two evaluation
protocols of NTU-RGB + D 120. Compared with other methods from the same type
of research, the performance is improved. The results show that the proposed asymmetric
data augmentation strategy is effective for skeleton-based action representation learning.

However, there are still some limitations of our method. First, we only augmented
the three selected skeleton views, which enriched the skeleton information to some extent,
but more views may mean better results. Second, we only used the basic contrastive
learning framework and feature extraction network and did not explore the performance
improvement that more advanced methods may bring. Future work includes the following:
a higher-performance contrastive learning framework and feature extraction network will
be studied and used to learn good feature representations; more skeleton views will be
selected to further enrich skeleton information and make the learned feature representation
more robust.
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