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Abstract: This paper proposes an effective global path planning technique for cellular-connected
UAVs to enhance the reliability of unmanned aerial vehicles’ (UAVs) flights operating beyond the
visual line of sight (BVLOS). Cellular networks are considered one of the leading enabler technologies
to provide a ubiquitous and reliable communication link for UAVs. First, this paper investigates
a reliable aerial zone based on an extensive aerial drive test in a 4G network within a suburban
environment. Then, the path planning problem for the cellular-connected UAVs is formulated
under communication link reliability and power consumption constraints. To provide a realistic
optimization solution, all constraints of the optimization problem are defined based on real-world
scenarios; in addition, the presence of static obstacles and no-fly zones is considered in the path
planning problem. Two powerful intelligent optimization algorithms, the genetic algorithm (GA)
and the particle swarm optimization (PSO) algorithm, are used to solve the defined optimization
problem. Moreover, a combination of both algorithms, referred to as PSO-GA, is used to overcome
the inherent shortcomings of the algorithms. The performances of the algorithms are compared
under different scenarios in simulation environments. According to the statistical analysis of the
aerial drive test, existing 4G base stations are able to provide reliable aerial coverage up to a radius of
500 m and a height of 85 m. The statistical analysis of the optimization results shows that PSO-GA
is a more stable and effective algorithm to rapidly converge to a feasible solution for UAV path
planning problems, with a far faster execution time compared with PSO and GA, about two times.
To validate the performance of the proposed solution, the simulation results are compared with the
real-world aerial drive test results. The results comparison proves the effectiveness of the proposed
path planning method in suburban environments with 4G coverage. The proposed method can
be extended by identifying the aerial link reliability of 5G networks to solve the UAV global path
planning problem in the current 5G deployment.

Keywords: UAV; drone; path planning; trajectory; cellular connected; cellular network; 4G;
link reliability; intelligent optimization; PSO; GA

1. Introduction
1.1. UAVs, BVLOS, and Cellular-Connected UAVs

Unmanned aerial vehicles (UAVs), also known as drones, are one of the fastest-
emerging technologies. Recently, low-altitude UAVs have received tremendous atten-
tion for civil applications, such as surveillance, transportation, environmental monitoring,
industrial monitoring, agriculture services, disaster rescue, and goods and medical deliv-
ery [1–7]. UAVs are seen as significant enablers of numerous applications in 5G and 6G
networks due to their distinctive features, such as 3D mobility, versatility, and the potential
for line-of-sight (LoS) communications [8].

Currently, in most parts of the world, UAV applications are limited to operating within
the visual line of sight of pilots [9]. However, for applications such as inspections and
package delivery, drones are expected to operate autonomously over long distances, where
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there is no visual line of sight and the pilot cannot observe the drones during their missions.
Hence, the next step in drone technology is to advance drones to fly beyond the visual line
of sight (BVLOS).

To ensure a safe flight, drones need stable and reliable wireless connectivity for
payload and control and command (CC) communications [10]. One of the limitations of
conventional UAV communication systems is their limited communication range. Mainly
drone communication can be held through four technologies: direct RF, cellular, satellite,
and dedicated links [11]. Among the existing wireless technologies, the cellular network has
recently been considered one of the main enablers for ubiquitous UAV communication [11]
due to its distinctive features, such as reliability, data rate, latency, and energy efficiency [12].

However, existing cellular networks are designed and optimized for terrestrial users,
providing ubiquitous, low-latency, high-speed, and reliable connectivity [13,14]. Providing
connectivity to nonterrestrial users, such as flying drones, is challenging. On the one
hand, with increasing height above the ground, the radio environment changes, and some
problems arise, such as mobility management [15,16] and severe interference between
nonterrestrial and terrestrial UEs [17,18]. On the other hand, the transmitting antennas are
tilted down, resulting in a severe reduction in the antenna gain at higher heights, which
leads to lower link reliability and data rate [15]. Hence, addressing the aforementioned
issues and providing robust, reliable, and limitless wireless connectivity for UAVs have
become the ongoing topics in beyond 5G and 6G communication [8,19]. Therefore, this
paper focuses on identifying the aerial coverage reliability of existing terrestrial 4G networks
and optimizing the UAV path planning problem accordingly.

1.2. UAV Path Planning

Another crucial issue that needs to be considered in the UAV BVLOS operations is
the path planning problem. Flight safety is the most important criterion that needs to be
met in a BVLOS operation. The issue of safety is mainly associated with the capability
of UAVs to detect and avoid obstacles and communicate payload and CC signals with
the ground control station and/or unmanned aircraft systems (UAS) traffic management
(UTM) systems. In this regard, appropriate path planning and reliable wireless connectivity
play vital roles in enhancing the safety of a UAV along its BVLOS mission.

Path planning involves finding an optimal path between two points by making a
tradeoff between several criteria/objects, such as traveling distance, traveling time, power
consumption, and safety aspects, such as obstacle avoidance. As such, UAV path planning
is considered a complicated optimization problem, in which the object is to find a superior
solution (flight route) in a search space (environment) under different constraints [20].

Generally, path planning methods that have been proposed in the literature can be
categorized into three groups, as follows:

• Global planning: Global planning intends to find a reference path before performing a
mission based on the preexisting knowledge of the environment that can be provided
by either users or sensors. The optimal path is considered a set of waypoints that need
to be followed by the drone during its mission.

• Local planning: Local methods are used in cases where the considered environment is
fully/partially unknown. Therefore, the drone needs to be equipped with onboard
sensors and advanced control methods for perceiving the environment, collision avoid-
ance, and real-time path planning. Examples of neural network/machine learning-
based techniques for path planning in dynamic and unknown environments can be
found in [21–24].

• Hybrid approach: The hybrid strategy combines the benefits of the two methods
mentioned above. In this approach, the drone follows the reference path, and if
needed, it will make some amends on the path based on the received data from the
environment and the current situation and position of the drone.

The most important factors that should be considered in choosing path planning
approaches are their reliability and computational complexity. Global path planning needs
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to be conducted prior to a flight; hence, algorithms can be run in an external processing
unit. The dependability of such methods in dynamic and unpredictable situations is a
major problem, even though computing complexity is not crucial for global approaches.
Meanwhile, although local methods are superior in path planning in unknown and dy-
namic environments, they are slow in environmental mapping and decision making and
computationally expensive, especially for onboard computation [25]. In addition, by rely-
ing only on local approaches, path planning will suffer from being trapped in local minima.
In this case, a global path can help to get out of local minima and converge to global optima.
Therefore, a combination of global and local techniques can help enhance the reliability of
path planning and reduce the computational complexity in autonomous UAV operations.

1.3. Motivation and Contributions

As discussed above, one of the critical challenges to enhance BVLOS flight safety is
the lack of reliable and ubiquitous aerial wireless communication systems. Motivated by
the distinctive features of existing cellular networks, partially provided aerial coverage,
adaptability of UAVs, and the important role of global path planning approaches to facilitate
path planning for autonomous UAV operations, this paper proposes a practical method to
find a 3D collision-free global path for UAVs operating BVLOS.

The objectives of the path planning optimization problem are to minimize the flight
distance and maximize the cellular link reliability while satisfying real-world constraints,
such as power consumption and permitted flight height. The key contributions of this work
can be summarized as follows:

• A reliable aerial 4G coverage zone for UAV communications in suburban environments
has been proposed. The reliable zone has been identified based on the statistical
analysis of 4G key performance indicators (KPIs), such as reference signal received
power (RSRP), reference signal received quality (RSRQ), and the number of handovers,
which have been extensively measured in a suburban environment.

• A cumulative objective function has been developed for the 3D UAV path planning
optimization. The objective function consists of the length of the total path, the length
of the reliable path, and a set of penalty functions for cases where the path collides
with the obstacles and passes from the forbidden zones. Furthermore, other real-
world constraints, such as maximum and minimum permitted flight height and power
constraints, have been applied to the optimization problem.

• The performance of the proposed UAV path planning method has been investigated
by utilizing different intelligent optimization algorithms, such as particle swarm
optimization (PSO) and genetic algorithm (GA), and a combination of both algorithms,
PSO-GA. Furthermore, the performances of the considered optimization algorithms for
solving 3D path planning problems have been investigated under different scenarios.

• The ability of the proposed strategy to solve real-world 3D path planning problems is
validated by comparing the simulation results with the aerial drive test results. The
comparison results prove that the proposed strategy can provide a stable and valid
global optimal solution for UAV path planning in suburban environments.

The remainder of this paper is organized as follows: A review of recent related works
is presented in Section 2. Section 3 describes the proposed UAV path planning strategy and
research methodology, including the measurement method, identifying reliable cellular
network aerial coverage, as well as defining the path planning problem, objective functions,
search space, and constraints. Section 4 presents the measurement results of the aerial
drive test in a 4G network and discusses the reliable aerial coverage. Next, the simulation
results of the path planning optimization under different scenarios are discussed. Then,
the performance of the proposed strategy is validated by comparing the simulation results
with the aerial drive test results. Finally, Section 5 concludes the paper.



Sensors 2022, 22, 8957 4 of 30

2. Related Works

Generally, two types of algorithms have been used for solving global path plan-
ning problems: classical and intelligent algorithms. The former includes the Dijkstra
algorithm [26], the A-star algorithm [27], simulated annealing [28], and differential evo-
lution [29]. However, the main shortcomings of such algorithms are their need for large
memory and extended run time. Meanwhile, intelligent optimization algorithms, such
as evolutionary and swarm intelligence algorithms, have become more popular for solv-
ing path planning problems due to their inherent features and design principles, such as
flexibility, robustness, high search capability, and accuracy.

Over the past decade, different intelligent optimization algorithms have been utilized
to solve path planning problems in robotics, such as ant colony algorithm [30], firefly
algorithm [31], artificial bee colony [32], GA [33], PSO [34], and whale optimization al-
gorithm [35]. In addition, heuristics intelligent optimization algorithms have also been
widely used to solve local path planning optimization problems, such as graph-based
algorithms [36], heuristic search algorithms [37], field-based algorithms [38], and intelligent
optimization algorithms [39]. Most of the algorithms utilized to solve UAV path planning
problems have originally adapted the existing algorithms for robot path planning. Articles
such as [40,41] thoroughly surveyed the most commonly used path planning algorithms.

The authors in [42] proposed an improved crossover operation for solving 2D path
planning problems for autonomous mobile robots using GA in a static environment. In [43],
the wolf pack algorithm was utilized to solve the multiobjective 3D path planning problem
for drones. The authors improved the algorithm performance by applying the mutation
and crossover operations of GA to the wolf pack algorithm. Ref. [44] proposes a UAV path
planning algorithm based on the random tree planning technique while accommodating
real-time traffic and geofencing constraints. The proposed algorithm can terminate tree
expansion based on the defined criteria, resulting in lower computational complexity and
making the algorithm suitable for onboard execution.

The authors in [45] formulated a UAV trajectory problem to minimize the flight time
while ensuring the outage performance during the mission. To reduce the problem com-
plexity, a low-complexity method was proposed to find the shortest path in an undirected
weighted graph with enlarged cellular coverage. Ref. [46] considers the effect of 3D antenna
radiation patterns and backhaul constraints on the path planning of UAV-assisted wireless
networks. It was considered that the UAV acts as a relay and the object to optimize the
trajectory for improving the wireless coverage for terrestrial uses.

The authors in [47] utilized the PSO algorithm to maximize the throughput of a UAV-
assisted wireless network by adjusting the flight height and transmission power of the UAV.
The simulation results showed that the PSO can rapidly converge to an optimal solution for
the considered problem. In [5], an enhanced version of PSO (EPSO) was utilized for UAV
path planning in a large-scale remote environment. The results showed the effectiveness
of EPSO in solving the UAV path planning for aerial-based data collection in a wireless
sensor network. Table 1 presents a summary of the reviewed studies with a description of
the application, optimization approach, key findings, and limitations.
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Table 1. A summary of the reviewed UAV path planning models.

Ref. Application Environment/Scenario Objective(s) Approach Key Findings Limitations

[32] Combat UAV path planning
Flat combat field with

threats and other
constraints

Minimize traveling path ABC algorithm improved by a
balance-evolution strategy

Improved performance
compared with ABC by

enhancing the local and global
exploitation

Limited to 2D path planning and
few constraints

[33] UAV path planning during
emergency landing

Different scenarios with
different levels of difficulty

include no-fly zone and
static objects

Minimize damages and enhance
safety during landing

Greedy heuristic, genetic
algorithm (GA), and
multipopulation GA

Genetic algorithms return better
quality solutions within a

reasonable computational time

The focus of the problem was on
the landing procedure, not the

entire path

[34] 3D UAV path planning Digital map with few
mountains or threats

Minimize the traveling path,
under fuel, threat, and altitude

cost functions

Improved chaos particle swarm
optimization (PSO)

Overcome the inadequacy of the
PSO algorithm, which falls into

local optimum and slow
converge

Restricted to only considering
mountains

[36] 3D UAV routing with
collision avoidance

3D operating spaces
containing hazard areas and

other moving objects
Collision avoidance Graph theory-based algorithm

Reduced algorithm complexity
and developed a novel,

adaptive, graph search scheme

Parameters such as computational
time and energy efficiency were

not considered

[42] General 2D UAV path
planning Static environment Minimize energy consumption GA with improved crossover

operation
Improved convergence speed

and improved GA performance

2D path planning is limited to a
few constraints for terrestrial

robots

[43] 3D quasi-optimal UAV path
planning

Path planning for rotor
wing UAVs in the complex

3D spaces

Minimize multiple cost
functions: path length, std of the

height, and path smoothness

Modified wolf pack search
algorithm

Improved the performance of
WPS by applying crossover and

mutation operations of GA

Slow convergence rate, which can
be due to the exploration rate, is
also limited to a few constraints

[44] UAV BVLOS path planning

Flying while
accommodating real-time

traffic andgeofencing
constraints

Obstacle detection and
avoidance

Rapidly exploring random tree
planning

Suited for limited onboard
processing capacity since it has
simple instructions to early stop

tree expansion

Specifically designed for obstacle
avoidance and computationally

expensive for large-scale
multiobjective path planning

optimization

[45] Cellular-enabled UAV Single UAV and multiple
ground control stations

Minimizing flight time, while
ensuring a sum constraint of the

connectivity outage
performance

Greedy algorithm based on graph
theory

Proposed a low-complexity
method to obtain an

approximate optimal solution

2D path planning solution, also
real-world constraints such as
flight height constraints and

obstacles were not considered

[46] UAV-assisted cellular
network

UAV works as a relay to
provide downlink coverage

Maximizing total sum rate and
minimizing flight time Deep learning based

Improved the signal quality in
the backhaul link of a cellular

network

Constraints such as obstacles and
power consumption have not been

considered

[47] UAV-assisted cellular
network

UAV works as a relay to
provide downlink coverage

in emergency cases

Maximize system throughput
by optimizing altitude and

transmission power
PSO

Outperformed conventional
fixed altitude and fixed transmit

power approaches

Issues such as energy efficiency
and the presence of obstacles have

not been considered
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Based on the results of the reviewed literature, it can be seen that more research is still
needed on 3D global path planning to enhance the safety of UAVs, especially for BVLOS
operations. In addition, despite the popularity and capability of intelligent optimization
algorithms in solving path planning problems, the algorithms still need to overcome some
shortcomings, such as being trapped in local optima and early convergence, especially
when the dimension and complexity of problems increase. Furthermore, there are only a
few articles on the optimization of UAV path planning based on cellular communication
objectives/constraints. Finally, there is a gap in proposing an optimization method for the
3D global path planning in the presence of obstacles and the realistic constraints of the
terrestrial cellular networks in providing reliable aerial coverage.

On the other hand, the intelligence optimization algorithms, such as particle swarm
optimization (PSO) and genetic algorithm (GA), have been widely utilized to solve path
planning problems. Although in 2D cases their performance is stable and converges to the
global optima, when increasing the problem complexity, the algorithms suffer from their
inherent shortcomings, such as being trapped in local minima and premature convergence.
To address these issues, a combination of PSO and GA (here referred to as PSO-GA) is
utilized in this study. The PSO-GA algorithm advantages the information flow of PSO as
well as the crossover and mutation operations of GA.

3. Methodology

In this study, it is considered that a UAV is moving in a 3D workspace, R3, where
a set of BSs, obstacles, and no-fly zones are distributed over the workspace. Given the
initial and destination and the locations of BSs, obstacles, and no-fly zones, the problem
consists of finding an optimal path in the workspace that avoids collision with the objects,
avoids passing from no-fly zones, minimizes the total traveling distance, and maximizes
communication link reliability. Figure 1 depicts a schematic diagram of the considered
problem. Figure 2 depicts the general flowchart of the methodology, and the following
subsections describe each step in detail.
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3.1. Field Measurement

To study the reliability of cellular communication aerial links, we conducted a com-
prehensive measurement campaign in a 4G network within the National University of
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Malaysia (UKM), Bangi campus, Malaysia. The campus environment can be considered a
suburban metropolitan area with a geographic terrain of undulating hills. The dataset is
publicly accessible on [48]. To measure the required cellular key performance indicators
(KPIs), the G-NetTrack Pro application [49] was installed on a Huawei STK-L22 smart-
phone, and the smartphone was mounted on the developed drone in [50]. During the
measurement, the drone flew at different altitudes and routes, the smartphone was served
by the 4G mobile network, and G-NetTrack Pro measured the 4G-related parameters, such
as reference signal received power (RSRP) and reference signal received quality (RSRQ).
For details on the development of the drone and the method of conducting the aerial drive
test, readers are referred to [50,51], respectively.

RSRP is a key measurement parameter indicating the average received signal power
of a single resource element in an LTE Resource Block (RB) and can be calculated as [52]

RSRP[W] =
1
N

N

∑
n=1

Pn , (1)

where N is the number of received reference signals and Pn is the received power of the
nth reference signal. However, RSRP alone does not fully reflect the quality of the received
signal because it also picks up the energy of interfering signals in the corresponding
frequency range.

RSRQ is another key measurement parameter that indicates the received signal quality
level in the 4G network and the effect of interference from adjacent BSs. RSRQ can be
calculated as [52]

RSRQ = N × RSRP[W]

RSSI[W]
, (2)

where Reference Signal Strength Indicator (RSSI) is the power measured over the entire
bandwidth of occupied RBs, including intracell power, interference, and noise. Note that
RSRQ is dimensionless and usually written in dB.

Figure 3 depicts the different examined routes and the location of the serving BSs
inside the campus. The drive tests were conducted on three different routes and at four
different elevations (65, 85, 105, and 125 m). The measured data are statistically analyzed in
this step to identify reliable aerial communications coverage for cellular-connected drones.
The output of this step is used as the input to define the objective function of the path
planning problem in Section 3.2.2.
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3.2. Problem Definition and Formulation
3.2.1. Environmental Modeling

In this study, three types of environments were modeled. The models were created
based on the environment scale and the presence of obstacles and no-fly zones. All three
scenarios were generated based on real-world environments in a suburban environment
in Bangi, Malaysia. Table 2 lists the considered parameters in modeling the environments.
The considered scenarios are expanded from small-scale scenario (Scenario I) to large-
scale scenario (Scenario II) and, finally, to Scenario III, which represents a large-scale
scenario with more realistic assumptions related to BVLOS UAV operations. The terrain
is considered flat to reduce the computation complexity and maintain this paper’s main
objective. However, the terrain also can be simulated by numerical methods, where the
train profile can be presented in the form of a matrix, in which matrix elements contain the
terrain elevation in their respective coordinates.

Table 2. Simulation parameters for modeling environments.

Parameters Scenario I Scenario II Scenario III

Environment UKM Bangi Bangi
No. of BSs 4 25 25

Height of BSs (m) 40 40 40
2D distance between starting and end points (km) 2.38 8.97 8.97

Obstacle No No Yes
No-fly zone No No Yes

Figure 4 depicts a simulated model for Scenario III, where the partial hemispheric
represents the reliable cellular coverage zone, the red cylinder represents the obstacles
(such as high-rise buildings, hills, water reservoirs, etc.), and the violet cylinder represents
the no-fly zone.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 31 
 

 

3.2. Problem Definition and Formulation 

3.2.1. Environmental Modeling 

In this study, three types of environments were modeled. The models were created 

based on the environment scale and the presence of obstacles and no-fly zones. All three 

scenarios were generated based on real-world environments in a suburban environment 

in Bangi, Malaysia. Table 2 lists the considered parameters in modeling the environments. 

The considered scenarios are expanded from small-scale scenario (Scenario I) to large-

scale scenario (Scenario II) and, finally, to Scenario III, which represents a large-scale sce-

nario with more realistic assumptions related to BVLOS UAV operations. The terrain is 

considered flat to reduce the computation complexity and maintain this paper’s main ob-

jective. However, the terrain also can be simulated by numerical methods, where the train 

profile can be presented in the form of a matrix, in which matrix elements contain the 

terrain elevation in their respective coordinates. 

Figure 4 depicts a simulated model for Scenario III, where the partial hemispheric 

represents the reliable cellular coverage zone, the red cylinder represents the obstacles 

(such as high-rise buildings, hills, water reservoirs, etc.), and the violet cylinder represents 

the no-fly zone. 

Table 2. Simulation parameters for modeling environments. 

Parameters Scenario I Scenario II Scenario III 

Environment UKM Bangi Bangi 

No. of BSs 4 25 25 

Height of BSs (m) 40 40 40 

2D distance between starting and end points (km) 2.38 8.97 8.97 

Obstacle No No Yes 

No-fly zone No No Yes 

 

Figure 4. 3D representation of the simulation model for Scenario III in MATLAB environment. 

3.2.2. Objective Function 

The path planning problem in this study is considered a dynamic multiobjective 

problem with a deterministic objective function and a vector output, ℛ3. The output is a 

set of 3D waypoints, which is a combination of three nonlinear functions along three co-

ordinate axes. Since the goal is to minimize the objective function, hereafter, we use the 

term cost function instead of objective function. The cost function is defined as 

𝐹 = 𝐿𝑡𝑜𝑡𝑎𝑙 − 𝛼 × 𝐿𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 + 𝛽 × 𝑃𝑛𝑐 + 𝛾 × 𝑃𝑜𝑏 + 𝛿 × 𝑃𝑛𝑓, (3) 

Figure 4. 3D representation of the simulation model for Scenario III in MATLAB environment.

3.2.2. Objective Function

The path planning problem in this study is considered a dynamic multiobjective
problem with a deterministic objective function and a vector output, R3. The output is
a set of 3D waypoints, which is a combination of three nonlinear functions along three
coordinate axes. Since the goal is to minimize the objective function, hereafter, we use the
term cost function instead of objective function. The cost function is defined as

F = Ltotal − α× Lreliable + β× Pnc + γ× Pob + δ× Pn f , (3)



Sensors 2022, 22, 8957 9 of 30

where Ltotal is the total length of the computed path between the starting and end points.
Lreliable is a function of the path length with a reliable communication link. Pob, Pnc, and
Pn f are the penalty terms, while the path collides with the obstacles and passes from the
no-coverage and no-fly zones, respectively. The penalty terms are defined based on the
problem constraints, which will be discussed later. α, β, γ, and δ are the determination of
weighted coefficients.

The solution for the path planning problem is a function of x(t), y(t), and z(t), which
correspond to the drone coordinates in space. Generally, these functions are continuous in
time; therefore, infinite variables need to be considered to solve the problem. One common
approach to reducing the problem complexity is using the spline interpolation technique,
in which the problem can be solved with a limited number of variables, and the spline
function can produce a smooth path. Therefore, the output of the path planning problem is
a function of x, y, and z, which is a vector of size k, that contains computed 3D waypoints
in space, where k is equal to the number of query points in the spline function.

Ltotal can be computed as

Ltotal = ∑
√

di f f (x)2 + di f f (y)2 + di f f (z)2, (4)

where di f f is the difference function that calculates differences between adjacent elements
of a vector, as [x(2)− x(1), x(3)− x(2), . . . , x(k)− x(k− 1)].

One approach to modeling the wireless link reliability objective function is based on
the wireless channel’s characteristics. Such a function would be a dynamic and stochastic
function, with a random distribution; therefore, the output also would be dynamic and
random. To optimize this objective function, both mean and variance need to be optimized
simultaneously. Since the output is not deterministic, the objective needs to be optimized
with a probability, which is challenging.

Inspired by reliable zone selection in terrestrial cellular communications and to reduce
the complexity of the path planning problem, we identified a reliable aerial coverage zone
for cellular-based drone communications by statistically analyzing the measured data
described in Section 3.1. Based on the described strategy, Lreliable is defined as

Lreliable = ∑ rmask ×
√

di f f (x)2 + di f f (y)2 + di f f (z)2, (5)

where rmask is a mask vector of size k, where its elements are either 1 or 0. If a computed
point is within the reliable zone, its corresponding element in rmask is 1; otherwise, it is 0.
rmask is defined as

rmask = ri ∪ rj ∀i, j ∈ nBS and i 6= j, (6)

where nBS is the number of BSs and r is the reliable zone function, which is defined as

r = max
(

1− dBS
rrz

, 0
)
×
(

rrz

rrz − dBS

)
, (7)

where rrz is the radius of the reliable zone, and dBS is the 3D distance between the computed
point and a BS, for example, for the ith point, it can be calculated as

dBS =

√(
xi

d − xBS
)2

+
(
yi

d − yBS
)2

+
(
zi

d − zBS
)2, (8)

where xBS, yBS, and zBS are the coordinates of the considered BS antenna in space, and xi
d,

yi
d, and zi

d are the coordination of the ith point at space.
The penalty terms for no-coverage zones, obstacles, and no-fly zones are defined as

Pnc = ∑
nBS

max(1− dBS
rnc

, 0), (9)
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where rnc is the radius of the spherical zone around the BS that there is no reliable coverage.
It is generally accepted that the shorter the distance to the BS, the higher the probability of
serving users with reliable signals. Meanwhile, in a close range to the BSs center, the signal
quality is unreliable due to the antenna propagation pattern, especially in the boundaries
of the main lobe. Another reason to consider this parameter is to avoid collision with the
BS tower,

Pob = ∑
nob

max(1− dob
rob

, 0), (10)

where dob is the distance of the computed point to the center of the obstacle, rob is the radius
of the obstacle, and nob is the number of obstacles in the problem,

Pn f = ∑
nn f

max(1−
dn f

rn f
, 0), (11)

where dn f is the distance of the computed point to the center of the no-fly zone, rn f is the
radius of the no-fly zone, and nn f is the number of no-fly zones in the problem.

3.2.3. Search Space and Constraints

It is well known that constraints enhance the problem complexity. Hence, we either
(i) applied constraints as penalty functions into the cost function, such as Equations (9)–(11),
or (ii) applied constraints as search space limitations, as described below.

The coordinates of the space are denoted as x, y, and z; hence, the search space can be
expressed as

{(x, y, z) ∈ R|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax}, (12)

where, xmin, xmax, ymin, ymax, zmin, and zmax define the boundary of x, y, and z, respectively.
The boundaries of x and y can be defined according to the scale of the considered envi-
ronment. The constraint of the permitted UAV flight height is applied to the boundaries
of z. Hence, zmin and zmax can be defined based on the UAV flight regulations in each
region/country.

Another constraint that needs to be taken into account is the maximum flight distance,
Lmax, the maximum distance a drone can travel in a single flight. Lmax is mainly limited
due to physical constraints, such as battery and fuel restrictions. Therefore,

Ltotal ≤ Lmax, (13)

where Lmax for a battery-powered multirotor can be estimated as

Lmax = Vavg ×
Cbattery × Dbattery

AAD
(in km), (14)

where Vavg is the drone’s average speed in km/h, Cbattery is the battery capacity in Ah,
Dbattery is the battery discharge ratio, and AAD is the drone’s average ampere draw in
amps. In this study, Dbattery is considered 0.8, since it is common practice not to discharge
LiPo batteries below 20% mAh during flight. The calculation of AAD depends on factors
such as the drone’s payload, the size of motors, and utilized hardware components. The
details of AAD of the utilized drones in this study can be found in [50].

3.3. Optimization Algorithms

Intelligence optimization algorithms, such as PSO and GA, have been widely applied
in path planning optimization problems. In this study, we used PSO, GA, and a combination
of PSO and GA due to their advantages, such as strong robustness, simulation evolution,
and notable exploration and exploitation capability. The following describe the algorithms
and their adjustments in detail.
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3.3.1. Particle Swarm Optimization

In the PSO algorithm, first, all particles are scattered randomly in the search space,
and every particle calculates the objective function based on its position in the search
space. Then, each particle computes its next movement direction based on a combination
of information about its current position, the best position it has experienced so far, its
current velocity, and information from one or more of the best particles in the swarm. Then,
particles move, one step of the algorithm ends, and in case of necessity, the above steps are
iterated until the algorithm meets the termination criteria.

To formulate the behavior of particles, assume that there are npop particles in the
swarm, where the position and velocity of the ith particle at time t are denoted as xi and vi,
respectively, for i ∈ {}. xi, best[t] is the best position that the ith particle has experienced so
far, and xgbest[t] is the position of the swarm’s best experience. In every iteration, the swarm
updates its best position (based on objective value), which is known as global best; also
each particle updates its best solution (aka personal best) and computes its next position
as follows:

vi[t + 1] = wvi[t] + c1r1

(
xi, best[t]− xi[t]

)
+ c2r2

(
xgbest[t]− xi[t]

)
, (15)

xi[t + 1] = xi[t] + vi[t + 1], (16)

where w is the inertia coefficient; c1 and c2 are cognitive and social acceleration coefficients,
respectively; and r1 and r2 are random numbers with a uniform distribution, r1, r2 ∼ u(0, 1).
The adjustment of w, c1, and c2 plays an important role in the performance of the PSO algo-
rithm, which directly affects the convergence speed of the algorithm to the best
cost function.

Small values of w result in rapid convergence and enhance the risk of trapping in
a local minimum, and large values of w result in random behavior or particles. In other
words, a small value of w helps exploitation, and a large value of w helps exploration.
Exploration is the capability of finding new solutions, and exploitation is the capability of
developing/improving existing solutions. A pure exploration results in a random search,
and a pure exploitation results in a local search. In addition, small values of c1 and c2
help exploitation, and large values of c1 and c2 help exploration. The coefficients need to
be appropriately set to make a tradeoff between exploration and exploitation. To set the
coefficients efficiently, we used the proposed constriction coefficients by Clerk [53] as

w = χ,
c1 = χφ1,
c2 = χφ2,

(17)

where φ1, φ2 > 0 and φ ≡ φ1 + φ1 > 4, and

χ =
2

φ− 2 +
√

φ2 − 4φ
. (18)

According to [54], the optimal values for the above parameters are φ1 = φ2 = 2.05,
w = 0.7298, and c1 = c2 = 1.4962.

To improve the performance of the algorithm, the inertia weight damping ratio, wdamp,
was added into the algorithm as

w = w× wdamp, where wdamp < 1, (19)

in which, first, the algorithm starts with a high exploration rate. By updating w at the end
of each iteration, w gradually decreases, which consequently reduces the exploration rates
and enhances exploitation ability. In simulations, wdamp was set to 0.99.
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The velocity limitation was also applied to the algorithm as

Vmin < vi[t] < Vmax, (20)

where
Vmax = −Vmin = 0.1× (xmax − xmin). (21)

In the simulation, the number of function evaluations (NFE) was used as the termi-
nation criteria, in which the PSO algorithm stops its execution when meeting the criteria.
NFE can be defined as

NFE(t) = npop + npop × nit = npop(1 + nit). (22)

Algorithm 1 presents the pseudo-code of the PSO algorithm, and Table 3 lists the
general parameters in the simulation scenarios. Since Scenarios II and III environmental
scales are the same, the general simulation parameters are considered to be the same.

Algorithm 1. Particle swarm optimization.

1:
Input: npop: swarm size; nvar: no. of variables; nit: maximum no. of iterations; w:
inertia weight; c1, c2: acceleration coefficients

2: Output: Best solution
3: for i = 1 : npop do (initialize the parameters)
4: Randomly generate n initial positions Xi(i = 1, 2, . . . , n) of npop particles
5: Set n initial velocities Vi(i = 1, 2, . . . , N) of npop particles to 0
6: Calculate the cost value of each particle
7: Set Pbest and gbest in the swarm
8: end for
9: for i = 1: nit do
10: for i = 1 : npop do
11: Update Vi of the ith particle using Equation (15)
12: Update velocity bounds using Equation (20)
13: Update Xi of the ith particle using Equation (16)
14: Apply velocity bounds
15: Calculate the cost value of the new particle Xi

16: if Xi is superior to Pbest_i
17: Set Xi to be Pbest_i
18: if Xi is superior to gbest
19: Set Xi to be gbest
20: end if
21: end if
22: end for
23: Check the feasibility of the solution by checking Equations (9)–(11) = 0
24: Update best cost ever found, gbest
25 Update the inertia weight using Equation (19)
26: end for

Table 3. General and PSO simulation parameters.

Parameter Scenario I Scenario II Scenario III

Reliable zone radius (m) 500 500 500
No coverage zone (m) 50 50 50

xmin/xmax −500/2200 −6000/6000 −6000/6000
ymin/ymax −500/2200 −7000/5000 −7000/5000
zmin/zmax 65/85 65/85 65/85

α in Equation (3) 0.8 0.8 0.8
β, γ, δ in Equation (3) 105 105 105

nit 150 150 150
npop 50 50 50
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3.3.2. Genetic Algorithm

GA is the most essential evolutionary algorithm, which has been inspired by the
Darwinian evolution theorem concepts involving an initialization method, objective func-
tion to evaluate each chromosome, natural selection, crossover, and mutation operators.
Conventionally, GA has been used as an effective method to solve the 2D path planning
problem and helps to find an optimal global path for many robotic problems.

The GA algorithm initially starts with generating a random set of populations, rep-
resenting possible solutions for the optimization problem. Each solution needs to be
evaluated by an objective function to qualify the generated solutions. In the next step, a se-
lection operation is used to choose the parents that are subjected to reproduction according
to their objective function value. Later, the crossover operation is applied to produce new
progenies by recombining data from the two parents selected in the previous step. Another
genetic operation that is applied is the mutation operation, which is used to enhance the
diversity of the population by changing the genetic structure of parents based on a mutation
rate. This procedure is repeated until the termination criteria are satisfied.

The parent selection criteria for crossover and mutation are based on the merit of
individuals, in which individuals with better cost values have a higher chance of being
selected for crossover and mutation. As such, the Boltzmann method is used to calculate
the selection probabilities associated with each individual:

pi =
e−η

ci
cmax

∑
npop
j=1 e−η

cj
cmax

, (23)

where ∑
npop
i=1 pi = 1, ci is the cost value corresponding to the ith individual, and cmax is the

worst cost value of the population, which is added for normalization purposes. η is the
selection pressure. If η = 0, the selection probabilities of all individuals are the same, which
is equivalent to a random selection, where pi =

1
npop
∀i ∈ npop. If η → ∞ , the selection

probability of the best individual is one, and the selection probability of the rest of the
population is zero. In this study, the roulette wheel selection (RWS) method [55] was used
for population selection.

Let us define pc and pm as crossover and mutation rate; then the number of offspring,
nc, and mutants, nm, can be calculated as:

nc = 2×
⌈

pc × npop

2

⌉
(24)

nm =
⌈

pm × npop
⌉

(25)

The termination criteria for GA are the same as PSO, and NFE is defined as

NFE(t) = npop + (nc + nm)× nit. (26)

Table 4 lists the simulation parameters for GA in different scenarios, and Algorithm 2
presents the pseudo-code of GA.

Table 4. Parameters for GA simulations in different scenarios.

Parameter npop nit pc pm ξ η

Value 50 150 0.8 0.3 0.02 8
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Algorithm 2. Genetic Algorithm.

1:
Input: npop: population size; nvar: no. of variables; nit: maximum no. of iterations; pc:
crossover percentage; pm: mutation percentage; ξ: mutation rate; η: selection pressure.

2: Output: Best solution
3: for i = 1 : npop do (initialize the parameters)
4: Randomly generate positions Xi of ith individual
5: Calculate the cost value ci of ith individual
6: Set the best solution Pbest of ith individual
7: end for
8: Sort populations based on their cost values
9: Set best solution, Gbest
10: Set the worst cost, cmax
11: Calculate the number of offsprings, nc, using Equation (24)
12: Calculate the number of mutants, nm, using Equation (25)
13: for i = 1: nit do
14: Calculate selection probability using Equation (23)
15: for k = 1 : nc/2 do
16: Select offsprings using RWS
17: Apply crossover
18: Calculate the cost values ck of offsprings
19: end for
20: for k = 1 : nm do
21: Randomly select offspring
22: Apply mutation
23: Calculate the cost values ck of mutant
24: end for
25 Create merged population
26: Sort populations based on their cost values
27: Update the worst cost, cmax
28: Truncate the population and select the first npop individuals
29: Check the feasibility of the solution by checking Equations (9)–(11) = 0
30: Update the best solution ever found
31: end for

3.3.3. PSO-GA

Although GA has distinct capabilities, such as the cooperative use of different ge-
netic operators (selection, crossover, and mutation), it still suffers from some inherent
shortcomings, such as premature convergence, the poor capability of local search, and
slow convergence speed. One of the main reasons for such shortcomings is the lack of
information flow and collaboration between individuals. The lack of information flow
makes GA an inefficient algorithm for solving many optimization problems.

Meanwhile, the PSO algorithm was developed based on the collaboration between
particles to exploit the swarm intelligence. Therefore, to overcome the aforementioned
issues, both GA and PSO algorithms can be combined to complement each other, in
which the hybrid algorithm could improve the path planning algorithm performance.
In addition, the PSO-GA algorithm would more effectively make a tradeoff between
exploration and exploitation rate, and enhance the capacity of local search and global
search, which consequently minimizes the probability of trapping in local optima and
increases the probability of generating stable solutions. Algorithm 3 presents the pseudo-
code of the PSO-GA algorithm, and Table 5 lists the simulation parameters for PSO-GA in
different scenarios.

Table 5. Simulation parameters for the PSO-GA algorithm in different scenarios.

Parameter npop nit npso nga

Value 50 50 2 1
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Algorithm 3. Hybrid PSO-GA algorithm.

1:

Input: npop: Population size; nvar: no. of variables; nit: maximum no. of iterations;
nga: maximum no. of subiterations for GA; npso: maximum no. of subiterations for
PSO; w: inertia weight; c1, c2: acceleration coefficients; pc: crossover percentage; pm:
mutation percentage; ξ: mutation rate; η: selection pressure

2: Output: Best solution
3: for i = 1: npop do (initialize the parameters)
4: Randomly generate n initial positions Pi(i = 1, 2, . . . , n) of npop individuals
5: Set n initial velocities Vi(i = 1, 2, . . . , n) of npop individuals to 0
6: Calculate the cost value ci of each individual
7: Set best position, best cost, and best solution of ith particle
8: Update global best solution, gbest
9: end for
10: Sort populations based on their cost values
11: Set the worst cost cmax
12: Calculate the number of offsprings, nc, using Equation (24)
13: Calculate the number of mutants, nm, using Equation (25)
14: for i = 1 : nit do
15: for k = 1 : npso do
16: PSO algorithm (lines 10–22 of Algorithm 1)
17: end for
18: for k = 1 : nga do
19: GA algorithm (lines 14–28 of Algorithm 2)
20: end for
21: Check the feasibility of the solution by checking Equations (9)–(11) = 0
22: Update the best solution ever found
23: end for

3.4. Performance Evaluation and Validation

Due to the principal design of the considered algorithms, the algorithms start by
generating random solutions and then proceed with the optimization. Moreover, due to
the multimodality aspect of the path planning problem, the outputs of the algorithms
will not always be the same. Hence, we ran the simulations for each scenario 50 times
(independently) and then analyzed the results statistically. The effectiveness of the solutions
under different algorithms and scenarios was evaluated in terms of the median value,
standard deviation (denoting the stability of the algorithms), and convergence speed of
the algorithms.

To further compare the simulation results of different scenarios and algorithms, some
other metrics, such as the ratio of path reliability, Rreliability; the ratio of infeasible solutions,
Rin f easible; and execution time were considered, which can be calculated as

Rreliability =
Lreliable
Ltotal

, (27)

where Ltotal and Lreliable can be calculated based on Equations (4) and (5), respectively,

Rin f easible =
nin f easible

nit
, (28)

where nin f easible is the number of infeasible solutions generated during the optimization pro-
cedure. Infeasible solution refers to the solutions that the penalty terms in Equations (9)–(11)
are not zero.

Although the execution time of algorithms depends on the hardware and software
configuration of the utilized computer, and it is not the same for other devices, as a metric
to compare the run time of algorithms, the considered scenarios and algorithms also were
compared in terms of execution time. All the simulations in this study were implemented in
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MATLAB R2022a, and the simulation test environment is; OS: Windows 10 64-bit; Processor:
Intel® Core i5-4430; central frequency: 3 GHz; RAM: 32 GB.

To assess the effectiveness of the algorithms, the problem was simulated under three
scenarios presented in Table 2. Finally, to validate the performance of the proposed opti-
mization method, the simulation results of Scenario I were compared with the conducted
aerial drive test on the 4G network at the UKM campus.

4. Results and Discussions

This section first discusses the results of a reliable aerial cellular communication zone
based on the 4G dataset. Next, the UAV path planning optimization simulation results are
presented and discussed. Finally, to validate the ability of the proposed strategy to solve
3D UAV path planning problems, the simulation results of Scenario I are compared with
the results of the conducted aerial drive test.

4.1. Reliable Aerial Cellular Coverage

The dataset contains 8457 samples of the data of four BSs on the UKM campus, in
which RSRP and RSRQ values were measured along different flight paths and heights. In
the following, to demonstrate the status of a signal based on its RSRP and RSRQ level, we
refer to the classifications presented in Table 6.

Table 6. Signal status based on RSRP and RSRQ values [56].

Signal Strength/Quality RSRP RSRQ

Excellent −60–−70 dBm >−6 dB
Good −70–−80 dBm −6–−10 dB

Medium −80–−90 dBm −10–−15 dB
Weak −90–−100 dBm <−15 dB

Figure 5 depicts the box plots of distance, angle, RSRP, and RSRQ for overall data
as well as four considered BSs (the overall data are a combination of data from all the
considered BSs). The results show that the samples are primarily located in a radius of
10 to 593 m and an angle of 0.5 to 56 degrees. The distribution of the measured data is
predominantly influenced by parameters, such as network density, network design, the
radiation pattern of antennas, and handover. Results in Figure 5c,d show that the received
signals are in a wide range of strength and quality, from “excellent” to “weak”.

A closer look into the results of different cells reveals that, within the considered
radius and elevation angle, the RSRP values between the first and third quartile are almost
in “good” status. Meanwhile, RSRQ shows more variations in the considered scenarios and
varies from the “good” to the “medium” range.

For a more detailed analysis, Figure 6 shows box plots of RSRP and RSRQ for Route I at
different flight heights. The results show that increasing flight height decreases the median
values of RSRP and RSRQ. In the conducted measurement, the drone was flying mostly in
the LOS of BSs. Hence, the main factors of RSRP degradation are path loss and antenna
gain reduction. The main reason for the antenna gain reduction is that the BS antennas
are down-tilted; thus, based on the antenna radiation pattern, by increasing the flight
height, the chance of serving the drone with the main lobe decreases. This consequently
degrades the received signal energy at the drone side and enhances the uncertainty in the
communication link.
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On the other hand, RSRQ indicates the received signal quality in a network as well as the
effect of interference from adjacent BSs. As the results in Figure 6b show, in higher altitudes,
the drone considerably experiences lower link quality. The main reason is that, besides the
desired signal power level degradation, in higher altitudes, drones can see a larger number of
BSs. Therefore, the probability of receiving signals from adjacent/interfering BSs increases,
and consequently, the drone receives higher interference energy at higher altitudes.

Another parameter that impacts the reliability of a cellular communication link is
handover. Handover is considered a required procedure in cellular communications to
maintain the connectivity and quality of a link between users and the network. How-
ever, the multiplicity of handovers in a short time interval shows the uncertainty of the
communication link in an area. Table 7 demonstrates the impact of flight height on the
number of handovers. Note that there was no continuous coverage for Route I at a height
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of 125 m, that is, the BSs could not provide aerial coverage for the entire path at that height.
Therefore, the number of handovers was reduced. As can be seen, the number of handovers
in the three routes increased significantly as the flight height increased.

Table 7. The number of handovers in different routes and flight heights.

Height (m) Route I Route II Route III

65 7 7 -
85 8 8 -

105 13 10 9
125 6 10 12

Figure 7 illustrates a two-dimensional representation of RSRP and RSRQ around a 4G
BS, based on the RSRP and RSRQ prediction model in [51], Equations (14) and (15). Note
that the utilized equations were developed based on the same dataset used in this study.
The results show how RSRP and RSRQ degrade by increasing distance and flight height. In
addition, based on the results and radiation pattern of directional antennas, in a radius of
roughly less than 50 m, the main lobe is not able to provide sufficient coverage, especially
at altitudes above the antenna height.
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In conclusion, the results show that for a flight height up to 85 m above ground
level (AGL) and a 2D distance up to 500 m, the considered parameters, RSRP, RSRQ, and
handover, are primarily in a reliable range, where a BS can provide RSRP and RSRQ better
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than −80 dBm and −14 dB, respectively. Therefore, it is expected that the existing 4G
network can provide a good link for telemetry communications for drones within a 2D
distance between 50 to 500 m and heights up to 85 m AGL in suburban areas, where the
heights of buildings, trees, and other obstacles are almost lower than the heights of BSs.

4.2. Path Planning Optimization

The positions of the starting point, destination, BSs, obstacles, and no-fly zones were
utilized as the inputs, and PSO, GA, and PSO-GA algorithms were employed to solve
the problem. Note that the presented figures in this subsection are examples of simula-
tion results selected based on the corresponding mean values, as described earlier in the
methodology, Section 3.4. A detail of the statistical results of the simulations is presented
in Appendix A Table A1. In addition, to better visualize the results, the path planning
results are depicted in a 2D form, a horizontal projection of the 3D path planning on xy
plane, and only an example of 3D simulation results of UAV path planning is presented for
Scenario III.

Figure 8 presents the path planning optimization simulation results for Scenario I
under different algorithms. Obviously, for an obstacle-free path, the shortest path between
the starting point and destination is the direct path. However, as seen from the figure, the
optimal paths pass through the reliable zones, while making a tradeoff between minimizing
the traveling distance and maximizing the link reliability. By comparing the results in
Figure 8a, it can be seen that PSO-GA provides a slightly better solution, in which the path
is shorter while passing from the reliable zone. Results in Figure 8b show a comparison of
the convergence rate of different algorithms. In a small-scale environment, the convergence
speeds of all three algorithms are almost the same.

Figure 8. Simulation results of different optimization algorithms in Scenario I: (a) path planning
results and (b) cost function value vs. the number of function evaluations.

Figure 9 shows the statistical results of path length, reliable path length, and reliable
path ratio of the considered algorithms for Scenario I. The wider the data distribution
(both interquartile range and whiskers), the lower the stability of the algorithms to solve
the problem. In addition, a comparison between median values shows that in small-scale
environments, PSO and PSO-GA algorithms slightly outperform GA in providing effective
solutions for the considered problem. However, due to the simplicity of the problem in
Scenario I and the distinctive features of the utilized algorithm, it can be concluded that all
considered algorithms offer effective solutions for this problem.
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Figure 10 presents the result of the path planning optimization in Scenario II, which
corresponds to a long-range BVLOS scenario. The results show better path planning results
of the PSO-GA algorithm compared with PSO and GA due to the higher exploration and
exploitation capability of the PSO-GA algorithm for searching the entire search space and,
consequently, do not trap in the local optimal and better converge to the global optimal.
Results also show some of the shortcomings of the PSO and GA algorithms to minimize the
cost function and get trapped in local minima. For example, although the designed path by
GA provides a shorter path compared with the other two algorithms, for about 4 kilometers,
it passes from an area without cellular coverage. In contrast, PSO-GA effectively computes
a path with the most reliable coverage while also minimizing the traveling path. The
results of Figure 10b show that PSO-GA also surpasses PSO and GA algorithms in terms of
convergence speed.
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Figure 10. Simulation results of different optimization algorithms in Scenario II: (a) path planning
results and (b) cost function value vs. the number of function evaluations.

Figure 11 compares the statistical results of the path length, reliable path length, and
reliable path ratio of 50 simulation experiments on three algorithms in Scenario II. It should
be noted that by increasing the environmental scale and enhancing the number of objects,
such as BSs and obstacles, the multimodality of the problem will increase, in which the
complexity of finding a global optimal for the problem will be increased as well.

Based on the interquartile range of presented box plots, the instability of PSO in
optimizing a large-scale path planning problem is obvious. The generated paths vary from
straight lines to curvy paths, such as the designed paths by GA and PSO-GA in Figure 10a,
respectively. One of the reasons for this behavior is the feature of information flow in the
PSO algorithm, which helps the algorithm to explore the search space better. Meanwhile,
during the optimization procedure, due to the inertia, cognitive, and social acceleration
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coefficient adjustments, the exploration rate gradually decreases, and the exploitation rate
gradually increases. This sometimes results in premature convergence, and the algorithm
gets trapped in local minima.
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Figure 11. Statistical results of Scenario II: (a) optimal path, (b) reliable path, and (c) ratio of the
reliable path.

On the other hand, although GA provides concentrated results, which look stable,
it should be noted that in most simulation experiments, the algorithms converge to a
local minimum and is not capable of effectively making a tradeoff between objectives,
minimizing the traveling distance and maximizing the link reliability. Among all algorithms,
PSO-GA provides stable solutions with a slightly better reliable path length and reliable
path ratio.

Scenario III was developed based on a set of real-world constraints, such as the
locations of BSs (in this case, the cellular network design in suburban environments),
obstacles, and a no-fly zone. The added constraints considerably enhanced the complexity
of the problem as well as its multimodality. Simulation results in Figure 12 show that all
three algorithms are capable of computing acceptable paths for the considered problem.
However, with the same justification as Scenario II, the PSO-GA algorithm still surpasses
the other two algorithms in terms of generating a smoother path and faster convergence
speed. Figure 13 depicts a 3D map of the UAV path planning with the PSO-GA algorithm
for Scenario III, and Figure 14 depicts an overlay of the horizontal projection of the 3D
path planning on the Google map of the considered environment. As can be seen from the
figures, PSO finds a valid path while effectively avoiding obstacles and the no-fly zone and
maximizing the reliable path length.
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Figure 14. Overlaying a horizontal projection of the 3D path planning on the Google map of the
considered environment.

Figure 15 compares the statistical results of the path length, reliable path length, and
reliable path ratio of the three algorithms in Scenario III. By comparing the results of
Figure 15a, it can be seen that the median values of all three algorithms are almost the
same. However, PSO-GA surpasses the other two algorithms due to the shorter uppers and
lower whiskers, as well as the closeness of the median value to the minimum computed
path length. The results comparison also reveals the lower stability of PSO compared with
GA and PSO-GA. By comparing the results of Scenarios II and III, it can be seen that in
Scenario III, the performance of the algorithms is more similar compared with Scenario II.
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That is because by adding more constraints to the problem, the search space becomes more
restricted, which limits algorithms’ instability in generating more diverse solutions.
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As previously mentioned, enlarging the scale of the problem and increasing the
number of objects in a problem will increase the complexity of the problem. Figure 16
presents the results of the average execution time of three algorithms in different scenarios.
As can be seen, the execution time of PSO and GA algorithms is almost the same, while
PSO-GA executes far faster than the other two algorithms, about two times in complex
scenarios. This superior performance becomes even more critical when the algorithms run
on low-power computing devices, such as onboard processors or embedded systems.
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Figure 16. Comparison of the algorithms’ execution time in different scenarios.

4.3. Results Validation

To validate the ability of the proposed strategy to solve the 3D UAV path planning
problems, this subsection compares the simulation results of Scenario I with the results of
the conducted aerial drive test on the UKM campus. Figures 17 and 18 indicate the RSRP
and RSRQ values for different routes and heights. The change of the color spectrum from
cold to warm indicates the improvement of the RSRP and the weakening of the RSRQ. The
result comparison reveals a better aerial coverage on Route II in terms of RSRP and RSRQ.
Additionally, by comparing the results of Route II with the BSs’ locations in Figure 3, it can
be revealed that the UAV is served with better RSRP and RSRQ values when it is inside the
proposed reliable zone.
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Figure 17. RSRP measurements for the aerial drive test on the UKM campus at different heights (65,
85, 105, and 125 m) and different routes: (a) Route I, (b) Route II, and (c) Route III.
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85, 105, and 125 m) and different routes: (a) Route I, (b) Route II, and (c) Route III.
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Figure 19 summarizes the RSRP and RSRQ measurement results for different routes
and heights in the form of box plots. As can be seen, by increasing the flight height, the
mean values of both RSRP and RSRQ degrade. On the other hand, Route III provides the
worst result, since throughout the flight mission, the distance between the UAV and BSs
is greater compared with Routes I and II. Based on the minimum, maximum, and mean
values of presented results as well as their distribution, Route II with flight heights of 65
and 85 m provides the best RSRP and RSRQ results.
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Figure 19. Statistical results of the conducted aerial drive test on the UKM campus at different routes
and flight heights: (a) RSRP and (b) RSRQ.

Finally, Figure 20 projects the results of the optimized flight path (computed by the
PSO-GA algorithm) on the results of the three measured routes (at a height of 85 m). The
results reveal that the computed optimal path is close to Route II, and the proposed strategy
can effectively solve the UAV path planning problem in real-world scenarios.

Generally, the results show that the PSO-GA algorithm can provide the best solution
for the 3D UAV path planning problem among all three algorithms. PSO-GA has the best
performance in terms of generating feasible solutions, reliable path length, reliable path
ratio, convergence speed, and execution time. In addition, PSO-GA outperforms the other
two algorithms in terms of searching ability and stability. The comparison of simulation
and measurement results also validates the effectiveness and feasibility of the proposed
solution in a suburban environment.
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5. Conclusions

In this work, we have proposed a 3D global path planning optimization method for
cellular-connected UAVs to enhance the flight safety of low-altitude UAVs. In this regard,
the preexisting knowledge of a mission and environment, such as locations of starting
point, destination point, BSs, obstacles, and no-fly zones, can be given as the inputs to
the algorithm. The output of the algorithms is a global optimized path in the form of 3D
waypoints, which can be fed to the flight controller before its mission.

The results of the conducted aerial drive test have been statistically analyzed to
consider realistic constraints of cellular networks in the path planning problem. It has
been revealed that within a radius of 500 m and a height of up to 85 m AGL, the existing
4G network can provide reliable aerial coverage for CC communications. The other real-
world constraints, such as maximum flight distance and permitted flight height, have also
been considered in the algorithm, which can be set based on the type of the UAV and the
regulations of each country/region.

The PSO, GA, and PSO-GA algorithms have been used to solve the defined problem.
To assess the effectiveness of the algorithms, the performance of the algorithms has been
investigated under different scenarios. The simulation results revealed some shortcomings
of the GA and PSO algorithms, such as getting trapped in local minima, slow convergence
speed, and instability. Thus, a combination of both algorithms has been used to address the
issues. The PSO-GA algorithm is empowered by the powerful aspects of two algorithms,
the information flow of PSO, and the crossover and mutation operations of GA. The
simulation results showed that among all the three algorithms, PSO-GA provides the best
solution for the 3D UAV path planning problem, surpassing the other two algorithms in
terms of stability, reliable path length, reliable path ratio, convergence speed, and execution
time. Finally, the comparison between the simulation results and the measurement results
proved the effectiveness and feasibility of the proposed method in solving 3D UAV global
path planning in suburban environments.

The future work is to improve the accuracy of the RSRP and RSRQ models by taking
into account the effect of the azimuth angle on the link reliability. Furthermore, the aerial
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coverage of 5G networks needs to be investigated in different scenarios, and the proposed
method can be updated accordingly. Besides, the performance of the proposed model can
be investigated with more state-of-the-art intelligent algorithms.
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Appendix A

Table A1. Statistical results of the simulations under different scenarios.

Scenario I Scenario II Scenario III
Parameters Metrics PSO GA PSO-GA PSO GA PSO-GA PSO GA PSO-GA

Optimal Path
Length

Mean (km) 2.446 2.457 2.451 9.511 9.458 9.412 11.398 11.631 11.208
Median (km) 2.441 2.451 2.439 9.092 9.121 9.110 10.848 11.020 10.783

Min (km) 2.424 2.420 2.428 8.989 9.044 8.973 9.687 10.692 10.579
Max (km) 2.604 2.680 2.589 11.378 11.394 11.160 16.096 14.424 14.548

Std (m) 31.198 35.874 40.497 721 692 608 1219 830 918
Skewness 4.280 4.929 2.872 1.280 1.722 1.639 1.844 2.101 1.919
Kurtosis 20.8757 31.004 9.706 3.074 4.343 4.358 6.502 6.990 6.013

Reliable Path
Length

Mean (km) 2.163 2.169 2.171 6.395 6.282 6.165 5.086 5.420 4.959
Median (km) 2.157 2.166 2.157 5.955 5.925 5.987 5.209 5.138 5.219

Min (km) 2.120 2.121 2.127 5.184 5.177 5.234 2.479 1.738 1.720
Max (km) 2.367 2.443 2.349 8.984 8.898 8.618 7.649 6.821 7.160

Std (m) 41.460 45.610 53.338 1030 939 678 1193 993 952
Skewness 3.988 4.433 2.732 1.232 1.681 2.225 −0.352 −1.327 −1.007
Kurtosis 19.269 27.085 9.148 3.102 4.364 8.132 3.179 6.275 5.220

Ratio of Path
Reliability

Mean (%) 88.391 88.266 88.545 66.869 66.106 65.381 45.110 44.740 44.786
Median (%) 88.270 88.227 88.380 65.386 64.767 65.562 48.582 47.067 48.787

Min (%) 87.213 86.922 87.434 57.568 58.681 58.327 18.905 12.939 13.111
Max (%) 90.875 91.142 90.754 78.965 78.096 77.715 61.262 58.022 62.250

Std 0.621 0.601 0.732 5.522 4.752 3.715 10.834 8.973 9.653
Skewness 1.970 2.032 1.900 0.806 1.262 1.306 −1.000 −2.131 −1.452
Kurtosis 9.713 11.891 6.383 2.740 3.789 6.044 3.408 8.032 4.872

Execution
Time Mean (s) 17.844 18.246 12.115 42.667 41.090 22.103 66.991 68.837 32.940

Final Solution
Feasibility (%) 100 100 100 100 100 100 98 100 100

https://github.com/Mehranbjt/UAVCellularDataset_Suburban
https://github.com/Mehranbjt/UAVCellularDataset_Suburban
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