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Abstract: We consider the problem of dimensionality reduction of state space in the variational
approach to the optimal control problem, in particular, in the reinforcement learning method. The
control problem is described by differential algebraic equations consisting of nonlinear differential
equations and algebraic constraint equations interconnected with Lagrange multipliers. The proposed
method is based on changing the Lagrange multipliers of one subset based on the Lagrange multipliers
of another subset. We present examples of the application of the proposed method in robotics and
vibration isolation in transport vehicles. The method is implemented in FRUND—a multibody system
dynamics software package.
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1. Introduction and Related Works

The problem of optimal control is an important scientific problem in various fields of
technology, e.g., robotics, vibration damping systems, etc. The exact theoretical solution
to this problem can be achieved by using Bellman’s dynamic programming method [1]
and Pontryagin’s maximum principle [2]. However, these methods are limited to low-
dimensional equations because of their high computational complexity. Today, various
variational formulations of optimal control problems, in particular, reinforcement learning,
have become widely used. When using this approach, the control problem is simplified by
parametrizing the control function and reducing it to the parametric optimization problem.
However, a number of topical control problems (for example, in robotics) still have too
high dimensionality to be solved efficiently [3–11]. Some studies (e.g., We et al. [12] and
Tu Vu et al. [13]) have investigated the stability problem of perturbed control motion for
known referenced motion, which is a much easier task. Our study is aimed at finding the
reference motion.

In the general form, the optimal control problem has the following formulation [1].
For the system described by differential equations

f(ẋ, x, u, t) = 0, (1)

where x(t) is the coordinate vector of the entire system with dimension n. We need to find
control functions, u(t), that let us achieve the extreme value of the criterion

I =
∫ T

0
R(ẋ, x, u, t)dt. (2)

As a rule, sign-constant functions are used as the R function. It was previously noted
that the exact solution for Equations (1) and (2) using Bellman’s dynamic programming
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method and Pontryagin’s maximum principle was only obtained for several cases of low-
dimension tasks [1,2]. The optimal control problem (1 and 2) is transformed into the
parametric optimization problem in the reinforcement learning method by using a discrete
form of recording the optimization criterion and parameterizing the control function. The
optimization criterion is [14]:

I =
i=N

∑
i=0

Ri(ẋ, x, u, t)γi, (3)

where Ri is the value of the criterion function corresponding to the i-th moment of time,
and γ is the discount coefficient, which takes a value from 0 to 1. It is assumed that the time
interval of control T is divided into N sections. The control function is parameterized on
basic functions and takes the form u(s, t), where s is the parameter of the control function.
Neural networks, Fourier series, etc., can be used as basic functions [14]. The discount
coefficient γ allows the optimality criterion to “weaken” (2). Formula (3) corresponds to a
discrete formulation of Bellman’s optimal control problem when the discount coefficient is
equal to one. The control function is called “greedy” in the reinforcement learning method
when it was obtained with a discount coefficient equal to zero. The parameterization of the
control function for multidimensional problems leads to high-dimensional optimization
problems and also makes the solution dependent on the basic functions on which the control
function was interpolated. Moreover, the dependence of the control function on time ties
it to time-dependent external disturbances. All this makes developing new methods of
solving variational formulations of machine learning problems important.

2. Theoretical Description

Consider the optimal control problem for systems with constraints in the form of
algebraic equations. The equations of the state of these systems can be written as

f(ẋ, x, u, t) = 0

Q(x, t) = 0,
(4)

where Q(x, t) is the constraint equation vector with dimensionality k ≤ n. For the numerical
solution, system (4) is usually used in the form [15–17]

f(ẋ, x, u, t) + DTp = 0

Dẋ = h(x, t),
(5)

where D is the matrix of coefficients of the constraint equations with dimension k× n, p is
the k-dimensional vector of Lagrange multipliers, and h(x, t) is the vector of the right parts
of derivatives of the constraint equations. The second equation of system (5) is obtained
by differentiating the constraint equations with respect to time. The physical meaning of
the Lagrange multipliers for the problems of the dynamics of mechanical systems is the
constraint reactions. As the applications considered in this article are related to mechanical
systems, the term “constraint reactions” will be used as equal to the term “Lagrange
multipliers”.

The differential-algebraic system in Equation (5) is widely used in multibody systems
(MBS) dynamics software packages for modeling the dynamics of connected systems of
bodies [16]. The features of numerical integration (5) related to ensuring stability are
considered in [17]. In numerical integration (5), derivatives of coordinates and Lagrange
multipliers from the system of linear algebraic equations are found at each integration step
according to (

M DT

D 0

)(
ẋ
p

)
=

(
f∗(x, t)
h(x, t)

)
. (6)
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The solution to a system of linear algebraic equations can be written in the following
form (

ẋ
p

)
= A−1b. (7)

Consider the control problem as described in [18]. There is a subset of reactions
p1 in the vector of constraint reactions p whose elements are numbered from the set K1;
the number of elements in the set K1 is k1.Their values are described by functions ϕi(t),
i = 1, 2, . . . , k1, or in the matrix form

p1 = ϕ(t). (8)

There is also a subset of k2 reactions, p2, from the vector of constraint reactions, p,
whose values are taken from subset K2, which can vary due to changes in the values of
unknown functions h2j(t), j = 1, 2, . . . , k2, which will be called corrective terms. Each
reaction from p2 corresponds to its own constraint equation; the relevant corrective term
h2j(t) is added to the right part of this equation. The corrective terms h2j(t) form a column
matrix h2 in the k2 dimension. Reactions p2, generally, are control functions, so we will
consider k2 as the number of control functions. The values of reactions p1, taking into
account (7) and the corrective terms, are

p1 = A−1
1 (b + h∗2(t)), (9)

where A−1
1 corresponding to set K1 is the submatrix of A−1, consisting of the rows A−1

whose numbers belong to K1. Only the components with numbers from K2 are non-zero
in the column matrix h∗2 of dimension n + k. We assume that p10 = A−1

1 b, A−1
1 h∗2 =

Ch2, matrix C contains only columns from matrix A−1
1 with numbers from K2 and has

dimensionality k1 × k2. Then (9) takes the form

p1 = p10 + Ch2(t). (10)

Taking into account that p1 = ϕ(t), from (10), we can obtain the system of linear
algebraic equations for determining h2(t).

Ch2(t) = ϕ(t)− p10. (11)

If the system of linear Equation (11) is joint, then it is possible to determine the control
functions of p2 as

p2 = A−1
2 (b + h∗2(t)), (12)

where A−1
2 is the submatrix A−1 corresponding to set K2, consisting of rows A−1 whose

numbers belong to K2. Given that p20 = A−1
2 b, A−1

2 h∗2 = Bh2, matrix B contains only
columns from matrix A−1

2 with numbers from K2 and has dimension k2 × k2. Equation (12)
can be rewritten as

p2 = p20 + Bh2(t). (13)

Equation (11) gives the values of changes on the right sides of the constraint equations,
ensuring the achievement of the desired values of reactions p1. Since h2(t) affects all the
variables in the system (4), when integrating the equations of the mathematical model, the
accelerations and constraint reactions are calculated from the system with the modified
right side as follows (

ẋ
p

)
= A−1(b+h∗2(t)). (14)

Equation (11) has a unique solution if k1 = k2 and matrix C is non-singular. The
properties of matrix C are determined by the properties of matrix A. The main reason
for the singularity of matrix A is redundant constraints, i.e., linearly dependent rows in
matrix D. Redundant constraints can be inherent to the system’s structure or introduced on
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purpose, for example, in the parallel-structure mechanisms. In the following, it is assumed
that the square matrix A is non-singular unless otherwise stated.

Case k1 = k2 is the simplest. Cases k1 6= k2 are of greater interest, so we will consider
them further.

The systems where k1 > k2 are commonly called underactuated systems. The analysis
of the controlled motion of these systems can be found in [19]. It is difficult to obtain a
meaningful solution for such systems within the framework of the considered approach.

Systems where k1 > k2 are called overactuated. These systems are widespread, for
example, in robotics. Their analysis is relevant to our study. We consider the methods
of solving the linear system of equations (11) in this case. Matrix C of the system is
rectangular—with dimensions k1 × k2. As already mentioned, matrix C is a full-rank
matrix.

System (12) can be converted to a system with a square matrix by adding equations.
The simplest way of achieving this is by adding linear equations for the corrective terms h2,
i.e., converting (11) to the form(

C
V1

)
h2(t) =

(
ϕ(t)− p10

b1

)
, (15)

where V1 is the non-singular matrix of constant terms with dimensionality (k2 − k1)× k2,
and b1 is the column matrix of constant terms on the right side. Only (k2 − k1)× (k1 + 1)
terms are linearly independent in the second equation of the system (15), so matrix V1 can
be represented as

V1 =
(
E V∗1

)
, (16)

where E is the identity matrix of dimensionality (k2 − k1)× (k2 − k1), and V∗1 is the matrix
of arbitrary coefficients of dimensionality (k2 − k1)× k1. This method of reduction to a
single solution will be called the method of additional equations for corrective terms.

Additional equations to (11) can be formed by imposing linear connections on the
controls. The second equation of system (15) will take the form

V1p2 = b1.

Substituting p2 = p20 + Bh2(t), we will get

V1Bh2(t) = b1 −V1p20.

System (15) is now (
C
V1

)
h2(t) =

(
ϕ(t)− p10
b1 −V1 p20

)
. (17)

We call (17) the method of reduction to a single solution by additional equations for controls.
Another way to eliminate the uncertainty of solution (11) is the conditional extremum

method. Consider the conditions for the extremum of the expression

I = pT
2 V2p2, (18)

where V2 is a diagonal matrix of weights. Therefore, (18) is the weighted sum of the squares
of controls. Consider the problem of finding the conditional extremum of expression (18),
taking into account the conditions (11). In this case, (18) will be represented as

I∗ = pT
2 V2p2 + (Ch2(t)−ϕ(t)− p10)λ, (19)

where λ is the column matrix of Lagrange multipliers of dimension k1. Extremum condi-
tions for (20) are

∂I∗

∂h2i
= 0, i = 1, 2, . . . , k2, (20)
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from which we get (
B1 CT

C 0

)
=

(
h2

λ

)
=

(
b21

b22

)
, (21)

where B1 is the matrix of dimension k2 × k2 with elements

b1lm = 2v2mm

k2

∑
i=1

bimblm, l, m = 1, 2, . . . , k2, (22)

the column matrix b21 of dimension k2 with elements is

b21l = 2
k2

∑
i=1

v2ii p20ibli, l = 1, 2, . . . , k2, (23)

the column matrix b22 of dimension k1 is

b22 = ϕ(t) + p10. (24)

The system of linear equations (21) has the square matrix of coefficients of dimension
k1 + k2 and allows a single solution to be obtained. The method based on the use of (20)
will be called the conditional extremum method with constraints in the form of equations
of program reactions or simply the conditional extremum method.

This method allows taking into account k2 − k1 more of the constraint equations. The
linear combinations of forces in the actuators (13) can be used as these constraints. In this
case, expression (20) will be

I∗ = pT
2 V2p2 + (Ch2(t)−ϕ(t)− p10)λ + V3(p20 + Bh2(t))λ1, (25)

where V3 is the matrix of weights with dimension k3 × k2, k3 ≤ k2 − k1 and λ1 is the corre-
sponding vector of Lagrange multipliers of dimension k3. The linear system, Equation (21),
for the functional (25) will have the following formB1 CT BT

2
C 0 0
B2 0 0

h2
λ
λ1

 =

b21
b22
b23

, (26)

with the matrix B2 as
B2 = V3B, (27)

and the matrix b23 as
b23 = −V3p20. (28)

The method based on the use of (25) will be called the conditional extremum method
with constraints in the form of forces in the actuators. If k3 + k1 = k2, system (26) splits
into two independent systems. The column matrix h2 is unambiguously determined from
the second and third equations of (26), which are similar to system (17). Function (25) is
close to the function of the Karush–Kuhn–Tucker (KKT) method, which is well-known in
the theory of nonlinear programming [8]. However, in our case, it is used without any
additional conditions that are used in the KKT.

The conditional extremum method makes it possible to reduce the optimal control
problem to the parametric optimization problem over the state space of relatively small
dimensionality, compared with the direct parameterization of the control functions.
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3. Case Studies

The method considered in Section 2 is implemented in the MBS dynamics software
FRUND [20]. The examples below are solved using it.

3.1. Inverted Double Pendulum

Consider the flat inverted double pendulum shown in Figure 1. These pendulums are
often considered in problems of control synthesis of walking robots [21–32]. The limit on
the magnitude of the torque in the pendulum support is a condition for the stability of the
robot (i.e., avoiding overturning). The problem is to find the law of change of torque at
points B and C with an arbitrary law of motion of point A. Simple usage of the constraint
equations in one or two directions at point A leads either to the fixation of the pendulum
in its original position or to the fall of the pendulum if one connection is specified in the
horizontal direction.

Figure 1. Calculation scheme (a) and motion picture (b) of the fall of the inverted double pendulum
with the condition of horizontal movement of a given point A. A is the point for which reference
motion is defined. B and C are pendulum links.

Various options for finding control torques can be considered within the framework
of the proposed method. The simplest case is specifying the constraints at point A along
the vertical coordinate ZA = 0. The control torque will be found only at point B. The
parameters of the dimension that was introduced in Section 2 are n = 6, k = 6, k1 = 1,
k2 = 1; the control torque MB is found from Equation (13). The motion picture of the
pendulum is presented in Figure 1b. The plot of the torque change MB is presented in
Figure 2. During the calculations, it was assumed that the control torque smoothly reaches
the program’s preset value in 0.05 seconds. The sharp increase in the control torque at the
end of the movement is explained by the approach to the singularity position—aligning
the pendulum links along the same line (see Figure 1b). Therefore, in this simplest case, the
problem of determining the control torque is solved unambiguously.
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Figure 2. The control torque in link B when the horizontal movement of point A is free with various
control options.

3.2. Spatial Model of Android

Let us consider the spatial motion of a mechanical system on the example of an
android robot. The calculation scheme of such a robot is presented in Figure 3. The system
parameters are n = 150, k = 144. The number of actuators in the android structure is 21.
The calculation scheme contains two masses with large values of inertial parameters to
determine 12 reactions in the contacts of the android’s feet with the supporting surface.
This method allows for solving some special cases of systems with redundant constraints.
In this case, the redundant reactions are six reactions in the feet. Calculations were made
for the variant of 8 control drives and restrictions on 6 reactions—k1 = 6, k2 = 8. Control
drives are rotation drives working around the transverse axis of the robot in the hinges of its
shoulders, hips, knees, and feet—two for each type of hinge. We modeled the displacement
of the center of mass of the robot back by 2 cm in 2 s. Vertical reactions and reaction
torques were considered unchanged relative to the transverse axis. Horizontal reactions
in the feet were calculated from the horizontal inertia forces caused by the movement of
the center of mass. As the torque of the reaction was set to be unchanged while the static
torque of this reaction increased due because of the movement of the center of mass, this
change was compensated for by the movement of the robot’s sections, in particular, by
the rotation of its arms (see Figure 4). This movement corresponds to the natural reaction
of a human when trying to maintain balance without being able to move their legs. The
results shown in Figure 4 are obtained by resolving the ambiguity using the conditional
extremum method—Equation (21). The squares of angular velocities in the corresponding
hinges were taken as weights. During calculations with the same unit weights, the torque
compensation occurred solely because of the movement of the body.
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Figure 3. The calculation scheme of an android robot. Blue markers are the links; other colors mark
the different bodies of the system.
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Figure 4. The movement picture of the android’s movement when the center of mass is shifted
backward while maintaining the magnitude of the reaction torque in the support relative to the
transverse axis.

The considered example of controlling an android robot as a multibody mechanical
system allows the conclusion that the method is sufficiently versatile and applicable to a
wide class of mechanisms to be made, for example, for parallel mechanisms [33–37].

3.3. Optimal Control Problems in the Example of Car Vibrations

Optimization criteria such as (2) are widely used in practical applications of mathe-
matics and mechanics [38–40]. Consider the classical problem of controlling a vibration-
isolating system using the car suspension example. Minimization criterion (2) can be
presented in the proposed approach as follows

J =
∫ T

0
R∗(p1)dt. (29)

As R∗ is a function of some program values of Lagrange multipliers p1, which are
assigned to desirable functions ϕ(t), the sum of the components of vector ϕ(t) can be used
as R∗ function. The minimum of functional (29) is achieved, for example, by functions ϕ(t)
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being equal to zero. The greedy control criterion (3), in this case, will take the following
form

I =
i=k1

∑
i=1

ϕi(t). (30)

The controls for criterion (30) can be found by using (10)–(25). Let us emphasize that
the control obtained from criterion (30) is greedy control. However, it is the optimal control
as well because it provides the minimum of criterion (29).

Consider the problem of controlling a car’s suspension to reduce its vibrations from
the impact of the road’s micro profile. The existing problem statements can be found
in [41–44]. Figure 5 shows the calculation scheme of the mathematical model of the car,
which makes simulating its movement along the road irregularities possible. We simulated
the movement of the car through a triangular irregularity. Vertical accelerations in the front
of the car are presented in Figure 6. In the controlled version, two connections are set—zero
vertical movements at two symmetrical points, A and B, in the front of the car body. The
M1 and M2 torques in the two front suspension arms are used as actuators. The dimension
parameters are n = 96, k = 85, k1 = 2, k2 = 2. Using (12), we determined the control
torques in the suspension levers, ensuring the movement of points on the frame with zero
reactions. Frame accelerations at the considered points are close to zero (see Figure 6).
This problem can be considered an example of solving an optimal control problem with
the optimization criterion in the form of zero displacements of the selected points of a
mechanical system.

Figure 5. The calculation scheme of a car. A and B is the points whose reference motion is defined.
M1 and M2 are the links where the control torques are applied.
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Figure 6. Vertical acceleration in the car’s front part.

4. Conclusions

The proposed method of calculating control can be considered a universal theoretical
method for solving a wide range of problems related to controlled system dynamics, in-
cluding the problems of controlling robot manipulators, anthropomorphic and zoomorphic
robots, vibration damping problems, etc. The important feature of this method is that it
is based on numerical models of machine dynamics, which are widely used in existing
computer simulation programs for the dynamics of mechanical systems. The method
has no fundamental limitations on the dimensionality of modeled systems and types of
nonlinearities.

The evaluation of the proposed method on the described use cases and other test
examples proved that computational efficiency has increased for all problems described
by DAE (differential-algebraic equations). It was achieved for DAE with a wide range
of state dimensions—from 12 to 180 (k1 + k2) and control dimensions from 1 to 8. The
dimensionality of the parameter space is independent of the state dimension and defined
only by the number of controls.

The proposed method is a universal theoretical method for the optimal control problem
of the systems meeting the following requirements:

• the system is described by DAE (2), which has numerical solutions; constraint Equation (1)
is a function of coordinates (holonomic constraints in mechanics);

• the integral object function contains only Lagrange multipliers (29);
• matrix A is not singular;
• the linear system in Equation (11) is joint, i.e., it has at least one solution.

The important feature of this method is that it can be considered a kind of machine
learning, in particular, reinforcement learning, as a variational formulation of the control
problem. The formulation of the proposed method in the form of functionals (20) and (25)
corresponds to the so-called “greedy” control [14] in reinforcement learning methods
and, at the same time, is the optimal control with the appropriate formulation of integral
optimality criteria. From this point of view, the considered method can significantly reduce
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the dimensionality of the parameter space, and consequently, increase the computational
efficiency of machine learning methods.

The purpose of the presented method is to provide the reference optimal trajectories
and controls in the case of the agent having complete knowledge of the environment. The
stability problem, controller optimization, and uncertainty model fall beyond the borders
of this study. For the tasks of robot control, the standard methods of achieving robustness
can be used [45].

This work presents the fundamental theoretical provisions of the method and does
not address such issues as control stability and control in systems with singular matrices.
These issues are the subject of further research.
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