
Citation: Yu, W.; Li, X.; Zeng, Z.; Luo,

M. Problem Characteristics and

Dynamic Search Balance-Based

Artificial Bee Colony for the

Optimization of Two-Tiered WSN

Lifetime with Relay Nodes

Deployment. Sensors 2022, 22, 8916.

https://doi.org/10.3390/s22228916

Academic Editor: Peter Han Joo

Chong

Received: 10 October 2022

Accepted: 16 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Problem Characteristics and Dynamic Search Balance-Based
Artificial Bee Colony for the Optimization of Two-Tiered WSN
Lifetime with Relay Nodes Deployment
Wenjie Yu 1,* , Xiangmei Li 2, Zhi Zeng 3 and Miao Luo 1

1 School of Automation, Chengdu University of Information Technology, Chengdu 610225, China
2 School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China
3 School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China
* Correspondence: wenjie.y@alu.uestc.edu.cn

Abstract: Lifetime optimization is one of the key issues among the many challenges of wireless
sensor networks. The introduction of a small number of high-performance relay nodes can effectively
improve the quality of the network services. However, how to deploy these nodes reasonably to
fully enhance the network lifetime becomes a very difficult problem. In this study, a modified and
enhanced Artificial Bee Colony is proposed to maximize the lifetime of a two-tiered wireless sensor
network by optimal deployment of relay nodes. First, the dimension of the problem is introduced into
the candidate search equation and the local search is adjusted according to the fitness of the problem
and number of iterations, which helps to balance the exploration and exploitation ability of the
algorithm. Second, in order to prevent the algorithm from falling into local convergence, a dynamic
search balance strategy is proposed instead of the scout bee phase in the original Artificial Bee Colony.
Then, a feasible solution formation method is proposed to ensure that the relay nodes can form the
upper-layer backbone of the network. Finally, we employ this algorithm on a test dataset obtained
from the literature. The simulation results show that the proposed algorithm for two-tiered wireless
sensor network lifetime optimization can obtain higher and stable average network lifetime and
more reasonable relay node deployment compared to other classical and state-of-the-art algorithms,
verifying the competitive performance of the proposed algorithm.

Keywords: two-tiered wireless sensor networks; relay node deployment; Artificial Bee Colony;
lifetime optimization; Swarm Intelligence

1. Introduction

A wireless sensor network (WSN) is a multi-hop self-organizing information per-
ception and data collection system. It can obtain detailed and accurate data in a variety
of environments and pass the information between people and the objective world [1,2].
Among the many challenges in WSN applications, one of the most basic problems is how to
deploy sensor nodes (SNs) reasonably in order to meet the service quality of the network.

In a WSN composed of ordinary nodes, the energy of the nodes is limited [3] and
the communication burden of certain nodes is heavy, which easily causes the network to
stop working prematurely [4]. To tackle this problem, a large number of redundant SNs
generally need to be deployed in the network; however, this causes a lot of additional
costs. The alternative solution is to reasonably deploy a small number of relay nodes
(RNs) with high energy in the traditional WSN [5]; that is, the accurate calculation the
location of RNs can help to replace the large number of redundant SNs deployed. Based on
their deployment, related research can be divided into the categories of single-tiered and
two-tiered WSN RN deployments [4]. All devices deployed in single-tiered WSN (ST-WSN)
follow the same multi-hop routing rules except for the sink node. In the deployment of
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two-tiered WSN (TT-WSN), ordinary nodes only send data to RNs in one hop, and RNs only
send information to sink nodes or other RNs. Finally, RNs send information to the sink.

Due to the high cost of RNs, scholars are greatly concerned with how to deploy the
fewest RNs in a network. However, when there are a fixed number of RNs, another problem
that cannot be ignored is how to deploy them to form the optimal upper-layer skeleton of
the network in order to optimize its lifetime. This problem is NP-Hard [6], and must be
solved with non-traditional methods.

Both RNs and SNs deployed in an ST-WSN forward the received packets. The de-
ployment of a minimum number of RNs has been studied in a series of fixed candidate
locations in a WSN with guaranteed network connectivity [7] . As an extension of this
study, Misra et al. [8] investigated how to deploy a minimum number of RNs in an energy
harvesting WSN while ensuring the connectivity and lifetime of the network. The candidate
locations with energy harvesting potential were predetermined. Perez et al. [9] used a
multi-objective algorithm to optimize the energy consumption and the number of routes
for a single-tiered WSN. Nigam et al. [10] proposed a branch-and-cut algorithm to deploy
a minimum number of RNs in certain candidate locations in an ST-WSN to ensure that
the duration of sensor node and base station communication satisfies a predetermined
delay bound. Truong et al. [11] proposed a multi-objective network repair algorithm to
restore the connectivity of WSNs in unknown regions. Ozkan and Ermis [12] studied the
problem of how to ensure network connectivity by deploying RNs in an ST-WSN. They
transformed the RN deployment problem into a mixed integer programming model using
genetic algorithms and simulated annealing algorithms to find the minimum number of
RNs to be deployed and their reasonable locations. Lanza-Gutierrez and Gomez-Pulido [4]
investigated how to deploy RNs in a ST-WSN based on a meta-heuristic algorithm. Their
aims was to optimize the average energy consumption of the network as well as its average
sensing area.

Compared to ST-WSNs, TT-WSNs are more balanced in energy consumption for SNs,
although they are more complex in network topology formation. A genetic algorithm-based
clustering method was proposed to optimize the lifetime of a TT-WSN with different delays
in [13]. In their study, a multi-objective and top level GA was applied to obtain clustering
schemes to optimize the network lifetime for different delay values. The low level GA is
used in each cluster in order to find the most efficient topology for the transmission of data
from sensor nodes to the cluster head. Azharuddin and Jana [14] employed a liner pro-
gramming formulation for the TT-WSN deployment problem and then presented a genetic
algorithm based meta-heuristic algorithm to minimize the number of RNs and maximize
the connectivity of the network. Chen et al. [15] transformed the RN deployment problem
into a minimum geometric disk coverage problem and determined that the problem is
NP-complete. Then, they proposed a linear time approximation algorithm to solve it, in
which the covering disks used the regular hexagon tessellation of the plane with bounded
area. Hashim et al. [16] proposed an Artificial Bee Colony algorithm-based deployment
method to extend the lifetime of a network by optimizing the parameters of the network
and limiting the total number of RNs. Unlike their approach, the RNs in the present work
are closer to SNs with limited energy. Yang et al. [17] used a heuristic algorithm to deploy
the minimum number of RNs in a TT-WSN under the requirements of connectivity and
lifetime satisfaction. To meet the survivability requirement, they studied the 2-connected
double-cover problem where each sensor node was covered by two base stations or relay
nodes, and the relay nodes formed a 2-connected network with the base stations. Ma et
al. [18] used a tree-based connecting algorithm heuristic to optimize the network delay of
TT-WSNs. They deployed RNs at a subset of predetermined deployment locations such
that each sensor was covered by at least one RN, while ensuring the obedience of delay
constraints. From the above studies, RNs are often deployed at certain discrete candidate
locations; the energy of RN is limited, and there is a direct communication between each
SN and RN. However, in practical applications the deployment space of RNs is often
continuous, and RNs can be kept infinitely energetic by means such as solar or geothermal
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energy supply. To further reduce the number of nodes, not all SNs can communicate with
RNs directly.

To overcome the above challenges, this study focuses on the problem of RN deploy-
ment with infinite energy for multiple hops between SNs under continuous space. It can
be seen that Swarm Intelligence algorithms (SI) have been widely used for these types of
problems and indeed provide a better approximate solution to this type of problem. Among
them, in recent years, the Artificial Bee Colony algorithm (ABC) [19] with strong global
optimization ability and simple structure has received much attention. It has been widely
used in the combinatorial optimization problem [20], complex weight matrix derivative
problem [21], and other problems. In the literature, Hashim et al. [16] used this algorithm
for the optimization of WSNs. However, in previous studies the characteristics of the
problem have not been deeply integrated with the algorithm, and the algorithm needs a
lot of adjustment parameters to adapt to the characteristics of the problem; additionally,
the parameters of the SI algorithm are often relatively large, and it is difficult to obtain a
balance between the global and local search ability of the algorithm. This paper proposes
an improved Artificial Bee Colony algorithm based on problem characteristics and dynamic
search balance, then uses this algorithm to solve deployment problems and compares it
with other algorithms. Simulation experiment results verify that the proposed algorithm
improves the global search capability, result stability, and local convergence speed for dif-
ferent problems. This study mainly contributes to optimizing lifetime by RN deployment
in TT-WSN, in particular as follows:

• The dimensional characteristics of the problem are incorporated into the search for-
mula of the ABC. This enables the algorithm to adjust the search step according to the
dimensionality of the problem, improving the global search capability of the algorithm
in a targeted manner.

• The adaptation degree of each individual in the operation of the population intelli-
gence algorithm is integrated into the search process of the algorithm. This helps the
algorithm to adjust the speed of local convergence according to the adaptation degree
and strengthens its local convergence ability.

• The dynamic search balance strategy is used to replace the scout bee phase in tradi-
tional ABC to further reduce the algorithm parameters and improve the ease of using
the algorithm.

• Based on the proposed two-layer WSN backbone network algorithm, the problem of
deploying different numbers of RNs under different scenarios is studied and a general
deployment method for lifetime optimization is obtained.

The rest of this paper is organized as follows. Section 2 models the problem for TT-
WSN. In Section 3, we first provide a general overview of the base ABC algorithm, then
describe the proposed algorithm and how to use the proposed method in TT-WSN in detail.
Finally, the proposed algorithm is applied to solve the problems of TT-WSN relay node
deployment in Section 4, and the paper is concluded in Section 5.

2. Relay Node Deployment Problem for TT-WSN
2.1. Network Model

This research studies a TT-WSN with size lx × ly. The equipment deployed includes
Ns SNs, Nr RNs, and one sink node (BS), as shown in Figure 1. All SNs have the same
initial energy, i.e., RNs only forward without collecting information and it is assumed
that their energy is unlimited. SNs and RNs follow the unit disk communication model.
The condition for any two devices to communicate with each other is that their Euclidean
distance be less than or equal to the communication distance. SNs can send information
to SNs, RNs or the BS, while RNs can only send information to other RNs or the BS. The
routing protocol is provided by the shortest energy consumption path calculated by the
SPFA algorithm [22]. The medium access protocol uses the S-MAC protocol [23]. All SNs
collect data and send it to the BS. This process is a work cycle; for simplicity, it is assumed
that each work cycle takes 10 min.
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Figure 1. TT-WSN illustration.

2.2. Energy Consumption Model

The energy model used in this study mainly considers the most energy-intensive data
transmission process while ignoring the energy consumption of the process of reception,
processing, and perception [24].

At time t > 0(t ∈ τ), the data packet Pi(t) sent by the sensor i includes the data packet
forwarded by the sensor and the data packet generated by the sensor through perception.
The sensor generates a data packet at every time unit.

Pi(t) = 1 + ∑
j∈{Ss(t)−i}

κs
j,i(t) t > 0 (1)

Here, Ss(t) is the set of sensor coordinates with remaining power greater than 0, and
Ss(t) ⊆ Ss, Ss is the set of all sensor coordinates at the beginning. When time t > 0 and
i ∈ Ss(t) is in the shortest path between j ∈ Ss(t) and the receiving node, κs

j,i(t) is equal to 1.
When i > 0, the amount of energy consumed by the sensor i is provided as the

equation below:

EPi(t) = Pi(t) · amp · k · ||i− ςs
i (t)||α · β. (2)

Here, amp is the energy consumed by the power amplifier per bit (amp > 0), k is the
size of the data packet in bits, || · || is the Euclidean distance between the two devices, ςs

i (t)
is the next device on the shortest path, α is the communication attenuation index (α ∈ [2, 4]),
and β is the transmission quality parameter (β > 0). This equation simulates the additional
energy loss due to packet loss.

The initial energy possessed by the sensor is ie. At time t, the remaining energy of the
sensor i, ELi(t) is expressed as follows:

ELi(t) =
{

ELi(t− 1)− EPi(t) t > 0
ie t = 0

(3)

2.3. Lifetime Definition

Network lifetime is defined in this study as the number of time periods in which WSN
can provide valid information, as shown in Equation (4). When any sensor runs out of
energy, the network is considered to have reached the maximum life limit [25]:
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lt = |{t > 0 ∈ τ, ∃ELi = 0}| i ∈ Ss (4)

where lt is the lifetime of the network when at least one sensor runs out of energy.
The main goal of this research is to study how to maximize lt by reasonably deploying

relay nodes in TT-WSN.

3. Implementation of pdABC for TT-WSN Relay Node Deployment
3.1. Overview of ABC

Inspired by the foraging process of honey bee swarms, Karaboga [19] proposed the
ABC to simulate similar processes. The algorithm is mainly used to solve nonlinear
optimization problems with multiple peaks and valleys in multiple dimensions. The
algorithm consists of four main phases.

In the beginning, Equation (5) is used to generate random solutions as the initial food
sources:

xij = xmin
j + λ(xmax

j − xmin
j ) (5)

where i = 1, 2, · · · , SN; j = 1, 2, · · · , D; xmin
j and xmax

j are the lower and upper bounds for
the index j, respectively; SN stands for half of the colony size; D is the dimension of the
problem; and λ is a random real number within the range [0,1].

The following Equation (6) is applied to the generated food sources to calculate
their fitness. It is used to indicate the goodness of the solution, and the best food source
is memorized.

f iti =

{
1

1+ fi
, fi ≥ 0

1 + |( fi)|, fi < 0
(6)

where f iti represents the fitness of solution i, fi is the result of objective function, and
i ∈ {1, 2, · · · , SN}.

Then, the employed bees begin to explore the food sources. Each employed bee uses
Equation (7) to generate a candidate food source, i.e., a candidate solution:

vij = xij + φij(xij − xkj) (7)

where j is a randomly selected dimension such that j ∈ {1, 2, · · · , D}, k is a randomly
chosen food source such that k ∈ {1, 2, · · · , SN}, and k 6= i. φij is produced randomly in
the range [−1, 1]. If the candidate solution is better than the original solution, the candidate
solution replaces the original solution; conversely, the original solution remains unchanged,
and the number of times the food source is not updated increases by one.

Further, before the onlooker bees explore food sources, the probability p of each food
source being selected is first calculated using the following Equation (8) [26]

pi = 0.9× f iti
max( f iti)

+ 0.1 (8)

The onlooker bees select the food sources based on the probability. Then, they explore
the food source according to Equation (7) and generate new candidate food sources. They
determine whether the current food source is updated. If it is not updated, the number of
times the food source remains unchanged increases.

When the number of times a food source is not updated exceeds a set value, an
employed bee turns into a scout bee using Equation (5) for food source refreshment. This
allows the algorithm to jump out of local optimal solutions.

In the above process, the respective number of employed and onlooker bees is equal
to half of the population size, meaning that there is only one scout bee.
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3.2. Introduction of pdABC Algorithm
3.2.1. Search Equation Based on Problem Dimension and Fitness

When using Equation (7) in the ABC algorithm, xi is randomly selected. This results
in ABC having strong global search capability, poor local search capability, and slow
convergence speed [27]. To solve this problem, a new Artificial Bee Colony algorithm,
GABC, has been proposed in the literature [27]. The search equation of the algorithm is
provided below:

vij = xij + φij(xij − xkj) + ϕij(yj − xij) (9)

where ϕij is a random number between [0, C], C is a non-negative constant, and yj is the jth
component of the global optimal solution. The search equation enhances the local search
ability of the algorithm to an extent without affecting its global search ability.

According to the general optimization process, the algorithm requires a strong global
search ability in the early stage of optimization to ensure that the region where the optimal
solution is located can be detected, as well as a strong local search ability in the later stagein
order to converge quickly. It can be seen from Equation (9) that the randomness of ϕij
further improves the convergence speed of the GABC algorithm [28]. In addition, in the
process of testing other ABC variants [28–30], it is often apparent that different optimization
strategies only perform better on some benchmark functions. Therefore, it is necessary
to redesign the search equation to ensure that it can better balance the exploration and
development capabilities of the algorithm, thereby improving its adaptability to different
problems. To achieve the above purpose, we propose the pdABC algorithm for the following
search equation:

vij = xij + φij · fg · (xij − xkj) + C · f l
best · (yj − xij) (10)

where fg is a variable used to balance the global search and local search of the algorithm,
and is defined specifically in the equation below:

fg = (1− l)1/D (11)

where D is the demension of the problem and l is a linearly varying parameter, which is
defined as follows:

l = Curitr/Maxitr (12)

where Maxitr is the maximum number of iterations of the algorithm and Curitr is the
number of iterations where the algorithm is currently located.

The part f l
best is used to adjust the search speed of the algorithm elastically in order to

adapt the algorithm to different problems, as expressed in the equation below:

f l
best = (1 + e−( f itnessi/ f itnessmin))l (13)

where f itnessi is the fitness of individual i and f itnessmin is the minimal fitness. It can
be noticed that l belongs to [0, 1] due to Equation (12) gradually approaching 1 as the
iterations increase, while f l

best gradually becomes bigger. This means that the second part in
Equation (10) has an increasing impact with increasing iterations. The exploitation ability
of the algorithm is gradually increased, speeding up the convergence of the algorithm.
In addition, the introduction of the fitness values serves to adjust for different problems.
It is worth noting that the fitness value in this work refers to the network lifetime. We
introduce f itnessmin, which means the current best lifetime. Through the ratio of f itnessi to
f itnessmin, the value in the f l

best is greatly reduced to meet the needs of practical purposes.
In summary, we are able to find that with this part of the equation the algorithm tends
to converge faster when the number of iterations increases or the lifetime acquired by a
particular bee is larger.

It can be seen from Equation (10) that increased l leads to the decrease of fg; the
increase of f l

best means that the algorithm has a strong global search ability in its early stage,
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which is attenuated in the later stage, and its local search ability is enhanced to accelerate its
convergence. Here, D is the dimension of the problem. When D is large, it means that the
problem is complex; at this time, it means that the algorithm has strong global optimization
ability to meet the needs of complex problems. When D is small, the opposite is true. The
introduction of the adaptation value in Equation (13) enables f l

best to adjust the search speed
according to different problems, thereby enhancing the adaptability of the algorithm to
different problems.

3.2.2. Dynamic Search Balance Strategy

In order to accelerate the convergence speed of the algorithm and obtain a more
accurate solution, in Equation (10), its global optimization ability is attenuated according
to a certain rule, and its local optimal ability is gradually enhanced. However, because
it is unclear when an individual or several individuals in the algorithm can reach the
region where the optimal solution in the solution space is located, the algorithm may
fall into a local optimum, although Equation (10) helps to balance the global and local
optimization ability of the algorithm. In order to solve this problem, we propose a dynamic
search update strategy to balance the global optimization and local optimization abilities of
the algorithm. We use this strategy to replace the reconnaissance stage of the traditional
Artificial Bee Colony algorithm. The specific process of our dynamic search balancing
strategy is described in the flow chart of Figure 2. The main idea behind GOBL [30] is
that when evaluating a candidate solution S for a given problem, the solution S̄ at the
opposite position is calculated at the same time. S̄ has a higher probability of approaching
the optimal solution of the problem than the randomly selected solution. In this algorithm,
the dynamic search balancing strategy replaces the detection bee stage in ABC, meaning
that the parameters in ABC no longer need to be considered.

Figure 2. Flow Chart of Dynamic Search Update Method.
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3.3. The Proposed Algorithm

Compared with the original ABC algorithm and several other ABC variants, dpABC
algorithm differs in three areas: first, a new search equation with dynamically changing
global and local search capabilities is used in the employed and onlooker bee phases;
second, a dynamic search balancing strategy is used to fully prevent the algorithm from
falling into local optima; and third, the scout bee phase is replaced by dynamic search
balancing, meaning that the parameter limit in the original algorithm does not have to be
considered. The N-S diagram of the dpABC algorithm is shown in Figure 3.

Figure 3. N-S Diagram of dpABC .

Regarding the complexity of the algorithms, dpABC and ABC have the same complex
time in the employed bee, onlooker bee, and probability calculation phases. In the phase of
scout bee, due to the dynamic search balance strategy adopted in the dpABC algorithm,
the merging sort used in this method results in higher time complexity O(NlogN) than
that of ABC O(N). However, this complexity can be controlled by limiting the number of
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problem calculations. Moreover, although the dpABC algorithm has a relatively high time
complexity, its global optimization ability and local convergence acceleration capability are
enhanced, as confirmed in the simulation section.

3.4. Introduction of pdABC into TT-WSN Relay Node Deployment
3.4.1. Individual Representation, Initialization, and Fitness Value Assignment

The individual composition of the algorithm is shown in Figure 4. Each individual
consists of the coordinates of Nr RNs. During initialization, the coordinates of each RN ri
in the individuals are randomly generated according to Equation (14).

Figure 4. Individual representation.


ri = (xi, yi)
xi = random[0, lx]
yi = random[0, ly]

i = 1, 2, · · ·Nr (14)

In this approach, network lifetime is used as fitness.

f itnessi = lti (15)

where i represents the ith individual in the population.

3.4.2. Feasible Solution Formation

The WSN used in this study has two layers, with the relay nodes forming the upper
layer backbone network. Such a set of relay node coordinates is called a feasible solution
of the network. In the process of randomly deploying nodes, due to the limited commu-
nication distance of relay nodes, a certain relay node may be too far away from other
relay nodes to communicate with them. To solve this problem, when the coordinates
of a relay node are determined, a feasible solution of the algorithm can be formed. The
following steps are specifically used to form the backbone network of the relay node: Step
1. Sr = {All relay nodes}, S = {The sink node}; Step 2. Find all nodes in Sr that can
communicate with at least one node in S to form a set Sr

′; Step 3. If Sr
′ is empty, find the

two closest points r2 and r1 in Sr and S, respectively; r2 moves toward r1 straightly until
the distance between them is equal to or less than rc. If there are two or more nodes in Sr,
which are at the same distance with respect to a node in S, choose any one of them; Step 4.
Sr
′ = Sr

′ ∪ {r2}; Step 5. S = S ∪ Sr
′; Step 6. Sr = Sr − S; Step 7. If Sr is empty, the iteration

stops; otherwise, go to step 2. Through the above virtual movement process of the relay
nodes, the formation of the TT-WSN backbone network is ensured.

4. Numerical Experiments

Based on the above research, the TT-WSN network lifetime can be optimized. In this
section, we describe the different RN deployment experiments we conducted. First, the
scenarios of a specific TT-WSN deployment are provided, including the source of the data
reference. Then, the network parameters of the TT-WSNs are depicted, along with the
specific parameters of the algorithms. Numerical simulations are run for different scenarios
and different number of RNs to analyze and study the global optimum, convergence speed,
and robustness of the algorithm in multiple cases. In order to further verify the performance
of the proposed algorithm, a number of more widely used algorithms from recent years
were selected for comparative analysis and research.
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4.1. Configuration of Network Parameters
4.1.1. Experimentsal Scenario

The experimental scenarios include 100× 100 m2 and 200× 200 m2. The numbers
of SNs deployed are 30 and 114, respectively. The BS is deployed in the center of the
area. Referring to the literature [4], half of the SNs in each scenario are deployed in
specific locations and the other half are randomly deployed. The deployment is shown in
Figures 5 and 6. The sign “+” represents the BS and the circles represent the SNs in both
figures. Due to the high cost of RNs, the number of RNs in this study does not exceed 20%
of the number of SNs. The number of RNs that can be deployed in the former scenario
varies from 1 to 6, and the number of RNs that can be deployed in the latter scenario varies
from 1 to 22.

Figure 5. Senario of SN and RN deployment within 100× 100 m2.

Figure 6. Senerio of SN and RN deployment within 200× 200 m2.
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The experimental program code was written on the JDK 1.7.0_17_64 platform. The
specific configuration of the simulation computer running the program was an Intel(R)
Xeon(R) CPU E5-2650 v2 2.60 GHz × 2, with 128 GB RAM, and the operating system was
Windows Server 2008 R2 Enterprise.

4.1.2. Network Model and Algorithm Configurations

The parameters of the TT-WSN network model were as follows: α = 2, β = 1,
k = 128 KB, rs = 15 m, rc = 30 m, amp = 100 pJ/bit/m2 and ie = 10 J [31].

Three other optimization algorithms, namely, Genetic Algorithm (GA) [12], Simulated
Annealing Algorithm (SA) [12], and ABC, were employed to check the effectiveness of the
pdABC. The population size of all the algorithms was set to 40. The maximum number
of iterations for each algorithm was 300. The calculation was repeated 30 times for each
instance. The composition of ABC, GA, and SA individuals was the same as that of pdABC.
The comparison algorithms all used parameters that needed to be adjusted. For GA, these
parameters were the crossover rate and the mutation rate; for SA they were the initial
temperature and temperature drop rate; pdABC used the constant parameter C; finally,
ABC was set to half the population size multiplied by the dimension of the problem. The
parameter selection ranges of the three algorithms that require parameter tuning are shown
in Table 1. Each parameter combination was run 30 times with a maximum number of
iterations of 100, using 100× 100 terrain to deploy six relay nodes. Comparing the final
average results, the final selected optimal parameter combinations are listed in the fourth
column of Table 1.

Table 1. Parameter selection of GA, SA, and dpABC.

Algorithms Parameters Value Selected Range

GA Mutation 0.2 [0.05, 0.1, . . . , 0.95]
Crossover 0.95 [0.05, 0.1, . . . , 0.95]

SA T0 4 [1, 2, . . . , 20]
λ 0.85 [0.05, 0.1, . . . , 0.95]

dpABC C 1.5 [0.5, 1.0, . . . , 5.0]

4.2. Relay Node Deployment Experiments

When the network is only composed of SNs, the lifetime of a network with 30 sensor
nodes deployed in 100× 100 terrain is 480 min, while the lifetime of a network of 114 sensor
routers in 200× 200 terrain is 110 min. On this basis, RNs can be added to the network in a
gradually increasing manner to observe the network life optimization curve in the 100× 100
and 200× 200 terrains with different numbers of RNs added, as shown in Figures 7 and 8.

Figure 7. WSN lifetime optimization with different number of RNs in 100× 100 terrain.
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Figure 8. WSN lifetime optimization with different number of RNs in 200× 200 terrain.

When an RN is added, the optimized lifetime results of 100 × 100 and 200 × 200
deployed WSNs are 570 min and 170 min, respectively, 18.75% and 54.54% longer than
the WSN without an RN node. This means that adding an RN to an ordinary WSN has
a great effect in improving network life. When an RN node is added, all four algorithms
compared here obtain the same optimization results. However, as the number of deployed
RN nodes continues to increase, the differences between the different algorithms increase.
In the 100× 100 network, the pdABC algorithm performs slightly better than the ABC
algorithm for lifetime optimization; in turn, the ABC algorithm is better than GA algorithm,
while the SA algorithm has the worst performance when the number of RNs exceeds three.
In the 200× 200 terrain, the optimization effect of the different algorithms is more different,
and the optimization effect of the pdABC algorithm is further reflected.

In order to verify the convergence of the algorithm in solving the TT-WSN relay node
deployment problem, the relationship between the different algorithms in terms of lifetime
optimization based on the different numbers of RNs and number of iterations is shown in
Figures 9 and 10.

(a) 3 RNs (b) 6 RNs

Figure 9. Lifetime optimization trend with different RN numbers in 100× 100 terrain.
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(a) 3 RNs (b) 9 RNs

(c) 15 RNs (d) 22 RNs

Figure 10. Lifetime optimization trend with different RN numbers in 200× 200 terrain.

When the number of RNs is small, that is, when the problem is low-dimensional, the
performance of the algorithms is the same or similar. In order to fully demonstrate the
convergence speed of the different algorithms in the different dimensions, the number of
RNs is 3 and 6 in the 100 × 100 terrain, and the number of RNs is 3, 9, 15, and 22 in the
200 × 200 terrain. It can be seen from Figures 9 and 10 that the GA algorithm has the fastest
convergence speed; however, compared to ABC and pdABC, it can easily fall into a local
optimum. The SA algorithm is more likely to fall into local optima in the 200 × 200 terrain
than in the 100 × 100 terrain, and it has the worst performance. The convergence speed of
pdABC is faster than that of ABC, though weaker than that of GA. As the number of RNs
increases and the number of iterations increases, however, pdABC is able to explore better
solutions and show stronger global optimization. Compared with the other algorithms, the
pdABC algorithm has better ability to avoid falling into local optima.

SA, GA, ABC, and pdABC are all metaheuristic algorithms, which prevents them from
falling into a local optima by increasing the random change of the solution. Randomness
provides the algorithms with the ability to explore better solutions, although it makes
them more volatile. In order to verify the stability of the pdABC algorithm in the process
of solving the deployment problem of relay nodes in TT-WSN, the box plots shown in
Figures 11 and 12 demonstrate the distribution of the solution.
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Figure 11. Optimal lifetime distribution box plot with six RNs in 100× 100 terrain.

Figure 12. Optimal lifetime distribution box plot with twenty-two RNs in 200× 200 terrain.

The box plot evaluates the symmetry and distribution of the solution distribution using
five statistical values in the data (the minimum, first quartile, median, third quartile, and
maximum), which can be intuitive. The above shows that the solution distribution is stable.
The 6 RNs and 22 RNs in the two terrains have the most changes, respectively; thus, they are
used to evaluate the stability of the algorithms under the two terrains. It can be seen from
Figures 11 and 12 that the distribution of the GA solutions is the most concentrated, that
is, its stability is the best. The SA algorithm has the worst performance in the first terrain,
although it performs better in the other terrain; in general, the overall health value of the
solution is the lowest. The distribution of the solutions of the pdABC algorithm is better
than that of ABC algorithm. Although the stability of the pdABC solution distribution is
worse than that of GA, the median and average values of the pdABC solutions compared to
other algorithms in the two terrains are the largest. In addition, the maximum value found
by pdABC is the largest, which means that the algorithm has stronger global optimization
performance.

In addition to comparison with the abilities of the SA, GA, and ABC algorithms in
solving the problem of deploying RNs in TT-WSN, we compared the dpABC algorithm
with other state-of-the-art algorithms, using the same 100 × 100 terrain with 6 RNs and
200 × 200 terrain with 22 RNs for the simulation. The algorithms compared include
WOA [32], SCA [33], and GWO [34]. These three algorithms have been widely studied
and applied in recent years. Thus, experiments were conducted to verify the performance
of dpABC algorithm. A preliminary experimental study aimed at ensuring the fairness
of algorithm comparison was conducted to ensure that all the algorithms had the same
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number of problem evaluations in one iteration. The results can be comprehensively
evaluated through iteration numbers and network lifetime. Thus, the parameter of each
algorithm’s population size was set. To study the other parameters of these algorithms, see
the related references [32–34].

The lifetime optimization results of the different algorithms are shown in Table 2,
in which Ave.NL represents the average network lifetime of the TT-WSN and Ave.CT
denotes the number of iterations when the algorithm reaches the convergence state. Both
parameters were obtained by averaging them over several experiments. However, for
simplicity, both were taken directly as integers. As can be seen from the table, while WOA
has the best coverage ratio, it requires more iterations due to its slow convergence speed.
The dpABC algorithm has the second-highest average network lifetime compared to other
algorithms, and its average iteration times are reduced nearly by 15% compared with WOA.
It can be concluded that the dpABC algorithm not only achieves a higher average network
lifetime, it has a faster convergence rate as well.

Table 2. TT-WSN lifetime optimization for different algorithms.

Algorithms
6 RNs (100 × 100) 22 RNs (200 × 200)

Ave.NL Ave.CT Ave.NL Ave.CT

WOA 1955 273 783 326
SCA 1824 358 681 378

GWO 1871 312 724 348
dpABC 1934 232 777 280

5. Conclusions

In order to solve the problem of how to optimize the deployment of a certain number of
RNs in a TT-WSN to increase network life, this paper proposes an improved and enhanced
Artificial Bee Colony algorithm (pdABC). In the pdABC algorithm, the search equation
is improved in two aspects: first, that the global search part is adjusted according to the
dimensions of the problem and the local search part is constructed according to the fitness
value; second, in order to prevent the algorithm from premature convergence, a dynamic
search balance strategy is proposed. This strategy is used to replace the traditional ABC
scout bee stage. Before using the pdABC algorithm to solve the deployment problem of
RNs in a TT-WSN, we first constructed an algorithm for using the RNs to form the upper
communication backbone of the network. On this basis, the pdABC algorithm is used
for optimizing RN deployment in the TT-WSN. To test the role of the pdABC algorithm
in the optimization of RN deployment in a TT-WSN, the ABC, GA, and SA algorithms
are compared to our proposed pdABC. The experimental results verify that the pdABC
algorithm has strong global optimization ability compared to the other three algorithms,
and the obtained RN deployment is more uniform. In terms of convergence speed and
stability, the pdABC algorithm is better than the ABC and SA algorithms, although it is
inferior to GA. In addition, we compare our algorithm against three current state-of-the-art
algorithms, and the analysis results show that our algorithm is very competitive.

In our future work, we hope to compare this algorithm with a variety of other state-
of-the-art algorithms from multiple perspectives to further validate its performance. In
addition, we aim to apply this proposed algorithm to real-world problems and extend it
for multi-objective optimization problems.
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