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Abstract: RGB and depth cameras are extensively used for the 3D tracking of human pose and
motion. Typically, these cameras calculate a set of 3D points representing the human body as a skeletal
structure. The tracking capabilities of a single camera are often affected by noise and inaccuracies due
to occluded body parts. Multiple-camera setups offer a solution to maximize coverage of the captured
human body and to minimize occlusions. According to best practices, fusing information across
multiple cameras typically requires spatio-temporal calibration. First, the cameras must synchronize
their internal clocks. This is typically performed by physically connecting the cameras to each other
using an external device or cable. Second, the pose of each camera relative to the other cameras must
be calculated (Extrinsic Calibration). The state-of-the-art methods use specialized calibration session
and devices such as a checkerboard to perform calibration. In this paper, we introduce an approach
to the spatio-temporal calibration of multiple cameras which is designed to run on-the-fly without
specialized devices or equipment requiring only the motion of the human body in the scene. As an
example, the system is implemented and evaluated using Microsoft Azure Kinect. The study shows
that the accuracy and robustness of this approach is on par with the state-of-the-art practices.

Keywords: multiple-camera setup; depth sensor; motion capture; 3D human pose estimation; extrin-
sic calibration; synchronization; Azure Kinect

1. Introduction

RGB and depth cameras are extensively used for the tracking of human motion and
extraction of body pose. Three-dimensional (3D) human pose estimation algorithms [1–4]
are based on camera’s output streams (RGB, depth or both). The estimated pose is often
given as a set of 3D points, representing the locations and orientations of the skeletal joints
of the captured human body (see Figure 1). The tracking capabilities of a single camera
often suffer due to the occlusion of body parts. Multiple-camera setups offer a solution
to increase the coverage of the captured human body and to minimize the occlusions.
However, the data acquired from multiple cameras must be merged in order to obtain
coherent body tracking.

Thus, when using multiple cameras, two main requirements must be fulfilled in order
to fuse the data across cameras:

1. Camera Synchronization (alignment between the cameras’ clocks).
2. Multi-Camera Calibration (calculating the mapping between cameras’ coordinate systems).

Traditional approaches to the synchronization and calibration of multiple cameras
typically involve designated calibration sessions that require specialized tools such as
light probes or checkerboards. Furthermore, the calibration sessions must be repeatedly
performed to ensure calibration following camera shifts and drifts.

The goal of this article is to provide an alternative to the standard synchronization
and calibration techniques. We present a simple, easy to use method even for non-technical
savvy individuals. It relies on analyzing asynchronous 3D human pose records rather
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than performing the traditional synchronization and calibration sessions. The approach
and methods presented are designed to fuse multiple camera recordings with minimum
technical constraints, requiring only a moving body in the scene. The approach allows for a
setup-and-go system that can continuously calibrate and can be operated by users with
low technical skills, while maintaining the state-of-the-art practices in terms of accuracy. It
can be performed continuously on-the-fly during recording or even retrospectively. Thus,
calibration can be continuously updated and corrected and consequently is robust to camera
motion or sensor drift. The approach is demonstrated and evaluated using Azure Kinect
cameras [1], although the proposed approach may be implemented using other commercial
RGB and RGB-D sensors, as long as a 3D human pose estimation algorithm allows the
reliable extraction and tracking of the human motions. Code and instructions will be made
available to the public upon acceptance of the article.

Figure 1. OpenPose (Left) and Azure Kinect (Right) skeletal joints maps.

The structure of this paper is as follows: Section 2 gives an overview of related work.
Section 3 describes the proposed method. The evaluation results based on the Azure Kinect
cameras are presented in Section 4, and the paper concludes with a discussion in Section 5.

2. Related Work

In this article, we chose to focus on the consumer level rather than high-end cameras,
allowing the use of our code by the general public. Furthermore, we consider cameras that
capture human body poses using non-intrusive technology (i.e., do not require wearable
sensors or body markers), which is a major advantage. The “vicon” and “opto-track”
system [5,6] are examples of SOTA technologies for performing 3D human pose estimation
using multiple cameras. However, these high-end systems in addition to their high cost
require a set of physical markers that must be worn by the human subject for pose capturing.
These systems are impractical for use by the general public. Similarly, movement of the
human body can be captured using inertial measurement unit (IMU) sensors [7], which are
accurate, low cost and practical but are intrusive as they are attached to the body. Thus,
several low-cost 3D cameras have recently been developed.

The Microsoft Azure Kinect [1] was released in March 2020, allowing developers
and researchers easy access to a good quality RGB-D sensor. The Azure Kinect is widely
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compared against its predecessor the Kinect v2 in several recent studies [8–10]. Algorithms
have also been developed for extracting the 3D human pose from RGB videos. Those
include for example open pose [3] and mediapipe [11].

Multiple-camera setups allow increasing the coverage of the captured human body
and minimizing occlusions. Multiple camera setups have been explored using various
devices, such as RGB cameras [12], depth cameras, such as the Kinect V2 [13–15], and
recently using Azure Kinect cameras [16].

Previous studies exploit 2D human poses in multiple 2D camera streams. Sinha and
Pollefeys [17] presented a method for analyzing the motion of silhouettes in multiple video
streams. Takahashi et al. [18] detect 2D human poses in videos for temporal synchronization,
and in a recent study by Zhang et al. [19], synchronization is acheived by minimizing an
energy function related to epipolar distances. These studies are based on 2D human pose
data, which might be less accurate and require further processing in order to calculate the
3D pose estimation for pairs of cameras. Our proposed approach supports both RGB and
RGB-D sensors, although RGB-D sensors may ensure that the 3D pose is captured with
higher accuracy and in a wider range of environments compared to a standalone RGB
sensor (e.g., low light conditions).

Our earlier studies rely on 3D human pose records, demonstrating a variant of the
extrinsic calibration technique [13,14]. A recent study by Lee et al. [16] proposed the
extrinsic calibration of multiple RGB-D cameras with 3D human pose estimation records
and feature matching. Their proposed method refers only to the calibration process, where
the temporal synchronization is achieved by connecting 3.5 mm audio cables between the
devices. Our approach provides a complete end-to-end solution for both calibration and
temporal synchronization, which in this paper is evaluated against the suggested methods
of the sensor manufacturer both for calibration and temporal synchronization.

As discussed above, multiple camera setups require camera synchronization and
calibration. Standard synchronization methods require coordination between the camera
clocks so that concurrently recorded frames can be matched. This is usually performed by
synchronizing the clocks on the host computers connected to the cameras using network-
based clock synchronization methods (e.g., using an NTP server). Another approach is to
physically connect the cameras using a cable. For instance, the method recommended by
Microsoft for the Azure Kinect is to connect every two cameras with a dedicated 3.5 mm
audio cable [20]; this will ensure all cameras capture synchronized frames (or with a
constant predefined delay—see Section 3.1 and [20]).

Relying on clock synchronization methods introduces several major drawbacks:

• Requires external hardware (for example, connecting cables between cameras) which
may limit the distance between cameras and limit the potential setup layout.

• Cannot be synchronized retrospectively; the clocks must be synchronized prior to
the recording.

• Must be performed by a trained user who is familiar with the instructions of each
synchronization method.

Our proposed approach offers an algorithm for synchronizing cameras which can be
performed on-the-fly or even retrospectively based on asynchronous recordings of human
body motions from the different views. It can be performed without any special training or
dedicated hardware, and there are no limitations on the distances between cameras.

Multi camera calibration typically requires dedicated calibration sessions preferably
performed prior to recording. These methods require special accessories such as a flash-
light [21] or checker board [22] (see Figure 2). Microsoft’s recommendation for calibrating
multiple Azure Kinect is to use the checkerboard method [20]. Relying on such dedicated
calibration sessions and tools introduces several major drawbacks:

• Requires a calibration session every time the sensor’s location changes.
• Cannot calibrate recordings retrospectively.
• Must be performed by a trained user who is familiar with the instructions of each

calibration method.
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• Typically does not support continuous calibration in real-time (on-the-fly).

Figure 2. Checkerboard calibration: two corresponding frames from two synchronized camera streams.

Spatio-temporal calibration methods using multi-sensors records have been exten-
sively researched in recent years. These methods aim to realize both the timing and the
locations of the multi-camera setups simultaneously. A recent study [23] proposed a
method for multiple RGB cameras which relies on the detection of multiple human bodies
along videos and the calculation of spatio-temporal calibration from their locations and
interactions. In another study [24], the authors proposed a spatio-temporal technique to
synchronize and calibrate both an RGB camera and a 3D laser scanner, using the traditional
chessboard as a target.

Our proposed approach offers an algorithm for calibrating the cameras that does
not require specialized calibration sessions. It can be performed continuously on-the-fly
during recording or even retrospectively. As with the synchronization, it relies only on
the motion of a human body in the scene, whihc is captured from the different cameras.
Thus, calibration can be continuously updated and corrected and consequently is robust to
camera motion or sensor drift.

3. Method

In this section, we describe our approach to synchronization and calibration. A variant
of the calibration technique was used in our earlier studies demonstrating its usefulness in a
multi-camera system used to record patients within different medical studies [13–15]. In the
current study, the algorithms are described and implemented on a Kinect Azure 2-camera
setup; however, extensions to a larger number of cameras is straightforward. RGB sensors
alone can be used rather than RGB-D, using 3D pose tracking algorithms [3,11]. As de-
scribed above, the uniqueness of our approach is achieved by analyzing asynchronous
3D human pose estimation records instead of performing the traditional steps of syn-
chronization and calibration of multiple cameras. Figure 3 shows the workflow of our
proposed approach. It is important to note that although both algorithms for synchroniza-
tion and calibration use the same body motion records, each of them analyzes the data
differently. The synchronization algorithm uses body joint distances, whereas calibration
uses joint positions.
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Figure 3. The workflow of the proposed spatio-temporal calibration approach.

3.1. Camera Synchronization

Using a 2-camera setup, we assume that two asynchronous streams of 3D human pose
data are collected from the same scene. We assume the data of each camera is given as a body
skeleton with 3D coordinates representing the skeleton joints (Figure 1). Synchronization is
based on distances between body joints, that are, theoretically, invariant to camera pose.
When a subject is in motion, the distances between body joints change. These changes
should be consistent between camera views when the cameras are synchronized. Thus,
monitoring the changes in the skeleton joint distances can serve the synchronization process.

We define PoseID as the vector of (K×K)/2 distances between every 2 pairs of skeletal
joints (with K being the number of joints in the skeleton). Thus, per input stream, we obtain
a sequence of PoseIDs, one for each frame. Synchronization between cameras is performed
by syncing the two PoseID streams (see Figure 4).

Figure 4. A vector (PoseID) of distance between every two skeleton joints is calculated for every
frame of the input stream.
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The two streams are not initially synchronized nor can we assume the same frame
rate in both cameras nor a constant frame rate throughout the stream. Thus, to allow
sub-frame rate synchronization, we re-sample the PoseID streams by interpolating the joint
distances and increasing the frame rate synthetically. Specifically, we increase frame rate
to 100 frames per second by using variable sampling between frames, according to each
input stream’s time stamp (original frame rates in our tests ranged between 25 and 30).
This improves synchronization significantly. Examples of synchronization results with and
without re-sampling are shown in Figure 5.

Figure 5. Examples of the aligned signals without (top) and with (bottom) re-sampling of the signals.
Re-sampling allows overcoming the non-constant frame rate.

Given the re-sampled sequences of PoseIDs from the two camera streams, we calcu-
late the normalized cross-correlation [25,26] for each entry i in PoseID, and we take the
coordinate of the peak value as the shift between streams with respect to the joint pair i.
This results in (K × K)/2 peak correlation values and (K × K)/2 shift values. However,
several of the joint pairs may be uninformative in that the distance between them does
not change, such as consecutive joints on the skeleton (representing the ends of a skeleton
“bone”) or body parts that do not move during the session. Thus, for every entry i in the
PoseID sequences, its Coefficient of Variation (CVi) [27] (Equation (1)) is computed over
the correlation function Ci. A low CV value indicates an uninformative joint pair. To
calculate the shift value between the two camera streams, the most informative joint pairs
are selected, namely those associated with the top 10% CV value. The average of the shift
values of these pairs is taken as the camera stream synchronization shift value.

ˆCVi =
STD(Ci)

MEAN(Ci)
(1)

3.2. Camera Calibration

As described above, in order to merge data from two or more cameras, a calibration
procedure must be performed. That is, the transformation between the position of the
two cameras must be computed and then used to align the recorded data. Rather than a
specialized calibration session, we use an on-the-fly calibration method that is based only
on the motion of a human body in the scene. In our system, a body skeleton (Figure 1)
is computed per video frame, per camera. Every joint of the skeleton is associated with
its 3D coordinate given in the camera’s frame of reference with XY axes parallel to the
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camera image plane and the Z-axis passing through the camera center. Every joint is also
assigned a confidence value indicating the reliability of the 3D position as estimated by
the tracking algorithm. Unfortunately, the skeleton joint positions are often erroneous
due to errors in depth estimation or due to the occlusion of body parts from the camera’s
line of sight. Unfortunately, the confidence values do not always reflect these errors. We
further assume that the camera streams have been synchronized, and thus, we can assume
matching skeletons between the cameras. The calibration transformation between cameras
is given by the alignment between the skeletons obtained from the two camera streams.
Figure 6 shows an example of a pair of aligned skeleton frames.

Figure 6. Skeleton alignment for two cameras positioned 180 degrees from each other.

The Kabsch algorithm [28,29] is used to calculate the optimal transformation between
cameras based on the skeleton joints. Assume two synchronized cameras A and B. Let N be
the number of frames in the skeleton stream (of both cameras). For each frame i of camera
A, define PA as the set of 3D coordinates of k skeleton joints. PA = {pi

A}k
i=1. Similarly,

defined the set of skeleton joints for the corresponding frame in camera B: PB = {pi
B}k

i=1.
The sets are normalized by subtracting their centroids, and their Cross-Covariance Matrix
Hi is calculated (Equation (2)). Singular Value Decomposition (SVD) is then applied on Hi
in order to calculate the 3D rotation Ri and the translation vector ti between the skeletons
of frame i (Equations (3)–(5)).

Hi =
K

∑
i=1

(
pi

A − centroidA

)(
pi

B − centroidB

)T
(2)

[USV] = SVD(Hi) (3)

Ri = VUT (4)

ti = centroidB − R× centroidA (5)

This process is performed for each frame i of the skeleton streams. RANSAC [30] is
then used to determine the optimal transformation between cameras. Thus, k skeleton joints
are selected at a time to compute the transformation (Ri and ti), and the transformation with
a maximal number of inlier joints is taken as the final calibration transformation. The k joints
are pseudo-randomly selected by considering joints of high confidence originating from
different parts of the skeleton (top, middle, and bottom parts of the skeleton). For additional
details, see [13,14]. Figure 6 shows an example of two skeletons from two different views
and the aligned results.

Further tuning and refinement of the calibration transformation can be obtained by
considering the 3D cloud of points also recorded by the cameras. However, we found that
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this improvement is minor, and the calibration obtain using skeletons alone suffices in all
our projects (see [13]).

It is important to note that our proposed algorithm also allows 180◦ setups (cam-
eras facing each other), which is not possible to calibrate using the standard methods.
The 180◦ setup can potentially provide coverage with a pair of cameras to generate a full
3D Body mesh.

4. Test Results

In this section, we report on the results of our tests, comparing our methods of synchro-
nization and calibration against standard approaches. A data set of Kinect Azure recordings
was collected to evaluate both methods. The synchronization and calibration methods use
the same data set, which includes recordings in multiple setups, with different distances
and angles between the sensors, and also by recording sessions with and without utilizing
the ground truth techniques of both methods (see Sections 4.1 and 4.2 for more details).

4.1. Synchronization Testing

Camera synchronization is typically performed by connecting between cameras in
order to coordinate their internal clocks. One approach is to connect the two cameras into
the same host computer and force frame captures to be coordinated with the same host
computer clock. Another approach is to physically connect the cameras and trigger the
camera captures simultaneously. Microsoft’s recommendation for synchronizing between
Microsoft’s Azure Kinect sensors is to directly connect the cameras using a 3.5 mm audio ca-
ble [20]. Via the cable, the camera’s internal clocks are synchronized by forcing the cameras
to start their recording session simultaneously. This approach has an inherent disadvantage
in that it limits the user to the length of the audio cable. Additionally, increasing the number
of cameras in a setup further complicates the synchronization. We compare our human
motion-based synchronization method against Microsoft’s recommended technique, which
we denote as ground truth.

To perform the comparison, we used two Microsoft Azure cameras positioned in 0, 30,
90 and 180 rotation degree to each other and a 1, 1.6 m distance between cameras, resulting
in eight different testing setups (see Figure 7).

Figure 7. Multiple setups used for testing. Angles between cameras were: 0, 45, 90 and 180 rotation
degree. Distances between cameras were 1 and 1.6 m.
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For each setup, the two cameras recorded while connected with a 3.5 mm audio cable
as per Microsoft’s instructions, as well as without the cable, so as to ensure inputs as per
our proposed approach. Three types of sessions were recorded with respect to body motion
(Figure 8): (1) the subject moved the entire body, (2) the subject moved his hands only, and
(3) the subject held and waved a checkerboard without moving the rest of the body.

Figure 8. Three types of movements were recorded in each setup: (a) Moving all body parts,
(b) Moving hands, and (c) Holding and moving a checkerboard.

The Azure cameras collected the 3D body skeletons per frame together with a times-
tamp obtained from the internal clock of each camera. When the cameras were connected
by the cable, the timestamps were synchronized and served as ground truth. The time shift
in this case was 0.

In order to test our method, we applied the human motion based synchronization as
described in Section 3.1 on every recorded session and compared the resulting shift value
with the ground truth (where shift = 0) (see Figure 9).

Figure 9. Comparing synchronization methods–Microsoft Azure method using a cable (top) vs. our
human-motion based method (bottom).

Table 1 displays the results of the comparison tests between our proposed synchro-
nization and the checkerboard method. Each row in Table 1 gives the shift error (in ms)
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between the two cameras for different camera setups and for the three different types of
movements (moving the entire body, moving hands only and waving with a checkerboard).
The bold values in Table 1 represent the movements with the lowest shift error for each
tested setup. The ground truth synchronization is given by the cable based synchronization.
Results show that our proposed synchronization method is accurate and robust across
different inter-camera distances and rotation angles. The average shift error in all setups of
moving the entire body and moving hands is 33.14 ms, and 31.85 ms, respectively, which
are very similar, and both imply that our method produces outputs insignificantly different
from the ground truth. The average shift error in all setups of holding a checkerboard is
110.66 ms, which is higher than other sessions, since most of the upper body is occluded by
the checkerboard, and still, the error rate is relatively low. The checkerboard method cannot
be implemented in setups of 180 deg; thus, the corresponding cell is empty in Table 1.

Table 1. Human motion-based synchronization results compared to Microsoft’s cable-based synchro-
nization method.

Angle Distance Moving Body Moving Hands Checkerboard
(deg.) (cm) Shift (ms) Shift (ms) Shift (ms)

0 100 34 59 106
45 100 18 2 99
90 100 24 18 62
0 160 12 62 31

45 160 0 0 11
90 160 143 43 355
180 300 1 39 -

The results do not show any major difference between the three types of movements
recorded, with the checkerboard session showing marginally higher values. This implies
that the human-motion based synchronization is not sensitive to the type of movement the
user is performing, as long as the entire body is tracked by both sensors and some basic
movements are performed. Indeed, as described in Section 3.1, our proposed algorithm
relies on the joint pairs with highest correlation coefficient. This is further demonstrated in
Figures 10 and 11 where matrices depict the Coefficient of Variance (CV) of the correlation
function between pairs of joints. Matrix entries are color coded to enhance visualization.
The body joints from the arms are colored in red.

The human motion-based calibration described above ranks joint pairs according
to CV and considers joint pairs with high CV values as informative for synchronization.
It can be seen in both matrices that high CV values appear for pairs of joints for which at
least one of the joints is moving. Note that one moving joint and one constant joint is still
informative for our proposed method. Figure 10 is a matrix of CV values for a session with
hand movement only. It can be seen that the highest CV values are associated with at least
one body joint from the hands. This is reasonable, as in this session, only the hands are
moving. Figure 11 is a matrix of CV values for a session in which the subject is waving a
checkerboard. Only some of the hand joints are associated with high CV values. This is due
to the fact that the hands that are moving with the checkerboard are partially occluded (see
Figure 2) and there is no other body motion. Note that although the position of the occluded
hand joints that are moving is inferred, the low reliability of these joint positions is reflected
in the low CV values and thus are not considered in the synchronization process. This is
also reflected in the fact that different constant joints are selected within high-ranking joint
pairs. Whereas in the hand motion sessions (Figure 10), joints such as the pelvis and spine
joints are selected as constant joints, in the checkerboard session (Figure 11), face joints are
selected, as they are more reliable than the occluded spine and pelvis joints.
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Figure 10. Matrix of Coefficient of Variation values (CV) for a session with hand movement only.
It can be seen that the highest CV values are associated with at least one body joint from the hands
(colored in red).

Figure 11. Matrix of Coefficient of Variation values (CV) for a session in which a checkerboard is
waved. It can be seen that the highest CV values are associated with hand joints (colored in red) and
face joints that are not occluded.

These results display the flexibility and robustness of the synchronization algorithm,
as it dynamically adapts to the recorded scene and selects the most reliable and informative
skeleton joints for synchronization.
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As another comparison, in [18], several synchronization methods were tested, resulting
in errors in the range of 6 to 12 ms. Although a different experimental setup was used as
well as different sensors, the presented errors are within the boundaries of our proposed
method, and in part of our tested setups, our methods outperform them.

4.2. Multi-Camera Calibration Testing

Standard calibration methods require using special accessories such as the checker-
board calibration method [22] (see Figure 2).

In this section, we test our human-motion based calibration method and compare with
the checkerboard method (Figure 12). As described in Section 3.2, our approach relies on
the skeleton representation captured by the cameras and assumes the motion of the human
subject in the recorded scene.

Figure 12. Comparing calibration methods: manual calibration using checkerboard (top) vs. our
human-motion based calibration method (bottom).

To test our human-motion based calibration algorithm, we tested the same 2-camera
setups as used in the synchronization testing with a distance between cameras of 1 m and
1.6 m and varying degrees of rotations: 0◦, 45◦, 90◦ and 180◦ (Figure 7). Note that our
proposed algorithm allows 180◦ setups (cameras facing each other), which is not possible
to calibrate using the standard methods.

For each setup, both the checkerboard calibration and the human-motion based cal-
ibration were applied, resulting in two inter-camera transformations (each composed of
a rotation matrix and a translation vector). For consistency and accurate comparisons,
both the checkerboard and the body skeletons were acquired and/or transformed into the
Kinect’s RGB camera coordinate system.

The following measurements were used to compare between the resulting transformations:

1. The mean rotation angle error is computed as the average difference between the
Euler angles of the two rotation matrices.
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2. The mean translation error is computed as the L2 difference between the two transla-
tion vectors.

3. The root mean square error (RMSE) is computed between a set of 3D points trans-
formed by the checkerboard transformation and the same set of points transformed
by the human motion-based transformation.

The three evaluation metrics were applied to the transformations computed in each of
the tested setups excluding the 180◦ setup, in which the checkerboard method cannot be
performed. Results are shown in Table 2. We further estimated the checkerboard calibration
accuracy itself by repeating the calibration twice for each setup and evaluating the mean
RMSE between pairs of resulting transformations. The checkerboard error for every setup
is also given in Table 2. The human-based calibration method shows high accuracy when
compared to the standard checkerboard method.

Table 2. Human motion-based calibration is compared with the standard checkerboard calibration
for each of the tested setups. Differences between the resulting transformations are given (see text).
The measurement error of the checkerboard calibration method is also given.

Angle Dist. Rota. Transl. RMSE Checkerboard
(deg.) (cm) Err. (deg.) Err. (cm) Err. (cm) Err. (cm)

0 100 0.57 2.14 2.71 2.23
45 100 0.27 0.91 1.37 3.53
90 100 0.64 2.55 3.18 1.08
0 160 0.30 3.46 3.71 1.19
45 160 0.48 1.39 2.50 2.49
90 160 0.40 4.35 3.59 2.57

The mean rotation error and the mean translations error across all setups was found to
be 0.44◦ and 2.46 cm, respectively. In a previous study [24], similar errors in computing the
3D transformation were reported with a 3D rotation error between 0.005◦ and 0.33◦ and
translation error between 0.43 and 0.8 cm, implying similar results to our transformation
errors. We note, however, that their experimental setups had the sensors much closer to
each other, so their potential error is lower compared to the setups in our study.

The mean RMSE across all setups is 2.84 cm, which is similar to the checkerboard
error. These results imply that the our proposed method is on par with the well-known
checkerboard calibration method, with errors in the same range.

5. Conclusions

In this paper, we presented and tested a human-motion based synchronization and
calibration methods. The proposed methods were shown to perform on par with standard
methods and with the methods recommended by the camera’s manufacturer (Microsoft
Kinect Azure).

The major advantage of our approach is that the calibration and synchronization
methods do not require special equipment nor specialized calibration sessions and can
be conducted on-the-fly. Furthermore, the system can automatically detect that camera
positions have changed or that clock synchronization has been disrupted and re-calibrate.
Thus, the cameras do not necessarily need to be steady, and the user can move the cameras
between the sessions without requiring manual re-calibration.

Our proposed method could be used in various scenarios, such as modeling human
body movement in order to better utilize exoskeletons (see recent study by Glowinski [7]).
An interesting future study will be to replace the IMU sensors with our multiple cameras
approach in order to model human body movement for exoskeletons, since our proposed
method is easy-to-use compared to attaching IMU sensors to the captured human body, and
also, our method will be able to deal with self body occlusions by using multi-camera setups.

Finally, the proposed approach promotes ease of use of multi-camera systems to
be used by individuals not technically inclined. Basically, the human-motion-based syn-
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chronization and calibration allows for a set-up-and-go multi-camera system. Code and
instructions will be made available to the public upon acceptance of the article.
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