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Abstract: The functionalization of materials for ultrasensitive detection of heavy metal ions (HMIs)
in the environment is crucial. Herewith, we have functionalized inexpensive and environmentally
friendly Fe3O4 nanoparticles with D-valine (Fe3O4–D–Val) by a simple co-precipitation synthetic
approach characterized by XRD, FE-SEM, and FTIR spectroscopy. The Fe3O4–D–Val sensor was used
for the ultrasensitive detection of Cd+2, Pb+2, and Cu+2 in water samples. This sensor shows a very
low detection limit of 11.29, 4.59, and 20.07 nM for Cd+2, Pb+2, and Cu+2, respectively. The detection
limits are much lower than the values suggested by the world health Organization. The real water
samples were also analyzed using the developed sensor.

Keywords: square wave anodic stripping voltammetry; heavy metal ions; D-valine functionalized
Fe3O4

1. Introduction

HMIs present in the environment are toxic and cause severe consequences. In particu-
lar, lead is very dangerous and causes a sweeping extent of physiological and behavioral
dysfunction in animals and individuals [1]. Cadmium poisoning results in liver and kidney
failure, and itai-itai disease [2]. Copper poising causes gastrointestinal and homeostasis
disorders in humans [3]. HMIs poisoning is dangerous in long-term exposure and results
in chronic illness and can be fatal. Therefore, selective and sensitive detection of HMIs is
the foremost task in determining and monitoring contaminated water before supplying
to the public. Among many techniques, the electrochemical detection method is highly
advantageous over conventional techniques [4], such as inductively coupled plasma spec-
trometry [5], optical method of detection [6], atomic absorption spectroscopy [7], and
surface plasma resonance spectroscopy [8]. Numerous studies have been focused to detect
HMIs in water using a variety of nanomaterials, such as metal and metal oxide nanoparti-
cles [9], polymeric nanomaterials [10], silicon [11], and carbon-based nanomaterials [12,13]
to design nanosensors for the detection of HMIs. All these materials have limitations, either
instability, lack of sensitivity, or difficulty with synthesis. Very recently, there has been an in-
terest in metal oxide-based materials for sensing applications due to their ease of synthesis
and higher stability than other materials [14]. Different metal oxide [15,16] electrodes are
explored for electrochemical detection of HMIs [17]. For example, Wang et al. synthesized
a porous graphitic carbon nitride/CoMn2O4 for the detection of HMIs, which displays a
limit of detection (LOD) of 0.014 µM and 0.021 µM for Pb+2 and Cd+2, respectively [18].
Wei et al. prepared an effective electrochemical sensor by α-Fe2O3/NiO on glassy carbon
(GC) electrode with a detection limit of 0.05, 0.08, 0.06, and 0.02 µM for Hg+2, Cd+2, Cu+2,
and Pb+2, respectively [19]. Fan et al. synthesized ZnFe2O4 nanoparticles (ZFO) for the
detection of HMIs and glucose by hydrothermal method. The reported ZFO-modified
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electrode exhibits excellent sensitivity, and LOD was found to be 7.38, 1.161, and 12.03 nM
for Pb+2, Hg+2

, and Cu+2, respectively [20].
Among many metal oxides, iron oxide is highly suitable for electrochemical detection

of HMIs due to its eco-friendliness, minimal toxicity, and low cost, along with biocompati-
bility. Out of numerous techniques to synthesize iron oxides, the co-precipitation method
provides scalability, and hence, easy commercialization [21]. Pure iron oxide materials
have a strong adsorption affinity toward HMIs [22]. Functionalization employing organic
compounds [23–25] enhances the adsorption potential as more active moieties can be ac-
commodated, which helps in the uptake of HMIs. In addition, functionalization prevents
agglomeration and flocculation in iron oxide [26]. Functionalization of nanomaterials also
aids in the sensitive detection of HMIs. It helps in chelating the HMIs from water and thus
improves the accessibility to the electrode surface. Hence, very low detection limits could
be achieved [27] (Figure 1).
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Figure 1. Advantages of functionalized Fe3O4.

The square wave anodic stripping voltammetry (SWASV) is highly beneficial for
acquiring the peak current at high sweep rates with better sensitivity. SWASV shrinks
the background noise compared to other voltametric methods and hence lower detection
limits can be achieved [28]. Typically, sensing of HMIs by the SWASV method involves
the adsorption of ions by electroreduction onto the surface followed by stripping into the
electrolyte. The subsequent stripping current is being estimated which corresponds to the
concentration of the HMIs present in the solution. To enhance the adsorption efficiency
onto the electrodes, functional groups would help in chelating the metal ions from the
solution which may aid in the maximum number of ions reduced on the surface of the
electrode. During the process of functionalization, D-Valine was adsorbed on the surface of
Fe3O4 nanoparticles. The high sensing ability of the sensor for HMIs could be due to the
availability of free NH2 groups which chelates metal ions, and hence the adsorption and
reduction process would be facilitated.

It persists that the modification of nanoparticles with small or little big organic
molecules (molecules with -OH, -SH, or -NH units) will move through two different
recognized mechanisms for the detection of HIMs, namely, cavity entrapment and chemical
affinity (or both simultaneously) [29].
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We evinced a simple, single-step pattern for easy detection of HIMs. Our approach
holds the advantage of affinity between Fe3O4–D–Val (having free NH2 groups) and HMIs.
The interface between the NH2 group and HIMs might follow the mechanism as shown in
Figure 2a. The Fe3O4–D–Val sensor was employed for the ultrasensitive and simultaneous
detection of Cd+2, Pb+2, and Cu+2. These nanoparticles accomplished a very low LOD of
4.59, 11.29, and 20.07 nM for Pb+2, Cd+2, and Cu+2, respectively. The limit of detection is
considerably less than the reported values and the recommended world health organization
standards. The real water samples were investigated by employing a developed sensor.
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Figure 2. (a) A possible mechanism of interaction of HIMs with free NH2 groups of Fe3O4–D–Val,
(I) Fe3O4–D–Val modified glassy carbon electrode, and (II) Interaction of HMIs with NH2 groups of
Fe3O4–D–Val. (b) Schematic synthesis of Fe3O4–D–Val by co-precipitation process.

2. Materials and Methods
2.1. Instrumentation

All electrochemical measurements were performed by EG&G potentiostat/galvanostat
(Model 263A) in a standard three-electrode system, saturated calomel electrode (SCE) as
a reference electrode, GC as a working electrode, and Pt wire as a counter electrode. The
synthesized Fe3O4–D–Val was analyzed by using an infrared spectrum recorded using
FTIR (Bruker, ALPHA, Billerica, MA, USA). The XRD (Rigaku X-ray diffraction Ultima-
IV) was performed to study the crystal structure of synthesized material. FE-SEM (JEOL
model-JSM7100F) was carried out for the morphology of Fe3O4–D–Val.

2.2. Chemicals and Materials

Ferrous sulfate (crystalline) and ferric chloride anhydrous were purchased from
S. D. Fine-Chem Limited (Maharashtra, India). D-valine (99+%) was purchased from
Chem-Impex international (Wood Dale, IL, USA). Liquor ammonia (About 25% NH3) was
purchased from Fisher scientific (Waltham, MA, USA). Sodium acetate buffer solution
(pH 5.2 ± 0.1) was acquired from Sigma Aldrich (St. Louis, MO, USA). Cadmium nitrate
tetrahydrate was obtained from LOBAchemie (Maharashtra, India). Lead nitrate was
purchased from S. D. Fine-Chem Limited. Cupric sulphate pentahydrate was acquired
from S. D. Fine-Chem Limited. All chemicals were utilized without any further purification.
Deionized water was used for all experiments.

2.3. Synthesis of Functionalized Fe3O4

Fe3O4–D–Val was synthesized by the co-precipitation method as shown in Figure 2b.
Typically, 2.1 g of FeSO4.7H2O and 3.1 g of FeCl3 were dissolved in 100 mL of deionized
water, and the solution was heated at 60 ◦C (reaction mixture). This was followed by the
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preparation of two solutions, i.e., (I) 10 mL of 25% liquor ammonia was dissolved in 50 mL
of deionized water, (II) 0.5 g of D-valine was dissolved in 50 mL of deionized water. These
two solutions were added quickly and sequentially into the solution containing the reaction
mixture. The reaction mixture was kept at constant stirring with constant heating at 60 ◦C
for about 1 h. The bright brown precipitate formed was collected after filtering followed by
washing with deionized water and dried at 60 ◦C overnight.

2.4. Electrode Modification

Before electrode modification, the glassy carbon electrode (GCE) was cleaned with
alumina slurry of various particle sizes (1, 0.5, and 0.25 µm average particle size) and sub-
sequently washed with deionized water. The electrode was sonicated in water and ethanol
(1:1) solution for about 30 min and washed with ethanol and dried at room temperature [30].
In the sensing system, GCE, with advantages of high cleanliness, high conductivity, min-
imal thermal extinction coefficient and wide potential window of operation, has been
broadly utilized. In addition, the modified GC electrode provides phenomenal chemical
property of immobilizing materials onto its surface, and aids insensitive and selective
determination of HMIs. A total of 1 mg of the synthesized Fe3O4–D–Val was dispersed in a
1 mL mixture of water and ethanol solution (7:3) and ultra-sonicated for 30 min. A total of
10 µL of the above solution was drop-costed onto the surface of the cleaned GC and dried
at room temperature.

3. Results and Discussion

Figure 3a shows FTIR spectra of Fe3O4–D–Val nanoparticles. The IR band at 549 cm−1

was attributed to the Fe-O stretching mode. Free amine group was confirmed by vibrational
bands at 881 cm−1 attributed to the N-H wagging [31], C-C-N stretching at 1136 cm−1 and
N-H bending at 1587 cm−1. The vibrational bands at 3110 and 2982 cm−1 correspond to the
presence of O-H and C-H asymmetric stretching [32], respectively, and peak broadening
confirms the presence of hydrogen (functional groups such as -OH, -CH3) in the synthesized
nanoparticles. In the FTIR spectrum of D-valine functionalized Fe3O4 band at 1511 cm−1 is
attributed to the N-H symmetric deformation [33].
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The XRD technique (Figure 3b) was utilized to ascertain the crystalline structure of
Fe3O4–D–Val. The XRD peaks with 2θ at 30.2◦, 35.7◦, 43.4◦, 54.1◦, 57.5◦, 62.8◦, and 71.9◦

exhibited consistency with reported data [34,35] (COD 96-900-2320) and were indexed to a
cubic phase of Fe3O4 (magnetite, chemical formula: Fe24.00O32.00 Space group: Fd-3m). The
typical crystallite size was found to be 8.62 nm.

The surface morphology of the synthesized nanoparticles is analyzed by FE-SEM; the
composites consist of uniform particle distribution, and the bright nanoparticles arecovered
by a carbon chain-like structure of amino acids, which can be observed in Figure 3c.

3.1. Electrochemical Detection of HMIs

SWASV was employed to study the electrochemical sensing of HMIs with Fe3O4–D–
Val in sodium acetate buffer (0.1 M, pH 5.2 ± 0.1). Optimization of deposition potential, pH
of electrolyte, and deposition time were carried out. After the optimization of experimental
parameters, individual metal ion detection was carried out. Later, simultaneous detection
of HIMs at optimized conditions was performed to analyze the behavior of HMIs in the
presence of multiple electroactive analytes.

3.2. Influence of Deposition Potential

The anodic stripping analysis reveals that the suitable deposition potential appears
to be key to achieving the highest sensitivity. The stimulus of deposition potential on
the responsive stripping peak current of Pb+2 was studied by using SWASV at different
potential ranges from −0.8 to −1.2 V vs. SCE in 3 µM concentration of Pb+2 for about 300 s
of deposition time in sodium acetate buffer electrolyte (0.1 M and 5.2 pH) as presented in
Figure 4a,b. The peak current increases with increasing deposition potential from −0.8 to
−1.1 V. Deposition potential beyond−1.1 V resulted in the current decreasing. The decrease
in the peak current beyond−1.1 V may be partially due to the hydrogen evolution observed
at the surface of the electrode. The adsorption of the hydrogen ion intermediates on the
surface of the electrode results in fewer active sites for adsorption and electro–reduction in
the HMIs, thereby resulting in a reduced peak current [36].
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tion potential by applying SWASV at different potentials (300 s deposition time and (Pb+2) = 3 µM).
(c) voltammogram of optimization of pH of the electrolyte, and (d) Optimization of pH of the elec-
trolyte (optimized deposition potential: −1.1 V vs. SCE, deposition time: 300 s and (Pb+2) = 3 µM).
(e) voltammogram of optimization of deposition time, and (f) Optimization of deposition time
by SWASV (0.1 M sodium acetate buffer electrolyte, deposition potential −1.1 V vs. SCE and
(Pb+2) = 3 µM).
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3.3. Influence of pH of the Electrolyte

Figure 4c,d, represents the peak current of sensing Pb+2 and its relationship with
pH; the increase in the pH results in the peak current increasing up to 5.2 pH and further
expansion in pH prompts a decline in the peak current. At very low pH, protons compete
with HMIs to bind to the electrode surface. As pH increases, the availability of protons
decreases, and hence adsorption HMIs increases. At higher pH, HMIs undergo hydrolysis,
which results in the peak current decreasing [37,38].

3.4. Influence of Deposition Time

The effect of the deposition time on the sensing ability was studied (Figure 4e,f); as
depicted there is an increase in the peak current when the deposition current is increased
from 60 to 300 s with an increment of 60 s in each successive step. The optimized deposition
time as observed from the figure is 300 s and this parameter is used for further analysis
irrespective of the HMIs.

3.5. Individual Detection of HMIs (Pb+2, Cd+2, and Cu+2) by SWASV

To detect the HMIs, SWASV was applied to study the GC-modified Fe3O4–D–Val
as HMIs sensor in 0.1 M sodium acetate buffer electrolyte under optimized conditions.
The detection of Pb+2 was studied by increasing the concentration of Pb+2 from 0.08 to
2 µM as shown in Figure 5a,b. Linear increase in anodic peak current response with
increasing concentration of Pb+2 is obvious. The oxidation peak for detection of Pb+2 was at
−0.51 V vs. SCE. We have observed two linear concentration ranges. At low concentration,
Figure 5a and high concentration Figure 5b show linear equation Y = 0.090 X + 2.099
and Y = 0.019 X + 20.458, respectively. The LOD and sensitivity were calculated using
the formula LOD = 3S/b (where S corresponds to standard deviation and b corresponds
to slope from the calibration curve) and sensitivity = b/A (where A represents the area
of GCE).

In addition, SWASV was applied to examine the detection of other metal ions such
as cadmium (Cd+2) and copper (Cu+2), at concentrations from 0.05 to 0.8 µM and 0.1 to
1 µM, respectively. The oxidation peaks for the detection of Cd+2 and Cu+2 was observed
at −0.67 and −0.07 V vs. SCE, respectively. The corresponding calibration plot was plotted
as shown in Figure 5c,d. The linear equations for Cd+2 and Cu+2 are Y = 0.036 X − 0.728
and Y = 0.020 X + 6.728, respectively.

3.6. Simultaneous Detection of the HMIs by SWASV

Simultaneous detection was conducted by increasing the concentration of Cd+2, Pb+2,
and Cu+2. Oxidative stripping peak was observed at −0.67 V, −0.51 V, and −0.007 V vs.
SCE for Cd+2, Pb+2, and Cu+2, respectively, as displayed in Figure 6a,b. The oxidative
stripping peak current increases with increasing concentration. The interpeak spacing is
adequate to distinguish between the different metal ions. The anodic spacing between Cd+2

and Pb+2 is about −0.1675 V vs. SCE and −0.4469 V vs. SCE between Pb+2 and Cu+2. The
LODs for Pb+2, Cd+2, and Cu+2 by simultaneous detection are 18.89, 18.38, and 7.48 nM,
respectively. Comparison of different electrode material LODs are listed in Table 1. The
LODs for simultaneous and individual HIMs detection of as synthesized electrode material
with their thresh hold limits by WHO is shown in Table 2. Compared to individual HMIs
detection, the results appear to rise in LOD values (Pb+2 by 14.33 nM and Cd+2 by 7.09 nM).
Cu+2 showed comparatively low LOD (Cu+2 by 12.609 nM), which could be ascribed to the
interface between different HMIs, such as the development of intermetallic compounds
and competitive deposition [39]. The outcomes from simultaneous detection point to the
application of developed sensors for real-time water analysis.
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Table 1. Comparison of LOD and sensitivity of different electrodes reported in the literature.

Modification
Material

Measurement
Technique

LOD Sensitivity Ref
Pb+2 Cd+2 Cu+2

Pg-C3N4/CoMn2O4 SWASV 0.014 µM 0.021 µM Pb+2:22.39
(µA/µM cm2)

[18]

CI-DPTU/GCE SWASV 11.0 nM 6.45 nM 7.85 nM [40]

ae-Fe/Fe2O3@cc DPASV 0.5 ppb 0.42 ppb
Pb+2: 408.0
Cd+2: 338.7

(µA/µM cm2)
[41]

Co3O4-NC/SPCE DPV 0.00722 µM 0.00173 µM
Pb+2: 16.73
Cu+2: 11.46

(µA/µM cm2)
[42]

UiO-66- NH2/GaOOH DPV 0.028 µM 0.016 µM 0.019 µM [43]

UiO-66/Bi/GCE SWASV 0.94 µg/L 2.01 µg/L [44]

Fe-OSA DPV 0.0360 µM 0.0192 µM [45]

SBDDE SWASV 5–120 µg/L Pb+2: 0.42
(µA/µM cm2)

[46]

S-doped C3N4 tube
bundles/graphene

nanosheets composite
SWASV 0.78 nM 2.30 nM [47]

Pd1.5/PAC-900 DPV 50 nM 41 nM 66 nM

Pb+2: 109.1
Cd+2: 72.9
Cu+2: 21.8

(µA/µM cm2)

[48]

Mg–Al-LDH/Nafion SWASV 0.20 nM Cd+2: 13.86 mA mM−1 [49]

CB-15-crown-5-GEC,
GC/FcIB15C5

DPV,
SWASV

2.3,
0.11 g/L [50]

D-valine
functionalized Fe3O4

SWASV 4.59 nM 11.29 nM 20.07 nM

Pb+2: 1.275
Cd+2: 0.518
Cu+2: 0.291

(µA/nM cm2)

This
work

Table 2. Comparison of detection limits obtained for Cd+2, Pb+2, and Cu+2 with the Fe3O4–D–Val
sensor and WHO [30] threshold limits.

Metal Ions LOD a
(nM)

Sensitivity
(µA/nM cm2)

LOD b
(nM)

Sensitivity
(µA/nM cm2)

WHO Standard
Values (mg/L)

Pb+2 4.59 1.275 18.89 0.3101 0.01
Cd+2 11.29 0.518 18.38 0.3186 0.003
Cu+2 20.07 0.291 7.481 0.7832 2.0

a: LODs by individual ion detection, b: LODs by simultaneous detection.

3.7. Reproducibility, Stability and Interference Study’s

Fe3O4–D–Val/GC-modified electrode exhibits electrochemical detection towards Cd+2,
Pb+2, and Cu+2. To evaluate the reproducibility of the sensor, SWASV was employed to
detect 1 µM Pb+2, 2 µM Cd+2, and 2 µM Cu+2 in sodium acetate buffer (0.1 M) for ten
separate trials. The relative standard deviation (RSD) is 2.37%, 7.94% and 11.54%, for
Pb+2, Cd+2 and Cu+2 ions, respectively. The stability of the electrode was also analyzed
under similar conditions, and the anodic stripping current response remains at 78.04%,
85.10%, and 73.66% even after 16 days as shown in the Figure 6c,d. Further, to evaluate
the interference of other metal ions on the as-prepared sensor, 1 µM Pb2+ was followed by
0.1 µM of conceivable interfering metal ions such as Cd2+, Fe2+, Cr3+, Hg2+, Ni2+, and Cu2+.
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It was found that there is no prevalent change in ht epeak current of Pb2+ ((M) = 1 µM) as
depicted in Figure 6f.

3.8. Real-Time Applications Study

As per the world health organization, the permissible concentration of Pb2+ in drinking
or river water is 10 µg/L. As depicted in Figure 5a,b, the Fe3O4–D–Val electrode allows for
detection as low as WHO permissible limits. On this basis, Fe3O4–D–Val electrodes were
employed for the analysis of real water samples (River water: 13◦45′11.6′′N 76◦53′45.3′′,
200F and Time 2:20 PM). The real sample shows no peak corresponding to the heavy metal
ion. To confirm this further, the actual sample was spiked with Pb2+ ions. The samples
were spiked in a 3:7 volume ratio of real water sample and 0.1 M sodium acetate buffer [51].
The spiked sample displays a peak corresponding to the Pb2+ ions. However, the peak
current in real sample water is less than in the clean water when measuring individual
Pb+2 ions, as is evident in Figure 6e. This could be due to the influence of other natural
impurities and industrial effluents in a real sample as well as a lack of ionic species in the
electrolyte, thereby reducing the ionic conductivity in the electrolyte and resulting in a
lesser anodic peak current.

4. Conclusions

An easy, cost-efficient, and sustainable synthesis pathway for the preparation of iron
NPs-integrated D-Valine materials has been developed and successfully employed for
SWASV detection of HMIs, i.e., Cd+2, Pb+2, and Cu+2. The Fe3O4–D–Val-modified GCE
was found to exhibit excellent selectivity, sensitivity, and low LOD for selective as well as
simultaneous detection of HMIs. The modified electrode was also found to detect HMIs in
the real water sample. This positive result in this work evokes the use of Fe3O4–D–Val/GCE
as a sensing platform for the detection of HMIs in the water.
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