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Abstract: This article introduces a systematic review on arousal classification based on electrodermal
activity (EDA) and machine learning (ML). From a first set of 284 articles searched for in six scientific
databases, fifty-nine were finally selected according to various criteria established. The systematic
review has made it possible to analyse all the steps to which the EDA signals are subjected: acquisition,
pre-processing, processing and feature extraction. Finally, all ML techniques applied to the features
of these signals for arousal classification have been studied. It has been found that support vector
machines and artificial neural networks stand out within the supervised learning methods given their
high-performance values. In contrast, it has been shown that unsupervised learning is not present
in the detection of arousal through EDA. This systematic review concludes that the use of EDA for
the detection of arousal is widely spread, with particularly good results in classification with the ML
methods found.

Keywords: electrodermal activity; arousal; machine learning; systematic review

1. Introduction

Arousal is a general physiological and psychological activation of an organism, varying
on a continuum from deep sleep to intense excitation. Performing a systematic review
of arousal-related papers is challenging, as arousal encompasses a wide terminology.
The construct arousal is a term that corresponds to the level of cortical activation that
is regulated by the ascending reticular activation system. Arousal varies from a level of
over-activation, as in the case of intense emotions or alert states, to a best attentional level
for intentional action, or to levels of under-activation, as in the case of relaxation or sleep
states. For example, the term stress is closely related to arousal in many works. Hence,
it is possible to use the terms distress (negative stress) and eustress (positive stress) [1].
Another number of important papers study the change in arousal for the detection and
classification of emotions. Indeed, according to Russel’s model of emotions, arousal is
one of the variables that writes down the state of excitement towards a situation or event
that provokes an emotional change [2]. In addition, variations in arousal are at the heart
of experimenting with task-oriented activities such as driving [3] or figuring out mental
workload at work.

There is a growing interest in developing methods for processing changes in arousal
and using them in a variety of daily-living situations [4]. The most widely used technologies
focus on the adoption of wearable devices. Such technologies usually work with the
physiological conditions of the human body, using various variables to determine the
activation state [5,6]. In fact, many researchers agree that variation in arousal correlates
with increases in many physiological variables such as heart rate, electrodermal activity
(EDA), breath intervals and skin temperature, among others [7,8]. Acquisition, processing

Sensors 2022, 22, 8886. https://doi.org/10.3390/s22228886 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228886
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4455-370X
https://orcid.org/0000-0002-1407-9886
https://orcid.org/0000-0003-3612-1261
https://orcid.org/0000-0002-2846-3483
https://orcid.org/0000-0002-8211-0398
https://doi.org/10.3390/s22228886
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228886?type=check_update&version=1


Sensors 2022, 22, 8886 2 of 31

and monitoring of physiological variables allow the creation of a map of the physical,
mental and cognitive state of a subject [9,10]. Such a map is difficult to set up in many
cases due to the origin of the physiological signals [11]. In any case, there are numerous
physiological variables that are being used for arousal detection and its applications. We
will focus on the analysis of EDA since it has been shown to be highly effective in the
estimation of this excitement level.

EDA is considered especially useful in assessment of the arousal level due to its
connection with the sympathetic nervous system (SNS) through the sudomotor system [12].
Alterations in the state of activation are unequivocally reflected as variations in skin
perspiration, which affects the conductivity (conductance) of the skin. The measurement of
these changes is excellent for estimating the psycho-physical state. In this respect, many
causal models are used to infer sympathetic activation (arousal) from EDA signals such as
curve fitting, inverse filtering, general linear model for evoked skin conductance response
(SCR), non-negative deconvolution, continuous deconvolution, dynamic causal model
(DCM) for anticipated SCR and DCM for spontaneous fluctuations [13].

We are not solely interested in EDA-based arousal detection in this systematic review,
but the focus will be on the different machine learning (ML) methods used so far to classify
excitement (arousal). Moreover, the review includes works using EDA alone or together
with other physiological variables. Due to the substantial number of ML techniques and the
proper nature of arousal, the present review is centred in classifying low versus high arousal
(calm versus high excitement states), although considering both binary and multi-class
methods. Moreover, given the diversity of the experiments found and the disparity in aims
and design, our intention is to delve deeper into the possible connections among all the
papers selected and to create a map of the most used techniques and their performance.
In this sense, this review intends to create a conceptual map of the techniques used for EDA
signal processing to help researchers find the best technique for processing such signals,
allowing them to focus on fine tuning and optimisation of the different models. This map
will contribute to the development of new processing and classification techniques.

The remainder of the article is as follows. Section 2 provides a brief explanation about
the methods followed to perform the review. Section 3 introduces a summary on the status
of the topic addressed in the review. Section 4 describes the most relevant results and a
discussion about the studies found. Finally, Section 5 offers the conclusions of this work.

2. Review Protocol
2.1. Search Strategy

The reporting of this systematic review was guided by the standards of the Preferred
Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement [14]. A to-
tal of five scientific databases were selected for a wide search of ML and EDA in arousal
detection. The selected databases were Scopus, IEEE Xplore, PubMed, ScienceDirect and
ACM Digital Library. The selected papers were sought based on three distinct categories
in the search criteria. The first focused on searching EDA-related terms like “skin conduc-
tance”, “electrodermal activity”, “galvanic skin response”. The second was centred on
finding all the terms associated with arousal detection, such as “detection”, “identification”
and “recognition” in conjunction with “stress”, “arousal”, “activation”, “agitation”, “excite-
ment”, “emotion”, “mental workload”, “cognitive workload” and “pain” terms. Finally,
the third term that completed the search chain aimed to look for classification methods in
the field of Artificial Intelligence: “machine learning” and “deep learning”. The system-
atic review was conducted from the time records are kept in each of the databases until
June 2022.

The consultations were refined by successive searches to get as small a set of search
terms as possible without losing the scope of the review. This allowed us to keep a manage-
able number of keywords without losing the perspective and focus of the systematic review.
A series of inclusion and exclusion criteria were established to filter the desired information:
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• Inclusion criteria

– Publications implementing and evaluating the performance of ML-based methods
and algorithms for low/high arousal level detection, identification and recogni-
tion using EDA as basis.

– Articles written in English.

• Exclusion criteria

– Literature with an unclear peer review process (grey literature): tutorials, toolk-
its, editorials, extended abstracts, PhD symposium papers, keynotes, research
summaries and technical reports.

– Systematic reviews (including meta-analyses) and survey documents.
– Conference papers and book chapters.
– Articles published after 30 June 2022.
– Articles posted on a preprint database.

Figure 1 details the scheme followed to obtain the final selection of the articles in
the systematic review. The identification stage resulted in a total of 308 papers, of which
77 papers were obtained in Scopus, 32 in IEEE Xplore, 81 in ScienceDirect, 6 in PubMed
and 112 in ACM Digital Library. The papers were selected and eliminated according
to the inclusion and exclusion criteria mentioned above during the screening stage. A
total of 105 duplicates were removed from the various databases. In addition, 88 articles
were removed after reading their abstract as they were outside the scope of the review.
The criterion was to select papers that used EDA signals alone or together with other
signals and employing ML techniques. Finally, 40 articles from the remaining 107 articles
were removed in the last stage (inclusion) after a thorough reading of the complete content.
This way, 67 articles were left for study in this systematic review.

Figure 1. Search strategy.

2.2. Paper Classification Categories

Two categories were proposed once all the articles had been examined. The first,
shown in Table 1, classified the papers based on their scope of coverage in six groups:
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arousal, stress, emotion, physical pain, task-oriented and others. The group arousal focuses
on those papers that deal with the detection, processing and usage of the EDA signals to
determine the arousal level. Stress is centred on articles concerned with the detection and
classification of some stress-inducing situations. The emotion group focuses on papers
related to any aspect of detection and classification of emotional states. Another group of
papers is related to physical pain detection. A fifth group (task-oriented) is dedicated to
studies on changes in arousal when performing a single-task-oriented procedure such as
driving a car. A sixth category refers to mental or cognitive workload. Lastly, the other
classes stand for monitoring other human body states such as sleep and dehydration.

Table 1. Paper classification by group.

Arousal [15–23]
Stress [24–41]
Emotion [42–64]
Physical Pain [65–68]
Task-Oriented [69–75]
Mental Workload [70,76,77]
Others [78–87]

The second categorisation is shown in Figure 2. The first resulting category, Biosignal,
is grounded on the different bio-markers used for obtaining the arousal level. The specific
bio-signals for the detection of arousal are presented. Dimensionality of the data source
is also identified, i.e., whether a sole source or multiple indicators are used for detection.
In addition, the type of data used for detection is provided, differentiating between raw data,
processed data and two-dimensional matrix. The second category, Application, focuses on
applications that employ diverse types of classifiers intended for a specific use. It centres on
the goals to be achieved, focusing on the creation of applications for the detection, grouping,
diagnosis and future prediction of arousal. Other basic classification principles are whether
the application runs with a large or small number of participants and signals and whether
the system is used offline or in real time. This category is not dealt with in depth in this
article, as it falls beyond the scope of this paper. The last category, Learning Method, is
focused on the use and relevance of different learning methods for the detection task. Most
analysed works base their learning ability on supervised classification algorithms, while
the use of unsupervised classifiers is minor.

Figure 2. Paper grouping.

3. Methods on Arousal Detection

The human body may be regarded as an electromechanical system composed of
perceptual, affective and cognitive processes. Its dynamic changes allow one to take
different measurements on various bio-signals. The temporal signals make it possible to
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establish the physical, psychological and cognitive state of the human being with adequate
precision [88,89]. Most biological signals involve electrical activity and conductivity along
with changes in flow, temperature, volume, pressure, sound and acceleration [60,90–92].

There are many physiological variables which can be collected from the human body.
The most common are the following. (a) The electrocardiogram (ECG) measures any change
in heartbeat and pattern of beating [93,94]. (b) Electromyography (EMG) monitors changes
in neuromuscular activity. (c) Blood volume pressure (BVP) measures changes in blood vol-
ume, which affects blood pressure by changing the cardiac output. (d) Electrooculography
(EOG) allows monitoring of eye movements. (e) Pupillography or pupillometry (PUP) is
based on the measurement of the pupil diameters under basal conditions and after applying
different stimuli. (f) Electroencephalography (EEG) measures the variation of electrical
signals produced in different areas of the brain. (g) Inter-breath (IBR) measures the rate of
breathing. (h) Acceleration (ACC) monitors body movements. (i) Skin temperature (TMP)
is used to quantify temperature variations. (j) Electrodermal activity (EDA) is used to check
the arousal, this being an important variable for measuring the emotional state of a person.
Table 2 describes the main properties of those bio-markers.

Table 2. Bio-signals and their properties.

Signal Abbrev. Ch. SF (Hz) RF (Hz) AL

Electrocardiogram ECG 1–12 0.05–150 250–1K 0.1–5
Electromyography EMG 1–32 25–5K 512–10K 0.1–100

Blood Volume
Pressure BVP 1 0.25–40 5–500 −10–10

Electrooculography EOG 2 0–100 1–100 50–3.5K
Pupillography PUP 2 120 240 -

Electroencephalography EEG 1–128 128–2K 128–2K 1–150 mV
Inter-Breath IBR 1 1–20 1–20 −0.05–0.05
Acceleration Acc 3 20–2K 20–2K −1–1

Skin Temperature TMP 1 1–200 2–50K −50–50
Electrodermal

Activity EDA 1 1–16 16–128 0–100 µS

Significance Frequency (SF), Channel (Ch), Record Frequency (RF), Amplitude (AL).

3.1. Signal Acquisition and Processing

Signal acquisition is one of the most important stages when using EDA (or any other
bio-signal). Most authors referenced in this systematic review agree that a good acquisition
process is crucial for the proper functioning of the later recognition system. Figure 3 shows
the usual pathway for signal treatment. Here, the first stage is the acquisition of the raw
signals by the EDA device. The next stage is pre-processing, which eliminates all the defects
that have caused interference during the acquisition process. As part of this operation,
artefacts are removed and the signal is filtered, making it softer and eliminating noise.
The last stage is signal processing, where a series of features of the signal are obtained as a
rule. ML models will later use these features.

Figure 3. Usual stages in signal acquisition, pre-processing and processing.

3.1.1. Raw Signal Acquisition: Datasets and Experimental Design

According to the outcomes of our systematic review, the authors always choose
between two different procedures to acquire the raw signals. The first one is to create an
experimental design as shown in Figure 4. A first step is to start the experiment; then
begins the physiological baseline recording of the input data. Next, the person is subjected
to a sensory stimulus, most commonly visual and auditory and the individual’s reactions
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are recorded. These stimuli trigger an autonomic response in the different systems [95,96].
The process is repeated as many times as necessary.

Figure 4. Flowchart of the experimental design during raw signal acquisition.

An alternative procedure uses several datasets already validated by the scientific
community. These datasets usually hold a number of other physiological signals registered
in addition to the EDA signal for use in multi-class classifiers. The most common datasets
for EDA analysis are MAHNOB [97], DEAP [98], BioVid [66] and UT Dallas Database [99].

3.1.2. Signal Pre-Processing: Normalisation, Artefact Removal and Noise Filtering

Pre-processing cleans, adapts and prepares the signals for further processing. This
process is also fundamental to many authors who agree that the effectiveness of a classi-
fication system starts at this stage. Usually, pre-processing includes three different steps:
signal normalisation, detection and elimination of artefacts and filtering of noise.

The first step aims at eliminating the subject-dependent baseline. This is done to
reduce the amplitude of the variance [71,100–102]. Then, artefacts that interfere with the
signal must be removed. A motion artefact (MAt) degrades signals very quickly and makes
them unusable [23]. Artefacts are eliminated by deflecting the signal through various
softening filters [103,104]. This procedure causes in most cases a loss of information in EDA
signals. In addition, MAt detection consists of identifying each of the signal segments where
the artefact removes it at later stages [22,23]. Noise reduction or elimination is strongly
associated with the artefact detection and/or removal process. The most worrying noise in
EDA signals is the high-frequency noise due to its slow evolution [92]. Therefore, the EDA
signals are filtered to remove artefacts and noise recorded during the acquisition period.
Two distinct types of filters are usually used; firstly, a low pass filter with a 4 Hz cut-off
frequency and secondly, a Gaussian filter to attenuate the signals, artefacts and noise.

3.1.3. Signal Processing: EDA Deconvolution

The measurement of EDA signals is usually conducted in two separate ways. The first
manner is the exosomatic one, which is obtained from the variation of the resistance or
conductance by injecting a small current into the skin. The second way, the endosomatic, is
obtained from the measurement of the potential [105]. These measurements are composed
of the convolution of two signals: a first signal that varies slowly, called the electrodermal
level (EDL) and a second signal that varies rapidly, the electrodermal response (EDR).
The EDL signal sets up the base level of the signal while the EDR is closely related to
the activity of the sweat motor system, which is strongly associated with the sympathetic
nervous system at the same time [106].

Figure 5 sheds light on this division. In the endosomatic measurement lies the skin
potential (SP), which, in turn, is divided into the skin potential response (SPR) as a phasic
response and the skin potential level (SPL) as a baseline. On the other hand, exosomatic
measurement is composed of two groups, AC and DC, depending on whether alternating or
direct current is injected into the skin between the electrodes. For the EDR we have variables
SCR, SRR, SYR or SZR related to conductance, resistance, admittance and impedance, while
the variables SCL, SRL, SYL and SZL are used to evaluate the EDL.
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Figure 5. Contemporary labelling of electrodermal activity, inspired in [105].

The deconvolution procedure consists of separating the EDR signal from the EDL. This
process minimises external effects such as temperature and humidity on each participant’s
baseline. It also mitigates the effects of gender, race, physical condition and age of the
participant [107–109]. In this sense, it normalises the signal so that the EDR is used
as a common indicator for all the participants who have undergone the same stimulus.
A process of deconvolution/decomposition is needed to obtain the components needed
both for endosomatic and exosomatic measurements. Figure 6 illustrates the deconvolution
process of the skin conductance (SC). As can be seen in the figure, the SCR driver is used to
detect the level of excitation of the individual.

Figure 6. Flowchart of the deconvolution process.

Mathematically, the sudomotor nerve function may be considered a driver with a
train of impulses that evolve over time. This response is embedded in the SCR and SCL
signals [110,111]. The outcome is presented by a convolution (“∗” symbol) of the driver
with the impulse-response function (IRF), describing the impulse response flowing through
time as shown in Equation (1).

SC = SCDriver ∗ IRF (1)

The SC signal is formed by the SCL and SCR signals, as displayed in Equation (2).

SC = SCL + SCR = SCLDriver ∗ IRF + SCRDriver ∗ IRF (2)
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SC = (SCLDriver + SCRDriver) ∗ IRF (3)

Thus, the tonic signal driver is obtained by deconvolution (“/” symbol) of Equation (3) as:

SC/IRF = SCDriver = SCLDriver + SCRDriver (4)

The process can be conducted in two manners. The first, the continuous decomposition
analysis, decomposes SC data in continuous tonic and phasic activity. This approach, which
is based on standard deconvolution, is fast and robust against artefacts. The second is
discrete decomposition analysis, which separates the SC data in a tonic component and discrete
phasic components with a no-negative deconvolution. This strategy captures and explores
all deviations of the final response form and computes an in-depth full model of all parts
within the entire dataset [92,111].

Many authors agree that deconvolution produces a normalisation in the signal, allow-
ing to compare between different captured signals and subjects [49,112].

3.1.4. Other EDA Processing Techniques

Although most of the articles found in the reviewed literature refer to the deconvolu-
tion process, there are other techniques that are used for EDA signal processing. Here we
will mention some of them.

Complex Optimisation on EDA Signals (cvxEDA)

A novel algorithm for the analysis of EDA signals uses convex optimisation methods.
EDA is one of the most widely observed pathways of sympathetic nervous system activity
and is expressed as a change in the electrical properties in skin conductance (SC) [17,113].
This model represents the SC as the composite of three terms: the phasic component,
the tonic component and an additive white Gaussian noise that incorporates the model’s
prediction errors as well as measurement errors and artefacts. The model is physiologically
inspired and fully explains EDA using a rigorous method based on Bayesian statistics,
convex mathematical optimisation and sparsity. One benefit of this method is its low
computational cost and that it can be incorporated into a variety of wearable devices.

Sparse Deconvolution Approach (sparsEDA)

Staying with models that have a low computational cost, the sparse deconvolution-
based method called sparsEDA should be mentioned. This fully automated method
was proposed for tonic/phase decomposition of EDA data based on non-negative sparse
deconvolution and multi-scale modelling of SCRs. This method aims to strike a balance
between filtering noise and improving the relevant insights into the EDA signals [113,114].
This lightweight method can also be embedded in a wearable device.

Spectral Analysis on EDA Signals

Spectral analysis is another novel approach for signal processing, motivated in part
by advances in the analysis of heart variability (HRV) [115]. This method evaluates the
dynamics of the autonomic nervous system by calculating the power spectrum in two
main bands, a low frequency band corresponding to the limits [0.08–0.24] Hz and a high
frequency band corresponding to the limits [0.25–0.4] Hz. The peak of maximum activity
would be around 0.34 Hz for a high arousal activation zone [113]. As this procedure is
inspired by the spectral analysis of the HRV, the low frequency band is thought to be related
to the activation of the sympathetic and parasympathetic systems, while the upper band is
only due to the influence of the parasympathetic system.
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Cepstrum Analysis (CA)

This is the discrete-time inverse Fourier transform of the logarithm of the magnitude
(X) of the discrete-time Fourier transform (DTFT) of the signal. It is formulated as:

c[n] =
1

2π

∫ +π

−π
log
∣∣∣(X(eiω)

∣∣∣eiωndω (5)

where eiω is the DTFT of the signal [86]. CA has successfully been used to isolate the basic
waveform and the excitation function of physiological signals such as EDA [71], EEG [116]
and ECG [117]. CA might be helpful for analysing overlapping EDA signals given its ability
to amplify small amplitude variations. This analysis yields a series of coefficients called
Mel-frequency cepstral coefficients (MFCCs) that are used as features introduced into the
classification system (see Equation (5)).

Entropy Analysis (EA)

This describes the randomness, uniformity and disorder of a given system. Many
features of the entropy domain have been used to analyse EDA signals [118]. EA allows us
to detect patterns in the signal by using Shannon entropy [119]:

H = − 1
logN ∑ pilog(pi) (6)

where N is the number of observed events and pi is the probability that the i-th event
occurs. Since Shannon entropy values differ with respect to the acquired data, it may be
used as a feature to measure the characteristics of a signal (see Equation (6)).

Identification of the Dynamics of the Autonomous System

This approach consists of showing the dynamics of the autonomic system across
different stimuli exposures [120]. For this purpose, several features are extracted from the
EDA signals. A logistic regression (LOC) or receiver operating characteristic (ROC) process
is then applied. These indices are concatenated for the different time windows of the signals
that will later be processed by the LASSO regulation algorithm. Not all features survive
this process, but the remaining ones supply much information about the condition of the
participant. This allows for comparison in relation to the different situations or stimuli to
which he/she has been exposed.

Models to Extract Pulses from EDA Signals

A systematic and robust approach to extract pulses from EDA data that preserve the
statistical structure of physiologically derived data while excluding the noise has been
developed [121]. This method exploits a total of seven parameters through four models
(inverse Gaussian, log-normal, gamma and exponential) to figure out how to extract pulses.
These pulses allow an assessment of the signal-to-noise profile of an entire data companion
and the identification of individual subjects. From this emerges a line of analysis that is
computationally accurate, statistically rigorous and physiologically based.

Poral Valve Model

This model favours the functioning of the activation of the autonomic system to
produce a change of sweating in the skin. So, it models very efficiently the functioning of
the different pores of the skin and its sweat activation, adopting a physiological approach
to determine the different stages of activation or arousal produced [122].

3.1.5. Feature Extraction

Feature extraction is usually performed using specially designed frameworks and
methods. The most used frameworks are Ledalab [92] and cvxEDA [17] and the
SparseEDA [112,114] method. Five main groups of features are distinguished: time domain



Sensors 2022, 22, 8886 10 of 31

features which refer to all the variables defined in terms of time; frequency domain features
which refer to all the parameters defined in or based on frequency; statistical features defined
as variables that belong to the statistical field; morphological features that quantify the shape
of the signal; time-frequency features that characterise the signal in time and frequency
domains simultaneously. Table 3 shows several features that usually characterise the dif-
ferent segments of SP, SC, as well as their tonic and phasic components (SPL, SPR, SCL
and SCR). It should be noted that these features are used to characterise the signals more
accurately. It is a good practice to use the best features that are most suited in relation to
their contrasting performance.

Table 3. Features obtained in the process.

Domain Features

Time Mean *, SD*, D1*, D2 *, D1M *, D2M *, D1SD *, D2SD *, EDL *
SRT *, SFT, RM, RRSTD, DCRM, DCRSD, RM, PHVM, PHVSD,
RRSTD, DCRM, DCRSD, STM, STSD, STRMS, STRMSSD
STRMSOV, EDL, EDR, CMax *, CMin *, SWE, DR, RMS *,
PMRMSR, RSSL, P, PLoc, PPT, pNN50 *

Morphological NO, EC, EP, EPC, EN, AL *, IN *, AP *, RMS *, IL *, EL *
Statistical M *, Var *, MedVal *, p-Val, AKAIKE, LOG-LIKE, FCM, FVCM

KU *, SKU *, MO *, COVMAT
Frequency SP *, SSP, MSSP *, SSPMed, NSSCRs, FFT *, PSD
Time-Frequency TFFlux, TFFlatness, TFEnergy, TVSymp, MFCC, E∗

Shannon, ELog

Note: * most used features.

The following features are commonly used in the time domain: mean amplitude
(Mean); amplitude standard deviation (SD), the SD first and second derivative (D1, D2),
the SD means (D1M, D2M) and their standard deviations (D1SD and D2SD) [26]; sum
rise time (SRT), sum fall time (SFT), rise rate mean (RM), rise rate standard deviation
(RRSTD); decay rate mean (DCRM), decay rate standard deviation (DCRSD); phasic value
mean (PHVM), phasic value standard deviation (PHVSD); startle time mean (STM), star-
tle time standard deviation (STSD), startle RMS mean (STRMS), startle RMS standard
deviation (STRMSSD); startle RMS overall (STRMSOV); electrodermal level (EDL), elec-
trodermal response (EDR); cumulative maximum (CMax), cumulative minimum (CMin);
smallest window elements (SWE); dynamic range (DR); root-mean square level (RMS),
peak-magnitude-to-RMS ratio (PMRMSR); root-sum-of-squares level (RSSL); peak (P), peak
location (PLoc), peak to peak time (PPT), analysis of peaks with a time difference of more
than 50 ms (pNN50) [25,29,46,47,65,69].

Distinctive features are available following the morphology of the signals: epoch-
capacity (EC) is a relation between the number of epochs and the total number of them;
epoch-peak (EP); epoch peak counter (EPC) is a number of epochs in all times; entropy
(EN) [80]. On the other hand, there are features that result from different measurements
such as arc length (AL), integral area (IN), normalised mean power (AP), root mean
square (RMS), perimeter to area ratio (IL) and energy to perimeter ratio (EL) [26]. These
parameters are due to the need to understand the morphological differences in the shape
of the SCRDriver. As far as statistical parameters are concerned, let us highlight mean
value (M), variance (Var), median value (MedVal), p-value (p-Val), Akaike information
criterion (AKAIKE), Log-likelihood (LOG-LIKE), covariance matrix (COVMAT), transition
probabilities lag (TPL), number of observations (NO), switching betas (beta-Numb), number
of estimated parameters (STP), standard error coefficient (SCE), smoothed probabilities of
regimes (SPR), conditional standard deviation (CSTD), four central moment (FCM), five
central moments (FVCM), kurtosis (KU), skewness (SKU) and momentum (MO) [59,69].

The following parameters are usually found in the frequency domain: sum spectral
components (SSP), spectral power (SP), mean and spectral components (MSSP and SSPMed,
respectively), frequency non-specific of skin conductance response (NSSCRs) and fast Fourier
transform (FFT) for bandwidths F1 (0.1, 0.2), F2 (0.2, 0.3) and F3 (0.3, 0.4) [26,59,69,123–125].
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Frequency bands with ranges [0.02–0.25 Hz], [0.25–0.40 Hz] and [0.40–1 Hz] have also been
used as a measure of power spectral density (PSD) [113,126].

Finally, for time-frequency features, STFT is a basic principle for characterising the
signal simultaneously in both domains. It is an application of the conventional fast Fourier
transform applied to successive data segments using a short-time window. The time-
frequency flux measure (TFFlux), the time-frequency flatness measure (TFFlatness), the time-
frequency energy measure (TFEnergy) and the mean of time-varying spectral amplitudes in
frequency bands (TVSymp) [127] use this approach. Mel-frequency cepstral coefficients
(MFCCs) were included to quantify the EDA signals. Lastly, Shannon entropy (EShannon)
and its logarithmic representation (ELog) [49,128] have been found for entropy measures.

3.2. Machine Learning for Arousal Classification

As a rule, signal-based experiments yield a large number of extracted features to
classify. ML techniques are used more than purely statistical ones to classify such enor-
mous amount of data. Therefore, a comprehension of existing ML models, their main
characteristics and methods of evaluation and their most relevant results is essential.

Evaluation Metrics

According to the literature studied, stress detection, physical pain detection, dehy-
dration sensing and sleep monitoring are limited to a binary classification problem, while
multi-class classifiers have been used for emotion detection and task-oriented applications.
The different metrics that have been employed to measure performance are the following:

• Accuracy (ACR): degree of closeness to true value. In terms of TP (true positives), TN
(true negatives), FP (false positives) and FN (false negatives):

ACR =
TP + TN

TP + TN + FP + FN
(7)

• Precision (P): ratio of successful positive predictions.

P =
TP

TP + FP
(8)

• Recall (R) or Sensitivity (Se): fraction of relevant instances retrieved.

R = Se =
TP

TP + FN
(9)

• Specificity (Sp) or true negative rate (TNR): proportion of negatives that are correctly
identified.

Sp = TNR =
TN

TN + FP
(10)

TNR + FPR = 1 (11)

• False positive rate (FPR): proportion of negative cases incorrectly identified as positive
cases in the data.

FPR =
FP

FP + TN
(12)

• F1-score or F-measure: harmonic mean between precision and recall.

F1-score =
2 × P × R

P + R
× 100 (13)

• Area under the curve (AUC) and receiver operating characteristics (ROC) curve:
performance measurements for classification problems at various threshold settings.
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• Precision-recall (PR) curve: this summarises the trade-off between the TPR and the
positive predictive value for a predictive model using different probability thresholds.

• Confusion matrix (CM): a specific table disposition that allows one to visualise the
performance of an algorithm.

• Cohen’s kappa-coefficient (κ): this is a measure of how closely the instances classified
by the ML classifier match the data labelled as ground truth.

κ =
ACR0 − ACRe

1 − ACRe
(14)

• Youden’s index (J): this is used to measure the sensitivity of each classifier.

J = Se + Sp − 1 (15)

3.3. Classification Methods

Different classification methods have been found in the papers analysed in this sys-
tematic review. These methods can be grouped in relation to distinct categories. In the first
place, there is direct classification vs. hierarchical classification. Furthermore, there is long-term
vs. short-term when considering the duration of the classification. Finally, we can distin-
guish between supervised and unsupervised learning methods. Another aspect that must
be considered is that ML models have some limitations due to the substantial number of
parameters managed. Consequently, it is necessary to know how to implement methods
that help us to reduce the number of redundant or irrelevant parameters. Therefore, dimen-
sionality reduction techniques are becoming significant in the areas of ML, data mining
and bioinformatics.

The feature reduction methods detailed next are usual to signal processing. Principal
component analysis (PCA) is a standard statistical data analysis which tries to explain
observable signals as a linear mixture of the orthogonal principal component that optimises
the variance between the different components. Linear discriminant analysis (LDA) is
typically used to reduce the dimensionality by maximising the space between the different
classes. Finally, independent component analysis (ICA) is an analysis and data processing
strategy that recovers unobservable signals or sources of monitored mixtures only under
the assumption of mutual independence. These feature reduction techniques allow the
leverage the computational cost since the resulting classifier is simpler and only attends
to the key features of the signal. Many of the papers studied in this overview use such
techniques and the results are really good compared to others that do not use them. Below,
there is an explanation of the different methods used.

3.3.1. Direct vs. Hierarchical Classification

We found direct and hierarchical classification methods in many articles analysed in
this review. A direct classification consists in classifying the arousal of the person in a direct
way considering one or more physiological variables. On the other hand, there are two
distinct stages when a hierarchical classification is proposed. The arousal is established in a
first stage and a more complex emotional state can be classified in a second stage [59].

3.3.2. Long-Term vs. Short-Term Affective State Classification

Whether a classification of the emotional state should consider the duration of the ex-
periment as well as the evolution of the signals over time are other aspects to be considered.
The first issue to highlight is the need for a classifier that works quickly and is consistently
robust over a long period. In this sense, a classification could be defined as short-term or
long-term. The former is aimed at instantaneously finding results, while the latter is oriented
towards long-term applications. A long-term classification is usually recommended in the
context of stress detection [26].
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3.4. Supervised vs. Unsupervised Learning

Within the different learning methodologies, there are (apart from reinforcement
learning and stochastic learning) two other main groups, namely supervised and unsupervised
learning [129].

3.4.1. Supervised Learning Methods

Supervised learning techniques are based on training a classifier from a dataset that is
already labelled. Once the system has learned to identify the different patterns, the clas-
sifier is able to effectively distinguish between the different classes. In our case, it must
distinguish between low and high arousal, calm and stress and so on. There is a wide range
of classifiers with supervised learning found in the papers selected:

• Support vector machines (SVMs) [130,131]. From the point of view of arousal de-
tection from EDA, this is one of the most used algorithms, more concretely using
linear [29,30,43,65], quadratic [29,46,71], polynomial [29,30,46], Gaussian [29,30] and ra-
dial [15,18,22,23,25,30,31,42–45,47–49,52–55,58,61,69,71,73–75,79,132,133] kernels.

• Auto-hidden Markov models (AHMMs) [57,59]. Different approaches have been used
to find the status of each person from the EDA signals using AHMM [57,59].

• Discriminant analysis (DA). There are many classifiers based on DA, with the most com-
mon for the detection of arousal in EDA being: linear discriminant analysis (LDA) [25,70];
quadratic discriminant analysis (QDA) [27,30,49,52,81] and Gaussian discriminant analysis
(GDA) [29].

• Decision trees (DTs) [134]. Within this type of classifier, the most used for arousal de-
tection are tree medium, regression tree [27,42,45,61,80,81] and other ensemble methods
like random forest and bagged tree [46,80].

• Naive Bayes. In this study, it has been found that the most used naive Bayes methods
are naive–Bayes–Gaussian [42,44,52,61,80] and naive–Bayes–Gaussian with PCA [61,80].

• Logistic regression (LR). According to the references found, different papers have been
published where this method is used as logistic regression [23,27,48,79] and a variant
called zero-regression [48].

• A K-nearest neighbours (KNN) [135]. Within the different configurations that
have been found are KNN-Fuzzy [46], KNN-Fine [46], KNN-Cubic [46,70], KNN-
Medium [25,27,42,44,45,47,54,57,69,79] and KNN-Weighted [23].

• Artificial neural networks (ANNs). It should be noted that there are many topologies
that have been used for the processing of the obtained features, such as feed-forward
NN [69], multi-layer perceptron with back-propagation (MLP) [23,27,43,61,67,75,81], Bayesian
probabilistic NN (BPNN) [44], probabilistic NN [61], one-dimensional convolutional NN
(1D-CNN) [69,70] and, finally, convolutional NN (CNN) [15,44,49,53,71,73].

• Long short-term memory (LSTM) and recurrent neural networks (RNNs) [136,137].
In this systematic review, LSTM [34], ensemble-based methods like CNN+LSTM [34]
and adaptive neurofuzzy inference system (ANFIS-based short-term) [25] have been used.

3.4.2. Unsupervised Learning Methods

The second group of learning methods addressed is unsupervised learning [138]. This
type of methods is based on learning by using an unlabelled dataset. The model obtained is
automatically adapted to the observations. The model is created with clustering methods.
According to the literature found in the systematic review the following unsupervised
methods have been used:

• K-means is a clustering method, aimed at splitting an unlabelled dataset of n obser-
vations into k groups in which every single observation belongs to the group whose
mean value is the closest [47].

• K-medoids is a grouping approach for the partitioning of a dataset into k groups or
k-clusters, each group being represented by one of the group data points called cluster
medoids [47].
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• A self-organising map (SOM) is a type of ANN that is formed by the use of unsu-
pervised learning to generate a low-dimensional map, typically two-dimensional [139].
In the selected literature we have found the use of SOMs for the detection of
arousal [47,52].

4. Results

This section presents the different results obtained along this systematic review. Differ-
ent analyses of the data obtained are conducted in this type of review as has been mentioned
throughout the paper. Firstly, papers have been grouped according to physiological vari-
ables used for the determination of arousal. A second analysis focuses on determining
which are the most typical classifiers (supervised and unsupervised) for arousal detection.
For this purpose, the different classification methods have been grouped according to
their similar configurations or topologies. In this way, estimating the most common ML
technique is possible through concentrating the efforts on selecting a firm configuration
and discarding those techniques that are known beforehand to perform poorly.

4.1. Bio-Markers Used in the Papers

One of the considerations taken during this study was to analyse the number of
articles that only use the EDA to perform the different classifications. In addition, we
are interested in those in which other bio-markers are used in conjunction with EDA
to strengthen the classification results. As can be seen in Tables 4–10, the publications
have been grouped according to the classification shown in Table 1. In the works found,
a minimum of 5 participants and a maximum of 260 have been counted, having used other
variables besides EDA like BVP, TMP, EEG, EOG, EMG, ECG, ACC, PUP and IBR.

Table 4. Physiological Signals Used for Arousal Detection.

Papers Year Parameters Participants Evaluation Annotations

Chowdhury et al. [15] 2019 EDA BVP TMP 22 F-score + ML
Greco et al. [16–18] 2014–2019 EDA 18–32 ML Met.
Kelsey et al. [21] 2018 EDA 73 ML Met.
Khalaf et al. [19] 2020 EDA 260 ML Met. Clustering maps
Kleckner et al. [20] 2018 EDA TMP 20 ML Met.
Taylor et al. [22] 2015 EDA ECG 100 ML Met. Wavelet transform
Zhang et al. [23] 2017 EDA BVP TMP 87 ML Met.

Table 5. Physiological signals used for stress detection.

Papers Year Parameters Participants Evaluation Annotations

Anusha et al. [24] 2017 EDA 12 ML Met. Stressors in EDA
Anusha et al. [25] 2020 EDA 41 ML Met. Pre-Surgery stress EDA
Aristizabal et al. [41]
Cho et al. [28] 2017 EDA BVP 12 ML Met. Unsupervised Learning

Hadi et al. [33] 2019 EDA BVP IBR
EMG 59 ML Met. SVM-RBF best perf.

Jebelli et al. [29] 2019 EDA BVP TMP 10 ML Met. Stress in workers
Liapis et al. [38] 2021 EDA SKT – ML Met. SVM models
Lee. et al. [40] 2021 EDA ML Met. CNN networks
Martinez et al. [35] 2019 EDA BVP IBR 18 ML Met. Expert system
Nath et al. [37] 2021 EDA + BVP 41 ML Met. RF, SVM and LR
Rastgoo et al. [34] 2019 EDA ECG 6 ML Met. LSTM model
Sanchez-Reolid [26] 2020 EDA 147 ML Met. D-SVM based
Setz et al. [30] 2010 EDA EMG 33 ML Met. Stress cognitive
Siddarth et al. [31] 2020 EDA BVP EEG 12 ML Met. LSTM model
Singh et al. [32] 2013 EDA BVP 19 ML Met. NN topologies
Wang et al. [39] 2021 EDA – ML Met. Ensemble ANN methods
Zontone et al. [36] 2022 EDA+ECG 18 ML Met. SVM classifier
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Table 6. Physiological signals used for emotion detection.

Papers Year Parameters Participants Evaluation Annotations

Al-Machot et al. [42] 2018 EDA ECG 30 SAM’s + ML MAHNOB dataset

Al-Machot et al. [43] 2019 EDA BVP EMG
IBR 30 SAM’s + ML MAHNOB dataset

Ali et al. [44] 2018 EDA BVP TMP 30 ML Met. MAHNOB dataset
Anderson et al. [45] 2017 EDA BVP EOG 41 ML Met. Multi-class classifier
Cavallo et al. [46] 2019 EDA BVP EEG 34 ML Met. Multi-class model
Fiorini et al. [47] 2020 EDA BVP IBR 50 SAM + ML
Ganapathy et al. [49] 2020 EDA 32 ML Met. Convolutional Analysis
Ganapathy et al. [62] 2021 EDA 32 ML Met. CNN multi-scale
Garcia-Faura et al. [48] 2019 EDA 14 ML Met.
Greco et al. [50,51] 2014–2019 EDA 18–32 ML Met.
Jang et al. [52] 2015 EDA 40 ML Met.

Katsis et al. [73] 2008 EDA BVP IBR
EMG 20 ML Met. Automatic method

Katsis et al. [53] 2011 EDA BVP IBR 5 ML Met. Multi-class classification

Khezri et al. [54] 2015 EDA BVP IBR
EMG 20 ML Met.

Kim et al. [55] 2018 EDA BVP EEG 30 ML Met.
Kukolja et al. [56] 2014 EDA BVP 14 ML Met.
Liu et al. [132] 2019 EDA 21 ML Met. Kappa coefficients
Liu et al. [57] 2019 EDA BVP EMG 17 Accuracy Markov-Chain Based
Pinto et al. [58] 2019 EDA BVP 23 ML Met. Multi-class classifier
Rajendran et al. [64] 2022 EDA BVP ML Met. Recurrent NN
Zhang et al. [60] 2017 EDA ACC 87 ML Met. Unsupervised ML
Zhao et al. [61] 2018 EDA BVP TMP 32 ML Met. PCA analysis
Zontone et al. [75] 2020 EDA BVP 18 ML Met.

Table 7. Physiological signal used for physical pain detection.

Papers Year Parameters Participants Evaluation Annotations

Kong et al. [68] 2021 EDA 10 ML Met. Pain using Heat
Susam et al. [65] 2018 EDA 34 ML Met.
Thiam et al. [67] 2019 EDA BVP EMG 87 ML Met. BioVid Database

Walter et al. [66] 2013 EDA ECG EMG
EEG 90 Statistical BioVid Heat Pain Dataset

Table 8. Physiological signals used in task-oriented experiments.

Papers Year Parameters Participants Evaluation Annotations

Bianco et al. [69] 2019 EDA BVP IBR 68 ML Met. Deep classifier
Ding et al. [70] 2020 EDA 35 ANOVA + ML
Gjoreski et al. [72] 2020 EDA EOG PUPIL 68 ML Met.
Momin et al. [74] 2019 EDA – ML Met. Task-oriented

Table 9. Physiological signals used for mental/cognitive workload detection.

Papers Year Parameters Participants Evaluation Annotations

Ding et al. [70] 2020 EDA 18 MLT Met. Simulated computed task
Jimenez-Molina et al. [76] 2018 EDA BVP EEG 61 MLT Met. Web browsing workload
Lanata et al. [77] 2017 EDA IBR ECG 15 MLT Met. Driving monitoring
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Table 10. Physiological signals used for other physical states detection.

Papers Year Parameters Participants Evaluation Annotations

Amidei et al. [87] 2022 EDA 9 ML Met. Driver drowsiness
Chowdhury et al. [140] 2022 EDA ACC 12 ML Met. Epileptic seizure detection
Hwang et al. [78] 2017 EDA 17 ML Met. Sleep Monitoring
Hossain et al [84] 2022 EDA 20 ML Met. Artifact detection
Rizwan et al. [79] 2020 EDA 5 ML Met. Dehydration Detection
Posada-Quintero [82] 2019 EDA ECG 70 ML Met. Dehydration Detection
Sadeghi et al. [80] 2020 EDA 41 ML Met. Sleep Monitoring
Sabeti et al. [81] 2019 EDA BVP ACC TMP 20 LUCKK Sleep Monitoring
Sandeghi et al. [80] 2019 EDA BVP ACC 20 ML Met. Sleep Monitoring
Yin. G. et al. [83] 2022 EDA 32 ML Met. Residual Neural Networks

A total of 21 papers have used EDA signals alone [16–19,21,22,24–26,42,48–51,65,74,78–80,132].
The use of deconvolution methods was emphasised to obtain the distinctive features of the
EDA signals. Another variable that is used to help determine different emotional states
in the participants is BVP, which gets particularly good results in the prediction when
combined with EDA [28,32,58,59,70,75,82].

Tables 4–10 show other physiological variables used. Articles including TMP focus
on its integration for stress detection. On the other hand, when adding the EMG signal,
the results are slightly improved. This may be since this physiological variable complements
itself very well with EDA. Another variable used for stress measurement is EEG mixed with
EDA. This type of signal is widely used individually and provides good results in stress
detection. Nonetheless, EEG requires very expensive and precise devices and quite specific
knowledge to set up the acquisition of the signals. Finally, IBR also supplies additional
information to improve the classifiers, but without achieving great improvements.

These physiological variables are excellent complements to the EDA, providing a leap
in the quality of the classifier results. It is possible to supply a more realistic map of the
physiological state by combining the variables. This is largely because the several variables
are regulated by different systems like the SNS, the parasympathetic nervous system or a
mixture of both (the autonomous nervous system).

4.2. Time Windows and Intervals in Arousal Detection

One aspect that has received considerable attention in this systematic review is the
size of the signal segments that are used to feed each classifier. Many classifiers work better
with longer signal segments and therefore more signals are introduced during the learning
process. This may be due to the shape of the signal obtained, since the longer the signal,
the easier it is to distinguish between the two states [105].

Regarding the minimum time for stress detection, many researchers argue that seg-
ments of at least 5 s are needed to achieve a distinction between calm and stress [26]. On the
other hand, by looking at how the EDA signals are segmented, some authors use complete
segments of the signals acquired in the experiments, while others prefer to use segments of
EDA signals divided into smaller fragments and apply overlapping techniques to perform
data augmentation and provide more data to feed the classifiers.

4.3. Features Most Commonly Used

Throughout the literature consulted, there is a substantial number of parameters that
can be obtained from the EDA raw signals as well as from the deconvoluted signals (phasic
and tonic). Due to the normalisation of data that takes place in the process, any classifier
using phasic signals has a much better performance than the ones that use the raw signals.

Researchers have preferred to use time-dependent parameters more often than those
based on morphology, statistics and frequency domain. Some parameters should be
highlighted such as mean (Mean), numeric first and second derivative (D1, D2), standard
deviations of the signal and its derivatives (SD, D1SD, D2SD), cumulative maximum
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(CMax) and cumulative minimum (CMin), electrodermal level (EDL) and sum rise time
(SRT) or root-mean square level (RMS). The most used morphological parameters are arc
length (AL), integral area (IN), normalised mean power (AP) and energy to perimeter
ratio (EL). The statistical parameters used frequently are mean (M), variance (Var), median
(MedVal), kurtosis (KU), skewness (SKU) and momentum (MO), in frequency domain the
use of spectral power (SP), mean spectral power (MSSP) and fast Fourier transform (FFT) is
quite extensive. Finally, it can be noted that Shannon entropy (EShannon) is one of the most
widely used for time-frequency features.

4.4. Supervised Learning Methods

A considerable number of the papers studied use supervised learning methods (see
Tables 11–17). Their main performance results are discussed below.

Table 11. Supervised learning methods for arousal classification.

Authors MLT Type Conf. Performance * Annotations

Chowdhury et al. [15] SL SVM Radial (RBF) 85.20(0) 3 EDA +HR +TMP fusion
SL TREE RF 83.58(0) 3 EDA +HR +TMP fusion
SL ANN MLP-BP 82.76(0) 3 EDA +HR +TMP fusion

Greco et al. [16–18] SL SVM Radial (RBF) 69.9(0) 1 EDA + HRV
Khalaf et al. [19] SL SVM Radial (RBF) 76.46(0) 1

Kleckner et al. [20] SL SVM – 92.0(0) 1 Cohen’s κ = 0.55
Taylor et al. [22] SL SVM Radial (RBF) 95.67(0) 1 Binary Artefact detection

SL SVM Radial (RBF) 78.93(0) 1 Multi-class Artifact detection
Zhang et al. [23] SL KNN Weighted 76.53(8.64) 2 ML Met.

Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.

Table 12. Supervised learning methods for stress classification.

Authors MLT Type Config Performance * Annotations

Anusha et al. [24] SL DISC. Linear 95.1(0) 1

Anusha et al. [25] SL DISC. PCA + LDA 71.09(0) 1 PCA analysis
SL ANN ANFIS 95(0) 2 ANFIS-Based Short-Term

Sanchez-Reolid [26] SL SVM Radial 83.0(0) 3

SL SVM Deep-SVM 92.0(0) 3 Deep-SVM ensemble
Can et al. [27] SL ANN MLP 92.15(0) 3 HR + EDA + ACC

SL Logistic
reg. Standard 90.19(0) 3 HR + EDA + ACC

SL KNN – 84.10(0) 3 HR + EDA + ACC
Cho et al. [28] SL ANN K-ELM 95.1(0) 2 Feed-forward NN (SLFNs)
Jebelli et al. [29] SL SVM Medium-Gauss. 90(0) 1

SL DISC. GDA 71(0) 1 Gaussian DA
SL KNN. Medium 77(0) 1

Setz et al. [30] SL SVM Quadratic 81.3(0) 1

SL DISC. Linear 82.8(0) 1

Siddarth et al. [31] SL ANN CNN-LSTM 91.43(5.17) 1 VGG-16 Net + PCA + LSTM
Singh et al. [32] SL ANN LUCCK 89.23(0) 2 Concave and Convex Kernel

SL ANN LRNN 89.23(0) 2 Recurrent NN
Hadi et al. [33] SL TREE RF 91.1(0) 1

Rastgoo et al. [34] SL LSTM CNN + LSTM 79.13(2.47) 3 Ensemble CNN + LSTM
SL LSTM LSTM 81.4(0) 3

Martinez et al. [35] SL TREE DT 96.6(0) 1 Decision tree algorithm

Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.
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Table 13. Supervised learning methods for emotion classification.

Authors MLT Type Config Performance * Annotations

Al-Machot et al. [42] SL ANN CNN 82(0) 1 MAHNOB dataset
Al-Machot et al. [43] SL SVM Radial 63.0(0) 2 Matlab + ML Met.

SL KNN Medium (k = 3) 65(0) 2 Matlab + ML Met.
Ali et al. [44] SL ANN MLP-BP 80.0(0) 3 NN based.

SL BPNN Bayes 89.38(0) 3 Cellular-NN
Anderson et al. [45] SL SVM Medium-Gauss. 83.3(0) 3 Matlab + ML Met.

SL TREE Bagged 78.8(0) 3 Matlab + ML Met.
Cavallo et al. [46] SL SVM Quadratic 89.67(0) 3 Matlab + ML Met.

SL SVM Radial + PCA 82.4(0) 3 Matlab + ML Met.
SL KNN Fuzzy 86.6(0) 3 Matlab + ML Met.
SL KNN Fine 87.7(0) 3 Matlab + ML Met.

Fiorini et al. [47] UL K-means Standard 77.5(2.12) Standard config.
UL K-medoids Standard 75.5(2.12) Standard config.
UL SOM Standard 77.5(0.5) Bi-dimensional map

Garcia-Faura et al. [48] SL Logistic Reg. ZeroR 57.54(0) 2 Zero Regression
Ganapathy et al. [49] SL CNN MLP-BP 71.41(0) 3 NN based.
Jang et al. [52] SL DISC. DFA 84.7(0) 1 Discriminant analysis
Katsis et al. [53] SL SVM Radial (RBF) 78.5(0) 1 10s + 5 emotions

SL TREE RF 80.83(0) 1 10s + 5 emotions
SL ANN MLP 77.33(0) 1 10 s + 5 emotions
SL NFS Fuzzy Inference 84.3(0) 1 10 s + 5 emotions

Khezri et al. [54] SL SVM Radial 82.7(0) 1

Kim et al. [55] SL SVM Radial 74(0) 1

Kukolja et al. [56] SL ANN MLP-BP 60.30(0) 1 Baseline EDA
Liu et al. [57] SL Markov Markov-Chain 68.74(7.85) 1 With Baseline

SL Markov Markov-Chain 79.83(5.67) 1 Without Baseline
Pinto et al. [58] SL SVM Radial 69.13(0) 1

Patlar et al. [59] SL Markov Auto-Hidden 88.6(0) 1 With LDA + Acc.
SL Markov Auto-Hidden 86.6(0) 1 Without LDA +Acc.

Rajendran et al. [64] SL LSTM 99.0(0) 1

Zhang et al. [60] SL SVM Radial 91.4(0) 1 Motion Artifact
SL TREE RF 93.5(0) 1 Motion Artifact
SL ANN MLP-BP 92.8(0) 1 Motion Artifact

Zhao et al. [61] SL TREE Regression 73.30(2.99) 2 Matlab + ML Met.
SL Naïve-Bayes Gaussian 70.8(0.53) 1 PCA analysis
SL PNN Probabilistic 71.31(0) 3 Probabilistic NN

Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.

Table 14. Supervised learning methods for physical pain classification.

Authors MLT Type Config Performance * Annotations

Susam et al. [65] SL SVM Radial 77.6(0) 1 Timescale decomposition (TSD)
Thiam et al. [67] SL ANN CNN-DL 84.40(14.43) 1 Convolutional + Late fusion architecture

Note: 1 = accuracy; 2 = precision; 3 = F1-score; * Mean performance and its standard deviation.
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Table 15. Supervised learning methods for task-oriented applications.

Authors MLT Type Config Performance * Annotations

Bianco et al. [69] SL ANN 1D-CNN 88.74(0) 3 Convolutional-NN
SL ANN 1D-CNN-E 90.54(0) 3 Convolutional ensemble
SL ANN Adaboost 99.69(0) 1 Adaboost Method
SL ANN 3-NN 95.02(6.34) 2

SL ANN 5-NN 98.81(0) 2

Ding et al. [70] SL ANN 1D-CNN 96.4(0) 1 Convolutional-NN
Gharderyan et al. [71] SL SVM Quadratic 90.6(0) 1 Wavelet + features

SL CNN MLP-BP 80.2(0) 1 NN based
Gjoreski et al. [72] SL ANN XDA 94.0(0) 3 Extreme Gradient Boost

SL ANN CNN-LSTM 75(0) 3

SL ANN STR-Net 80(0) 3 SpectroTemporal-ResNet
Katsis et al. [73] SL SVM Radial 79.3(0) 1

SL ANN ANFIS 76.7(0) 1 Adaptive Neuro-Fuzzy
Momin et al. [74] SL SVM Radial 82.7(8.9) 1

SL TREE Regression 90.16(4.65) 1 CART config.
SL TREE DT 91.3(0) 1 ID4-5 config.

Posada-Quintero et al. [141] SL KNN Medium 66.0(0) 1

Zontone et al. [75] SL SVM Radial 76.72(0) 1

SL ANN MLP 77.15(0) 1

Note: 1 = accuracy; 2 = precision; 3 = F1-score.; * Mean performance and its standard deviation.

Table 16. Supervised learning methods for classification of mental/cognitive workload.

Authors MLT Type Config Performance * Annotations

Ding et al. [70] SL BPNN Bayesian 77.80(0) 1 Only physiological
SL SVM Cubic 76.33(0) 1 Only physiological
SL KNN Weighted 75.67(0) 1 Only physiological
SL Tree Fine 73.33(0) 1 Only physiological
SL LDA – 61(0) 1 Only physiological

Jimenez-Molina et al. [76] SL ANN MLP 93.7(0) 1 Combined EDA+EEG+BVP
Lanata et al. [77] SL MNC – 91(0) 1 MNC model

Note: 1 = accuracy; 2 = precision; 3 = F1-score; * Mean performance and its standard deviation.

Table 17. Supervised learning methods for classification of other states.

Authors MLT Type Config Performance * Annotations

Amidei et al [87] SL RF RF 84.1(0) 1 Driver drowsiness
Chowdhury et al. [140] SL SVM Rbf 86.9 Driver drowsiness

SL DT Bagged 90.7 Driver drowsiness
Hwang et al. [78] SL Disc. – 65.0(0) 2 Sleep time algorithm
Rizwan et al. [79] SL KNN Medium 87.78(0) 1 Dehydration

SL Logistic Reg. Standard 62.0(0) 1 Dehydration
Sadeghi et al. [80] SL TREE RF 73.0(0.53) 1 PCA analysis
Sabeti et al. [81] SL ANN LUCCK 88.38(5.55) 1 LUCCK Config.
Posada-Quintero et al. [82] SL KNN Cubic 91.2(0) 1 Dehydration

Note: 1 = accuracy; 2 = precision; 3 = F1-score; * Mean performance and its standard deviation.

4.4.1. Support Vector Machines

SVMs are beyond any doubt the most widely used classification methods in the papers
selected. SVMs with linear, quadratic, cubic, polynomial, Gaussian, radial and radial
kernels with/without PCA analysis have been proposed along the present survey.

Within arousal classification (see Table 11), SVMs with radial configuration have an
F1-score and precision of 85.20% and 92.0%, respectively [15,20,28]. Furthermore, binary
classifiers have an accuracy of 95.67%. In contrast, the accuracy drops to 78.93% when
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dealing with multi-class classification [22]. For stress classification (see Table 12), there is
an F1-score and accuracy value of 92% and 90% for a deep-SVM (ensemble method) and
medium-Gaussian kernel configuration, respectively [29,142].

This is closely followed by other results, also based on the radial and quadratic kernel
with an accuracy rate of 83% and 81.3% for stress classification [30,45]. It is in emotion
classification where the greatest number of configurations are found (see Table 13). It is also
the field where the highest variability is detected. The classification results range between
63% and 91.0%, having a mean value of 79.34% accuracy [60]. In addition, it offers an
accuracy of 77.6% with a radial kernel and timescale decomposition method [65] for their
use in determining physical pain. Finally, the use of SVMs in oriented tasks is reinforced by
results of 90.6% for a quadratic kernel and 82.7% for a radial kernel in the task-oriented
group [71,75] (see Table 15).

In summary, the most used kernel, the radial kernel, obtains average results of 75.34%
when all the areas of application are compared. This result achieves an acceptable per-
formance, because other estimators such as the ROC curve or the sensitivity and speci-
ficity values are remarkably high, approaching 1 (maximum achievable level) in many
cases. In addition, it should be noted that these classifiers present values higher than 90%,
only comparable with the performance of the different topologies and configurations of
ANNs [69] (see Section 4.4.8). Finally, when a feature reduction analysis (PCA) is applied
to the previous approach, the average result of the classification is 82.24%.

4.4.2. Auto-Hidden Markov Models

There are two types of algorithms within the Markov chains used for emotion and
classification as shown in Table 13. On the one hand, the auto-hidden Markov chains have
an associated result of 88.6% with an LDA and non-LDA approach [59]. On the other hand,
there is a value of 68.7% using the standard Markov chains when considering the baseline,
while the accuracy increases to 79.83% for an approach not considering the baseline [57].

4.4.3. Discriminant Analysis

Discriminant analysis has been used in stress detection (see Table 12) and emotion
classification (see Table 13). In this first case, the highest detection rate is 95% in accuracy
for linear discriminant. As can be seen, a higher order configuration worsens the results.
In contrast, the results obtained reveal an accuracy of 71.09% when applying a feature
reduction algorithm to the linear discriminant. Moreover, when the discriminant employs a
higher order discriminant function (quadratic or Gaussian), the results drop to 71% for stress
classification. Furthermore, an accuracy of 84.7% is found in emotion classification [52].
These results suggest that the only method that can be used with acceptable results is the
linear discriminant configuration. This is due to the inner workings of the classifier, as well
as its ability to eliminate features that do not provide relevant information. In papers where
feature removal is performed, such as in the case of LDA, something similar occurs, as will
be explained below.

4.4.4. Decision Trees

There are many different decision trees in the papers surveyed. Within arousal (see
Table 11) and stress classification (see Table 12), random forest (RF) has been used with
an accuracy of 83.58% and 91.1%, respectively [15,33] and decision tree (DT) has reached
an accuracy of 96.6% [35]. Moreover, in the realm of emotion classification (see Table 13),
different configurations are found with high percentages of accuracy. We have 93.5% and
80.83% accuracy for RF. For instance, we have 78.8% for the ensemble bagged method and
73.30% for the regression tree. Eventually, for classifying bodily states (see Table 17), RF
is used. This technique achieves an accuracy of 73.0% using PCA analysis [80]. Lastly,
in the task-oriented group (see Table 15), regression tree with 90.16% and 91.3% accuracy,
using classification and regression trees (CART) and ID4-5 configurations, respectively [74],
should be highlighted.
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The implementation of this algorithm used the Matlab library called ”App learner” with
standard configurations (Gini criterion) in most articles selected in the systematic review.

4.4.5. Naive Bayes

As for the Bayes classifier in emotion classification, the results obtained for the Gaus-
sian configuration combined with PCA is 70.8% [61]. Generally, results with Bayes classi-
fiers are quite poor because they assume independence in the variables (which is not the
case for EDA signals).

4.4.6. Logistic Regression

The use of logistic regression is not widely used in the selected papers. An accuracy
of 90.19% is achieved by fusing multiple signals in stress classification [27]. On the other
hand, in emotion classification an accuracy of 57.54% is obtained for a zero-regression struc-
ture [48]. Finally, for dehydration monitoring, an accuracy of 62% is obtained. Compared to
others found in this study, this type of classifier is not widely used with biological signals,
so the results are in line with expectations.

4.4.7. K-Nearest Neighbours

KNN is one out of the most frequently adopted classifiers in physiological classification
(also for EDA). The most widely used is KNN-Medium according to the reviewed literature.
This type of configuration uses a not exceptionally large cluster size, which makes it more
immune to noise produced by outlier data. In this sense, for arousal classification (see
Table 11), the KNN-Weighted algorithm has a precision of 76.53%. Moreover, KNN-Medium
can be found in stress classification with an F1-Score of 84.10% and an accuracy of 77%,
respectively [27,29] (see Table 12). Moreover, the different topologies found for emotion
classification (see Table 13) are KNN-Fine, KNN-Medium and KNN-Fuzzy with accuracy of
87.7%, 65.0% and 86.6% [43,46]. KNN-Cubic and KNN-Medium have obtained a precision
of 87.78% and 91.2%, respectively [79,82], when monitoring dehydration (see Table 17).

4.4.8. Artificial Neural Networks

The perceptron multilayer with backpropagation obtains an F1-score of 82.76% for
arousal classification (see Table 11). Three distinct topologies stand out in stress classi-
fication (see Table 12), namely, ANFIS networks, recurrent networks (RNN and LSTM)
and convolutional networks (CNN-LSTM) with an accuracy of 95%, 95.1% and 91.43%,
respectively. Another configuration uses the novel LUCCK method (concave and convex
kernel) with a result of 89.23%, in line with those obtained previously. On the other hand,
multilayer perceptron is employed in emotion classification (see Table 13). This algorithm
varies between 77.3% and 92.8% accuracy [23,53]. In addition, for stress classification (see
Table 12), several innovative networks have been used. In this case, a Bayesian network
(BPNN) and a probabilistic network (PNN) have been used, yielding results in the same
range as more established networks [44,61].

Interesting in the classification of physical pain (see Table 14) is the use of the so-called
late-fusion architecture topology [67]; even so, the results are a bit lower than the rest of
the convolutional networks, 84.4% against 91.43%. Lastly, let us highlight the use of ANNs
in the areas dedicated to monitoring. The LUCKK algorithm is used to monitor sleep and
fatigue with a result of 88.3% [81] (see Table 17). In task-oriented applications (see Table 15),
Adaboost achieves an accuracy of 99.69%. The three- and five-layer configurations provide
a precision of 95.02% and 98.81%, respectively, for multilayer perceptron in the feedforward
configuration. One-dimensional convolutional networks (1D-CNN) have also been used
with results of 88.74% and 90.54%. Among the less used techniques, extreme gradient boost
(XDA), adaptive neurofuzzy approach (ANFIS) and spectro-temporal ResNet have shown
results of 94%, 76.7% and 80.0% precision, respectively.
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4.4.9. Long Short-Term Memory and Recurrent Neural Networks

In the domain of stress classification, attending to the different configurations, LSTM
may be used alone or in other configurations through assembly method. For an LSTM
network, the F1-score is 81.4%, while the CNN+LSTM obtains an F1-score of 79.13%.
The ANFIS configuration variant gets 95%. Although there is little literature on this type of
classifier, it should be regarded as a suitable alternative when using a dataset in the time
domain based on the processed electrodermal activity response (SCR).

4.5. Unsupervised Learning Methods

There is truly little literature regarding unsupervised learning methods (see Table 18).
Below are the most used methods studied throughout this review and their most impor-
tant results.

Table 18. Unsupervised learning methods for emotion classification.

Group Type Config. Papers Precision * Annotations

Emotion K-means Standard [47] 77.5(2.12) Standard configuration

Emotion K-medoids Standard [47] 75.5(2.12) Standard configuration

Emotion SOM Standard [47,52] 77.5(0.5) Bi-dimensional map

Note: * Mean performance and its standard deviation.

One of the unsupervised learning algorithms used is K-means. This algorithm achieves
a precision of 77.5%. The K-medoids approach has also been evaluated to minimise the
effects of noise produced in outlier data on a dataset. The result of 75.5% precision is at the
same level as those obtained for K-means. Finally, as an alternative method to the previous
ones, there are the methods based on self-organising maps (SOMs) within the unsupervised
learning techniques. In this case, the results obtained for this classifier are at the same level
as the earlier ones (77.5%).

5. Conclusions

This paper has presented a systematic review on the use of physiological signals for
arousal detection and classification, focusing on electrodermal activity (EDA) and various
machine learning techniques. At first, a total of 228 papers were considered, of which
fifty-nine were selected for the in-depth systematic review. These articles provided a global
perspective on a specific topic such as the use of EDA, individually or in conjunction with
other variables, for the classification of arousal categorisations and related terms using
ML techniques.

One aspect that has emerged during this review is the different groups of applications
or categorisations found in the search for terms related to arousal detection. The following
categories were found: stress detection, emotion classification, physical pain affectation,
task-oriented performance, mental/cognitive workload estimation and, finally, a small
group of specific applications such as sleep monitoring and dehydration.

Several critical issues have arisen throughout this study that should be kept in mind
by researchers interested in signal acquisition in general and EDA processing in particular.
The first point to consider is that the classification process must be addressed from the
moment the signals are obtained (acquisition process). The signals become useless for
further classification without a robust acquisition process. In addition, most of the authors
studied in this systematic review underline that this process is not exempt from dealing with
signal interference, artefacts and noise. A proper application of the different filters during
the pre-processing stage becomes crucial for the following phases. All articles studied
on EDA signals emphasise that the signals must go through a deconvolution process for
homogenisation and normalisation. The normalisation process makes it possible to use a
dataset that has a large amount of data without being affected by race, sex and age. In fact,
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studies in which there was no deconvolution process have been discarded because of the
poor results obtained with any classifier.

Once the signals have been pre-processed, the next important step is to obtain distinc-
tive features. Most authors agree on using different domains, usually the time domain and
the frequency domain or a mixture of both in the time-frequency domain. There are also
approaches that analyse the shape of the signal (morphological) and others that analyse the
signal statistically (statistical features). No one agrees on the number of variables or the
minimum number of functions to be used. The general approach is to use several types
and fit the model by LDA, PCA or ICA analysis to perform dimensionality reduction.

In addition, two distinct methods have been found for estimating the participant’s
emotional state during the review. The first approach aims to use only EDA for detection,
while the second is to use EDA signals complemented by other physiological signals such
as BVP, ECG and EMG, among others. One of the advantages of using EDA alone is the
possibility of incorporating small, non-invasive devices with high autonomy. Another
advantage is that the results using only EDA are quite good. In contrast, using more
physiological signals offers the advantage of monitoring several types of responses, which
provides a better mapping of the subject’s physical, psychological and cognitive state. How-
ever, a disadvantage is that the use of different signals makes the system more complex and
more difficult to maintain and causes it to have a higher classification computational cost.

Although EDA is a particularly good indicator for the detection of arousal changes in
the individual, it has its limitations. As an SNS-dependent variable, several different stimuli
can be detected as arousal changes. This is why it should be preferred to use with other
physiological signals such as the BVP, among others. Combining the EDA with these signals
makes the results more reliable as they respond to various parts of the nervous system.

When considering the classification methods found, most authors favour the use of
techniques based on supervised learning. This is largely because the experiments and
datasets are labelled for each of the states. For this reason, few articles use unsupervised
techniques. Among the supervised learning methods, SVMs and many of the ANN topolo-
gies show the best classification results, closely followed by KNN algorithms. For SVMs,
those implementing quadratic, cubic and radial kernels outperform with accuracy 85.26%,
82.86% and 82.4%, respectively. ANNs, on the other hand, highlight for their accuracy in
different configurations, especially ANN-Adaboost with 99% and different configurations
of the multilayer perceptron with 95% and 98% for the three-layer and five-layer sorts,
respectively.

The above results would be biased by only looking at the overall results of the classi-
fiers, because the papers used different datasets and experimental conditions. Therefore,
we have indicated which classifiers are predominant for each arousal detection category.
The most common classifier found is the SVM in the arousal variation detection group.
For stress detection, the most used classifier is ANN, closely followed by SVM. The same
holds for emotion detection and classification. Similarly, there is a tie between SVM and
ANN in the detection and estimation of physical pain. Finally, there is a mix of KNN, SVM,
BPNN, LDA and decision trees in the detection of cognitive/mental load, as well as in the
rest of the groups.

Our aim has been to acquaint the researcher with the methods of acquiring, processing
and extracting features and classifying EDA signals. This gives an overview of the work to
be done and the methods that work or do not work successfully. As a conclusion we can
state that the use of EDA alone for the detection (and subsequent classification) of arousal
is very widespread and very satisfactory results have been achieved. Moreover, its use
in combination with other physiological signals and with the help of robust and novel
ML techniques has been growing over time. For this reason, arousal classification is being
integrated non-invasively into user-centred devices, while at the same time the robustness
and accuracy of current systems and applications have been enhanced.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC Acceleration
ACR Accuracy
AHMM Auto-hidden Markov Model
AI Artificial Intelligence
AKAIKE AKAIKE Information Criterion
AL arc length
ANNs Artificial Neural Networks
AP normalised mean power
AR-HMM Auto-Regressive Hidden-Markov Model
AUC Area Under Curve
BioVid BioVid Heat Pain Database
BPNN Bayesian Probabilistic Neural Network
BVP Blood Volume Pressure
CMax Cumulative Maximum
CMin Cumulative Minimum
CNN Convolutional Neural Network
COVMAT Covariance Matrix
D1 First Derivative
D1M First Derivative Mean
D1SD First Derivative Standard Deviation
D2 Second Derivative
D2M Second Derivative Mean
D2SD Second Derivative Standard Deviation
DA Discriminant Analysis
DCRM Decay Rate Mean
DCRSD Decay Rate Standard Deviation
DEAP Database for Emotion Analysis using Physiological Signal
DR Dynamic Range
DTs Decision Trees
EC Epoch-Capacity
ECG Electrocardiogram
EDA Electrodermal Activity
EDL Electrodermal Level
EDR Electrodermal Response
EEG Electroencephalography
EL Energy to Perimeter Ratio
EMG Electromyography
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EN Entropy
EOG Electrooculography
EP Epoch-Peak
EPC Epoch Peak Counter
FCM Four Central Moment
FFT Fast Fourier Transform
FVCM Five Central Moment
GDA Gaussian Discriminant Analysis
IBR Inter-Breath
IL Perimeter to Area Ratio
IN Integral Area
IRF Impulse Response Function
KNN K-nearest Neighbours
KU Kurtosis
LDA Linear Discriminant Analysis
LOG-LIKE Log-likelihood
LR Logistic Regression
LSTM Long Short-Term Memory
MAHNOB Multi-modal Data base for Affect Recognition
MAt Motion Artefact
Mean Mean
Median-Val Median Value
MedVal Median Value
ML Machine Learning
MLP Multilayer Perceptron
MLT Machine Learning Techniques
MO Momentum
MSSP Mean Spectral Components
NO Number of Observation
NSSCRs Frequency Non-Specific of Skin Conductance Response
P Peak
p-Val p-value
PHVM Phasic Value Mean
PHVSD Phasic Value Standard Deviation
PLoc Peak Location
PMRMSR Peak-Magnitude-to-RMS Ratio
pNN50 Peaks Intervals Differs 50 ms
PPT Peak to Peak Time
PUP Pupillometry
QDA Quadratic Discriminant Analysis
RM Rise Rate Mean
RMS Root-mean Square Level
RNN Recurrent Neural Network
ROC Receiver Operating Characteristics
RRSTD Rise Rate Standard Deviation
RSSL Root Sum of Squares Level
SC Skin Conductance
SCL Skin conductance Level
SCR Skin Conductance Response
SD Standard Deviation
SFT Sum Fall Time
SKU Skewness
SOM Self-Organising Maps
SP Spectral Power
SRT Sum Rise Time
SSP Sum Spectral Power
SSPMed Median Spectral Power Components
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STM Startle Time Mean
STRMS Startle Time Mean
STRMSOV Startle RMS Overall
STRMSSD Startle RMS Standard Deviation
STSD Startle Time Standard Deviation
SVM Support Vector Machine
SWE Smallest Window Elements
TMP Temperature
Var Variance
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