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Abstract: Hyperspectral remote sensing images (HRSI) have the characteristics of foreign objects
with the same spectrum. As it is difficult to label samples manually, the hyperspectral remote
sensing images are understood to be typical “small sample” datasets. Deep neural networks can
effectively extract the deep features from the HRSI, but the classification accuracy mainly depends on
the training label samples. Therefore, the stacked convolutional autoencoder network and transfer
learning strategy are employed in order to design a new stacked convolutional autoencoder network
model transfer (SCAE-MT) for the purposes of classifying the HRSI in this paper. In the proposed
classification method, the stacked convolutional au-to-encoding network is employed in order to
effectively extract the deep features from the HRSI. Then, the transfer learning strategy is applied
to design a stacked convolutional autoencoder network model transfer under the small and limited
training samples. The SCAE-MT model is used to propose a new HRSI classification method in
order to solve the small samples of the HRSI. In this study, in order to prove the effectiveness of the
proposed classification method, two HRSI datasets were chosen. In order to verify the effectiveness
of the methods, the overall classification accuracy (OA) of the convolutional self-coding network
classification method (CAE), the stack convolutional self-coding network classification method
(SCAE), and the SCAE-MT method under 5%, 10%, and 15% training sets are calculated. When
compared with the CAE and SCAE models in 5%, 10%, and 15% training datasets, the overall
accuracy (OA) of the SCAE-MT method was improved by 2.71%, 3.33%, and 3.07% (on average),
respectively. The SCAE-MT method is, thus, clearly superior to the other methods and also shows a
good classification performance.

Keywords: stacked convolutional autoencoder network; transfer learning; feature extraction; small
samples; HRSI

1. Introduction

Hyperspectral remote sensing images (HRSI) have the characteristics of “homospectral
foreign objects” and “homospectral foreign objects”. In order to accurately identify and
classify the ground objects, the deep features of the HRSI need to be extracted. These deep
features can fully represent the original ground objects, such as spectral features, spatial
features, and local correlation features, in addition to the shallow and middle-level features
such as the shape, contour, and texture of the images [1–4]. In recent years, an autoencoder
network has obtained good results in the use of the deep feature extraction of HRSI via the
decoding and coding of images, feature mapping, and image reconstruction in multi-layer
networks [5–7]. Zhang et al. [8] presented an unsupervised feature learning method using
a RAE (recursive autoencoders) network. However, the recursive structure will occupy a
lot of space and has low efficiency. If the recursive structure is too deep, it will cause stack
overflow and program crash. Shi and Pun [9] proposed a recursive neural network that
was based on a stack autoencoder in order to learn high-order multiscale spectral spatial
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features. However, this was also troubled by efficiency and easy “overfitting”. Mei et al. [10]
proposed a spectral and spatial feature extraction method based on a three-dimensional
convolutional autoencoder (3D-CAE) in order to extract the deep features of the HRSI.
However, in the 3D operation of the deep neural network, the training process is complex,
i.e., the “small sample” and efficiency problems are still the bottleneck of the classification
task. Zhao et al. [11] proposed a simplified three-dimensional convolutional self-encoder
(S3D-CAE) for the purposes of extracting the spatial features of deep spectrum from the
dual temporal images without prior information. Although the spectral redundancy is
reduced and the data processing speed is improved, it is easy for “salt noise” to appear
when the classification task is completed. Zhang et al. [12] designed a bi-directional self-
encoder, which reconstructed hyperspectral data and lidar data together, as well as sent the
fused data to a dual-branch CNN for final classification, which improved the classification
accuracy. However, the model training still requires one to consider many parameters.

The autoencoder network can effectively extract the deep features of the HRSI through
the layer-by-layer training of the deep neural network structure [13–15]. However, when
the model is trained, the scale of involved parameters in the training is large, the computa-
tional complexity is high, and the efficiency is low. In the full connected network, it is also
easy to ignore local dependencies in the domain space. On the other hand, it is difficult to
manually label samples of the HRSI data, which are examples of typical “small sample”
data. Insufficient training samples and labeled samples will further lead to difficult and un-
stable training parameters of the classification model; further, the insufficient space-spectral
feature space will also affect classification accuracy [16–19]. Dai et al. [20] combined a
residual convolutional neural network (RESNET) with an ensemble learning (EL) strategy
in order to establish discriminant image representation to complete the classification task.
Consequently, they obtained good classification results. However, the classification task
was completed via supervised learning, which has a requirement to be based on a certain
number of labeled samples. Yan et al. [21] introduced the semi-supervised learning into
the generative adversarial network (GAN) and introduced the aliasing data enhancement
method in the classification model, which increased the available marker data for classifica-
tion and improved the classification accuracy. However, the model is prone to “over-fitting”.
Miao et al. [22] proposed a semi-supervised representation-consistent Siamese network
(SS-RCSN) in order to reduce the difference between labeled and unlabeled data to a cer-
tain extent, which, thus, prevents the model from “overfitting”. However, the intra-class
diversity and inter-class similarity make it easy to generate “salt and pepper noise”, which
affects the accuracy of classification. In addition, some other methods are also proposed to
deal with images and other problems [23–34].

On basis of the idea of semi-supervised learning, the insufficient labeled sample
data can be solved to a certain extent [35–42]. However, for the HRSI data—due to the
characteristics of the spatial structure, scale size, spectral confusion, correction error, etc.—
the real labels of the feature data and the learned pseudo labels from the training data
are easy to mislabel and are inconsistent. Further, if this part of the unlabeled sample
data is forcibly added to the training dataset of labeled samples, it will easily affect the
classification accuracy. He et al. [43] presented a HRSI classification method based on
heterogeneous transfer learning. However, the “fine-tuning” process of the structure of two
heterogeneous datasets during transfer is complicated. Chen et al. [44] proposed a semi-
supervised dual-dictionary nonnegative matrix factorization (SSDDNMF) heterogeneous
transfer learning algorithm that projects source domain features and target domain features.
In the dimensional subspace, the difference between feature spaces is eliminated, but its
key features are easily lost when the features are shared. Additionally, the determination of
size difference has a greater impact on the classification accuracy. Qu et al. [45] reconciled
the gap between the source domain dataset and the target domain dataset by projecting the
HRSI data of the source domain and the target domain into the shared abundance space, as
based on their physical characteristics. Yang et al. [46] designed a hierarchical depth neural
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network in order to realize the shallow feature transfer and depth feature classification, as
well as to reduce the demand for source domain data.

To summarize, the autoencoder network is an unsupervised learning model. When the
hyperspectral remote sensing image features are learned, it can extract the spatial spectrum
features, but it will lose the spatial information of the original images in the training process.
On the other hand, the deep network model needs a large number of labeled samples in
order to participate in the training, while the hyperspectral remote sensing image data
is an example of typical “small sample” data and the lack of training samples is easy to
make the model produce an “over fitting” result. The transfer strategy is introduced in
order to solve the training problem of “small sample” data to a certain extent. However,
the different acquisition conditions of the HRSI usually leads to spectral changes, while the
training and test data are usually located in different domains, and the data distribution
changes not only with time and space, but also with different situations. It is sensitive to
aim of reconciling the gap, but its classification robustness is poor. In order to solve these
problems, a stacked convolutional autoencoder network model is employed in order to
extract the deep features from the HRSI. As the different training datasets have different
distribution spaces during model training, and the learning model cannot use the same
data distribution to treat new training data, a transfer learning strategy is introduced in
order to modify the learning model to be more robust. The model parameters, structure,
and other knowledge transfers are trained; further, the learning model is continuously
fine-tuned during the transfer process, such that the trained model can be adjusted before
the new data set is employed in order to solve the model sensitivity and poor classification
robustness under “small samples” readings. It is, therefore, easy to obtain the unsatisfactory
classification accuracy caused by “over-fitting”. Moreover, the classification effectiveness
and accuracy of the HRSI are improved.

The innovations and main work of this paper are described as follows.

• A new stacked convolutional autoencoder network model transfer (SCAE-MT) is
developed;

• The stacked convolutional auto-encoding network is used to effectively extract the
deep features of the HRSI;

• The transfer learning strategy is employed in order to develop a SCAE network model
transfer under small and limited training samples;

• The SCAE-MT is used to propose a new HRSI classification method in order to solve
the small samples that can be found in the HRSI.

2. Image Classification with SCAE-MT
2.1. The Idea of Image Classification

In order to accurately identify and classify the ground objects, when the massive
high-dimensional hyperspectral remote sensing image data is used, it is necessary to extract
image features that can fully represent the original ground objects [47–50]. Therefore, in
this paper, the stack convolution auto-coding network is employed in order to extract the
deep features of hyperspectral remote sensing images. All convolution cores, weights, and
offsets in the deep neural network are trained through a deep iteration process. Further,
in the process of training, the optimal convolution kernel parameter weight w and bias b
are obtained by repeatedly alternating a forward propagation and backward error return.
Clearly, when the stack convolutional auto-coding network is to be iteratively trained,
sufficient marker samples are required in order to participate in the training of the deep
neural network. The marker samples involved in the training are greater, the accuracy of
acquiring the deep features is higher, and the recognition accuracy of ground objects are
also higher. However, the characteristics of the HRSI data determine that it is difficult to
label samples [51–54]. Therefore, if the HRSI dataset is simply trained by a deep neural
network—which is based on a stack convolution self-encoder—due to the fact that the
involved label samples in training are limited, then it is easy to produce the phenomenon
of “over fitting”.
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In order to solve this problem, a transfer learning strategy was introduced when the
stack convolution self-encoder model was trained. As the HRSI datasets usually have
different distributions of their source domain datasets and target domain datasets, the
model-based transfer learning is adopted. Firstly, the source domain datasets are pre-
trained, and the source domain datasets and target domain datasets share some general
prior knowledge on the model. The HRSI data sets from different scenes collected by
the same sensor are common to the image itself in terms of shape, corner, and other
characteristics. Though the source domain data set is pre-trained, the transfer knowledge
and code for it to model parameters will participate in model fine-tuning; in addition, it
will help complete the classification task of target domain datasets via the adjusting of
previous prior knowledge and pre-trained models.

2.2. Processes of Implementation

For the purposes of the HRSI classification, the HRSI datasets from different scenes
collected by the same sensor are common to the image itself, such as the shape and corner.
In this paper, the transfer learning strategy was used to transfer these common features
from the source dataset to the target dataset. Additionally, the transferred knowledge is
applied to the model prior to knowledge acquisition, model parameter training, and model
architecture of the target dataset. For the top layer of the target scene dataset, the deep
neural network is used to extract the deep features of the images and classify the target
scene data [55–57]. The specific implementation steps are described as follows.

Step 1: Deep feature extraction

The HRSI data is composed of two-dimensional spatial information and one-dimensional
spectral information. It is a three-dimensional data. Compared with ordinary remote
sensing images, it contains more abundant spectral information and spatial information.
For the HRSI data, the invariance and limited robustness of it shallow features are difficult
to cope with in regard to the high intra-class variability and low inter-class variability.
The auto-encoding network cascades multiple layers of features and extracts higher-level
features hierarchically. For the HRSI data, it can effectively combine its spectral features
and spatial features, which is beneficial in order to improve the classification accuracy
of ground and object. However, during the training of the self-encoding network model,
because the HRSI data is usually represented as a vector, the full connected layer will lose
spatial information. With the increase in the number of neurons in the hidden layer, the
parameter size of the weight matrix will also increase sharply. Many parameters will lead
to difficult and inefficient training; further, the model is prone to “over-fitting”. Therefore,
the convolutional layers with local connection and weight sharing characteristics are used
to replace the convolutional autoencoder network with a full connected layer of simple
autoencoder networks for the purposes of deep feature extraction of the HRSI [58–60].
When the convolutional self-encoding network is trained—due to the fact that the neurons
in each layer are arranged in three dimensions of width, height, and depth—the neurons
in the layer are only connected to a small area in the previous layer, instead of it taking a
full connection. The involved parameters in training are relatively small, which reduces
the computational complexity and solves the problem of model “over-fitting” to a certain
extent. On the other hand, the local connection and weight sharing of the convolutional
layer and the three-dimensional arrangement of the feature vectors enable the convolutional
auto-encoding neural network to better preserve the local spatial information of the data,
as well as capture a specific type of input data through a convolution kernel. The local
features of the HRSI can be extracted by using multiple different convolutions in order to
extract multi-level features.

In order to strengthen the ability of the convolutional autoencoder network to better ex-
tract the deep features of the HRSI, the classification accuracy requires further improvement.
The convolutional autoencoder networks in a stack manner are organized to construct an
unsupervised deep neural network for the purposes of extracting the deep features of the
HRSI through stacked convolutional autoencoder networks [61–66]. The stacked convolu-
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tional autoencoder network utilizes the characteristics of local connections and the weight
sharing of convolutional layers; further, it is trained layer-by-layer from low layers to high
layers. While the computational complexity of the training model is reduced, the features
of each layer are fused and reconstructed in order to generate fusion deep-level feature
representation for spectral and spatial features of the HRSI. The stacked convolutional
self-encoding network model is shown in Figure 1.
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Figure 1. The stacked convolutional autoencoder network model.

Suppose the stacked convolutional auto-encoding network is composed of n convo-
lutional auto-encoding networks and that the input feature is X = {xi|(i = 1, 2, · · ·m)}.
Then the features of the output of the l(l = 1, 2, · · · n) convolutional layer are expressed as
follows:

zl = σ
(

xi ⊗ wk×k
l + bl

)
(1)

Y = σ

(
l

∑
d=1

xd
i ⊗ wk×k

d + bl
d

)
(2)

Among these, zl is the feature map of the l layer, Y is the superposition of all feature
maps, wk×k

l is the size of k × k the convolution kernel, bl is the bias, and ⊗ represents
the convolution operation. As the image has a local correlation, the input feature vector
can extract the features that have a local correlation through the convolution operation
with the convolution kernel. After the convolution operation, the pooling layer is used
for the purposes of pooling in order to reduce the amount of training parameters and to
also prevent over-fitting. In this paper, mean pooling is used; further, σ(·) is a nonlinear
differentiable activation function, and the ReLU function with fast convergence speed and
simple calculation is employed.

In order to reduce the number of parameters and computational complexity, as well
as to improve the training efficiency, the high-dimensional features are converted into low-
dimensional features through operating a series of convolution pooling; then, the merged
smaller images are unsampled into the original image dimension. The low-dimensional
feature vectors are used to reconstruct the images, that is, the low-dimensional features are
mapped to high-dimensional features. After each convolution layer passes through the ac-
tivation function, the feature map zl is obtained, and the transposition of the corresponding
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convolution kernel is used to perform the convolution operation by feature reconstruction.
The specific expression is described as follows:

Y = σ

(
l

∑
i=1

zl ⊗ w̃k×k
l + bl

)
(3)

Among this, the wk×k
l transpose matrix is of w̃k×k

l , and the reverse wk×k
l mapping of

low-dimensional features to high-dimensional features is realized by transposing.
The parameters in the stacked convolutional autoencoder network are the weights

and biases in the convolutional layer, and the backpropagation (BP) algorithm is used in
order to update the parameters. The updating process of the parameters via the use of the
BP algorithm is divided into forward propagation and back propagation. According to the
initialization weight w and bias b given by the input sample, the square error is used as the
loss function, which is then used to calculate the error value δ between the output value y
and the actual value x.

δ =
1
2

l

∑
i=1

(yi − xi)
2 (4)

The above is a forward calculation process. If the error δ is within the threshold range
at this time, it stops updating the weights w and bias b. On the contrary, if the error δ value
is not within the threshold range, then the error is returned for back propagation. During
the process of backpropagation, the gradient descent method is used to solve the weight
w and bias b, such that the minimum error reaches the threshold range. In the stacked
convolutional auto-encoding process, the gradient is backpropagated through the error
value δ of each layer. Therefore, during backpropagation, the rule is employed in order
to calculate the gradient of the convolution layer parameters. Further, the loss function is
used to calculate the gradient of the l layer. Partial derivatives for weights wl and bias bl

are described as follows.
∂δ

∂wl =
∂δ

∂zl ⊗ xl−1 (5)

∂δ

∂bl =
∂δ

∂zl ⊗ xl−1 (6)

In the deep feature extraction of the HRSI, the model is pretrained by using stacked
convolutional autoencoder networks. Further, in the pre-training process, the first-order
features are obtained from the bottom layer; that is, the first layer is used as the input
of the second layer. When compared with the first-order features of the first layer, the
second-order features including the first-order feature pattern of the next layer will be
learned in the second layer. By the use of analogy and training layer-by-layer, the trestle
convolution self-coding network will eventually learn the higher-level features of the HRSI
data. Compared with the convolutional autoencoder network, the stack-type convolutional
autoencoder network is stacked in a stacking manner in the training phase, such that the
spatial correlation features of the underlying features are retained in the upper-layer feature
map. The local correlation of features within the domain is well preserved. This solves
the problem that a single convolutional autoencoder network easily loses, i.e., the spatial
correlation features of the domain.

Step 2: Classification based on SCAE-MT

The stacked convolutional autoencoder network is used as the training and base
model for transfer learning. The pre-training is performed on the source-domain HRSI
dataset. At this time, the parameter weights wi and biases bi of the stacked convolutional
auto-encoding network are randomly generated during initialization. After the pre-training
of the source domain dataset is completed, the model parameters obtained by the pre-
training network are transferred by the transfer strategy of sharing model structure and
parameters. The weights w′i and biases b′i are considered as initialization parameters in
regard to the target domain training dataset model for the purposes of training the target
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domain dataset. In regard to the ground feature classification, in order to improve the
dataset due to limited sample labels, the model parameters of the weights and biases for
the target domain dataset are obtained by fine-tuning within the process of the training.
Additionally, the transfer strategy is used to complete the feature vector construction of the
“small sample” dataset, as well as to reduce the impact of insufficient training samples on
the classification performance. Moreover, the classification framework is transferred based
on the stacked convolutional autoencoder model in Figure 2.
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In the transfer process, as based on the stacked convolutional auto-encoding network
model, the average value of the softmax activation function of all source samples of the
category classn and the classn weak label t are calculated. Further, that which can be
extracted then its average value t(n) is used here. The cross-entropy loss of the source
domain dataset and the target domain dataset can be defined as follows:

ζ =
1
n ∑

i
ζi =

1
n ∑

i
−∑n

c=1 xic log tn
ic (7)

When the trained model on the source domain data set is used as prior knowledge in
order to train the model of the target domain dataset, whether the target domain sample
belongs to a category ci or is calculated by defining an excitation function, then the excitation
function is defined as follows:

f = (yi, ci) = t(n)·θ(yi, ci) = t(0)·θ0(x, y) + ∑covn
z=1 t(ci ,z)·θ(ci ,z) (8)

where θ(·) is the feature mapping function, and covn is the number of layers.
The steps of the fine-tuning are described as follows:
Step 1. Train a stack convolutional auto-coding model on the source domain dataset

as the source model.
Step 2. The target domain dataset copies the model structures and parameters on the

source domain model except in regard to the output layer. Then the stack convolutional
auto-coding network model of the target domain dataset is established.

Step 3. Add an output layer whose output size is the number of target domain dataset
categories to the target domain model, as well as randomly initialize the model parameters
of this layer.

Step 4. The target model is trained on the target domain dataset. At this time, the
structure and weight parameters of all previous layers (i.e., those that do not participate in
training, which is to say do not back propagate) are frozen. Then, a smaller learning rate
and the gradient descent method are used in order to retrain the output layer.
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3. Experiment Results and Analysis

In order to verify the effectiveness of the proposed classification method based on
the SCAE-MT, the Indian Pines dataset and the Salinas dataset are selected here. They are
the two commonly hyperspectral remote sensing image datasets by the same sensor in
different areas and they are used as the experimental datasets.

3.1. Experimental Datasets

Both the Indian Pines and the Salinas datasets were acquired by the airborne vi-
sual/infrared imaging spectrometer AVIRIS, the basic information of which is shown in
Table 1. The Indian Pines dataset is an image of an Indian pine tree in Indiana, USA;
further, the size of 145 × 145 is then intercepted and marked as a dataset for the HRSI
classification, which is one of the most commonly used datasets. The data contains a total
of 21,025 pixels—excluding a large number of background pixels—and the remaining
pixels containing ground objects are a total of 10,249, which includes 16 types of ground
objects and 200 valid bands. The statistics of these ground object categories are shown in
Table 2. For the Salinas dataset, it originates from the Salinas Valley in California, USA.
Compared with the Indian Pines dataset, the Salinas dataset is larger, has more samples,
and has a higher spatial resolution of 3.7 m. The image size is 512 × 217, as such it con-
tains 111,104 pixels in total, of which 56,975 are background pixels. Additionally, there
are 54,129 pixels that can be used for the purposes of classification, including 16 types of
ground objects and 204 valid bands. The category statistics of this are shown in Table 2.

Table 1. Basic information of the Indian Pines and the Salinas datasets.

Data Indian Pines Salinas

Collection location Indiana, USA California, U.S.
Collection equipment AVIRIS AVIRIS

Spectral coverage (um) 0.4∼2.5 0.4∼2.5
Data size (pixel) 145 × 145 512 × 217

Spatial resolution (m) 20 3.7
Number of bands 220 224

Number of bands after
denoising 200 204

Sample size 10,249 54,129
Number of categories 16 16

Table 2. The 16 types of ground features in Indian Pines and Salinas datasets.

Indian Pines Salinas

Category Class Name Number of
Samples Class Name Number of

Samples

1 Alfalfa 46 Brocoli_green_weeds_1 2009
2 Corn-notill 1428 Brocoli_green_weeds_22 3726
3 Corn-min 830 Fallow 1976
4 Corn 237 Fallow_rough_plow 1394
5 Grass-pasture 483 Fallow_smooth 2678
6 Grass-trees 730 Stubble 3959
7 Grass-pastue-mowed 28 Celery 3579
8 Hay-windrowed 478 Grapes_untrained 11,271
9 Oats 20 Soil_vinyard_develop 6203
10 Soybean-notill 972 Corn_senesced_green_weec 3278
11 Soybean-min 2455 Lettuce_romainc_4wk 1068
12 Soybean-clean 593 Lettuce_romainc_5wk 1927
13 Wheat 205 Lettuce_romainc_6wk 916
14 Woods 1265 Lettuce_romainc_7wk 1070
15 Bldg-Grass-Tree-Drives 386 Vinyard_untraincd 7268
16 Stone-Steel-Towers 93 Vinyard_vertical_trellis 1870
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3.2. Experiment Environment and Parameter Settings

The experiment environment was configured as follows: thinkstationp920 was the
workstation, the CPU@2 *Xeon silver 4210, memory (RAM) was 128G, the graphics card
was an NVIDIA Titan RTX Titan (video memory 24G), and the programming language
used was Matlab R2018a.

During the experiment, the kernel size of the convolution self-coding network was
the ownership value matrix of the full connection layer that was initialized according to a
Gaussian random distribution; further, the standard deviation was set to 0.05. Additionally,
the mean value was set to 0. The bias initialization was set to 0, the mean pooling method
was adopted, and the activation function was the ReLu function. The learning rate in the
standard random gradient descent method was fixed to 0.0001, the momentum was set to
0.9, and the batch size (bottom, 2012) was set to 128. The maximum number of iterations
was 80.

3.3. Experimental Results and Analysis

In order to verify the learning ability of the trestle convolutional self-coding network,
an experimental comparison of the sensitivity of the number of stacked convolutional self-
coding networks was executed on the classification performance in the network structure.
The 40% and 80% of the Indian Pines dataset were randomly selected as training samples
according to prior experiences and the literature; the rest was the test data set. The
training data set was used to train the model, and the test data set was used to verify
the effectiveness of the model, which were trained under the model with the number of
convolutional self-coding networks of 1, 2, and 3, respectively. Additionally, the overall
accuracy (OA) of the classification was calculated. The overall accuracy, i.e., the OA values
of classification under different convolutional self-coding networks and also under different
training samples are shown in Table 3. Table 3 shows the overall classification accuracy
of the Indian Pines dataset by randomly selecting 40% and 80% of the samples as the
training set, then training and calculating when the number of convolutional self-encoders
is 1, 2, 3. The comparative histogram of the sensitivity of the number of convolutional
self-coding networks to classification performance in the trestle convolutional self-coding
model is shown in Figure 3. In order to clearly compare the impact of different number
of self-encoders on the classification accuracy, the column chart is drawn to show that
in the stack type convolutional self-coding network, with the increase in the number of
convolutional auto-encoders, the overall classification accuracy will increase. A reference is
provided for subsequent experiments to help determine the number of convolutional auto-
encoders.

Table 3. Effects of different convolutional self-encoders on classification accuracy.

Training Set (40%) Training Set (80%)

Number 1 2 3 1 2 3
OA (%) 90.67 95.65 95.82 93.32 97.03 97.17

From Table 3 and Figure 3, the overall accuracy (OA) of classification is the lowest
when there is only one convolutional self-coding network in the trestle convolutional
self-coding network that is under 40% or 80% in the training sample sets. When the
number of convolutional self-coding networks in the trestle convolutional self-coding
model structure increases, the overall accuracy (OA) of classification will also increase.
However, it can be seen that when the number of convolutional self-coding networks in
the model result is three, then the overall accuracy of classification is improved by 0.17%
and 0.14%, respectively, when under 40% and 80% in regard to the training sample sets by
comparing with the case of only two networks. The increasing number of convolutional self-
coding networks has little impact on the classification accuracy. Considering the running
cost of adding one convolutional self-coding network, as well as in balancing the time-space
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efficiency and classification accuracy (OA), two convolutional self-coding networks are
selected in order to participate in the training of the trestle convolutional self-coding model.
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Figure 3. The classification effect of different convolutional self-coding networks.

In order to verify the effectiveness of the transfer learning strategy in the proposed
classification method—assuming that the Indian Pines dataset has sufficient training sam-
ples, which is considered as the source domain dataset—and the Salinas data set acquired
by the same sensor in different regions is the target data set, then the following steps should
be taken. Firstly, the effectiveness of the model transfer strategy is verified. The 80% of
the samples on the Indian pines data set is selected for the purposes of pre-training on the
trestle convolutional self-coding network model. Further, the Indian pines data set with
sufficient samples was selected as the source domain dataset. Then, the “small sample”
data on the Salinas data set are randomly selected as the training set, and the 5% on the
Salinas data set, in turn, are randomly selected. The 10% and 15% of the samples were
used as training sample sets; further, experiments were conducted on the influence of a
non-transfer learning strategy and the introduction of a transfer learning strategy on the
overall classification accuracy of “small sample” data sets. Under the no transfer learning
strategy, the “small sample” training sets of 5%, 10%, and 15% on the Salinas data set were
trained, respectively. In addition, the overall classification accuracy (OA) was obtained
after the random initialization parameters were trained. After the transfer learning strategy
was used, the model-based transfer learning strategy was introduced when the target
domain dataset Salinas 5%, 10% and 15% of the “small sample” training sets are trained.
The parameters of all layers in the structure of the pre-training model are used as the initial
parameters for training under different numbers of small samples in the Salinas dataset
of the target domain, and the gradient descent method was used to fine tune them to
obtain the overall classification accuracy (OA) under each proportion of the training sample
set. The overall classification accuracy (OA) of the “small sample” training set without
a transfer strategy, as well as after the introduction of a transfer strategy on the Salinas
dataset, are both shown in Table 4. The comparative histogram of the overall classification
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accuracy (OA) of the three ratios without a transfer strategy and after the introduction of a
transfer strategy are shown in Figure 4.

Table 4. Overall classification accuracy under different proportions of training sample sets.

Index
Method

Salinas Dataset

5% 10% 15%

No transfer
strategy 80.58 82.74 87.13

OA (%) Introduction of
transfer strategy 83.11 88.92 90.24
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From Table 4 and Figure 4, after the transfer strategy is introduced, the overall accuracy
of the target domain in regard to the Salinas dataset, under the small-sample training set
of 5%, 10%, and 15%, is improved 2.53%, 6.18%, and 3.11%, respectively. This is achieved
by comparing with the without the introduction of the transfer strategy method, which
indicates that the model-based transfer strategy proposed in this paper has a certain effect
on the improvement of the classification accuracy of the “small sample” dataset, which, in
turn, verifies the effectiveness of the transfer strategy.

In addition, in order to verify the classification performance of the classification
method based on the SCAE-MT on the “small sample” dataset. The classification method
based on the convolutional autoencoder network (CAE); the classification method based
on stacking convolutional autoencoder network (SCAE); and the classification method
based on optimization of the stacking convolutional autoencoder network model transfer
(SCAE-MT) is calculated. The overall classification accuracy (OA) of the method at 5%,
10%, and 15% of the training set, as well as the overall accuracy (OA) of each method
under the three proportions of the training samples are shown in Table 5. In regard to the
Salinas dataset, the classification effect of each method under a 15% proportion of training
samples is shown in Figure 5. Figure 5a–d are the original classification effects map, the
classification effects map of the CAE method, the classification effects map of the SCAE
method, and the classification effect map of the SCAE-MT method, respectively.
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Table 5. The overall classification accuracy under different proportions of sample sets.

Method CAE (OA%) SCAE (OA%) SCAE-MT (OA%)

5% 79.19 81.62 83.11
10% 84.77 86.41 88.92
15% 86.53 87.82 90.24
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As can be seen in Table 5 and Figure 5, the SCAE-MT has an average improvement of
2.71%, 3.33%, and 3.07% in terms of overall accuracy (OA) when compared with the CAE
and the SCAE methods under the training datasets of 5%, 10%, and 15%, respectively. The
SCAE-MT method is significantly better than its comparative methods, which show a good
classification performance. The transfer learning strategy can improve the classification
accuracy of the HRSI. From the experimental results of the CAE and SCAE methods, it can
be seen that the overall accuracy (OA) of the SCAE is improved by 2.43%, 1.7%, and 1.29%
under the training data sets of 5%, 10%, and 15%, respectively. In regard to the deep neural
network structure that stacks the convolutional autoencoder (CAE) network in a stacking
manner, it can be seen that it exerts its advantages of a layer-by-layer feature extraction,
indicating that each layer of the SCAE method cannot simply serve as a convolutional
layer during training. The self-encoding (CAE) network is trained separately, and the
small-size feature space following the upper-layer feature mapping participates in the
training of the next layer, which results in it performing better in regard to classification.
This, therefore, shows it has a higher classification accuracy than the CAE method. A better
overall accuracy (OA) for the SCAE and CAE methods under a 5% training set can been to
be 0.79% higher than that under 10% training sample set, which is 1.14% higher than that
under 15% training sample set. Therefore, the experiment results show that the SCAE-MT
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model has a certain effect on the improvement of the classification performance of “small
sample” data.

4. Conclusions and Prospect

In this paper, a new stacked convolutional autoencoder network model transfer (SCAE-
MT) is developed in order to realize a HRSI classification method that can better solve the
problems of insufficient image feature extraction, can produce large scale model training
parameters, and can also more easily produce the “overfitting” and “small sample” features
of HRSI data. The comparative experiments show that the overall classification accuracy of
the target data set after the introduced transfer strategy is 3.94% higher than that without
the transfer strategy when compared with those under a different proportion of training
sample sets. The overall classification accuracy (OA) of the target domain data under
the 5%, 10%, and 15% training sets is improved by 1.79% on average by organizing two
convolutional self-encoders in a trestle manner and through the use of simple convolutional
self-encoders. It can be seen that the trestle convolutional self-encoder used in the study
can effectively extract the features of the HRSI. As a machine learning method that uses and
adjusts the knowledge and model of the source domain in order to help solve the problem
of the target domain, transfer learning can solve the problem of “small samples” in the
target domain due to the lack of training data.

However, the proposed classification method is based on the premise that the labeled
samples of the source domain dataset are sufficient. In future works, we will further study
how to improve the classification accuracy and feature recognition ability of the HRSI by
the utilization of a transfer learning strategy.
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