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Abstract: Road discrepancies such as potholes and road cracks are often present in our day-to-day
commuting and travel. The cost of damage repairs caused by potholes has always been a concern
for owners of any type of vehicle. Thus, an early detection processes can contribute to the swift
response of road maintenance services and the prevention of pothole related accidents. In this paper,
automatic detection of potholes is performed using the computer vision model library, You Look
Only Once version 3, also known as Yolo v3. Light and weather during driving naturally affect our
ability to observe road damage. Such adverse conditions also negatively influence the performance
of visual object detectors. The aim of this work was to examine the effect adverse conditions have
on pothole detection. The basic design of this study is therefore composed of two main parts:
(1) dataset creation and data processing, and (2) dataset experiments using Yolo v3. Additionally,
Sparse R-CNN was incorporated into our experiments. For this purpose, a dataset consisting
of subsets of images recorded under different light and weather was developed. To the best of
our knowledge, there exists no detailed analysis of pothole detection performance under adverse
conditions. Despite the existence of newer libraries, Yolo v3 is still a competitive architecture that
provides good results with lower hardware requirements.

Keywords: pothole detection; pavement distress; adverse conditions; Yolo v3

1. Introduction

Road infrastructure and road transport are key elements of the developed economy.
Roads are essential for gaining access to employment, education, health care and other
services. The issue of the attractiveness of driving a passenger vehicle for normal trip
purposes is described in several traffic models and studies [1,2]. Yet, insufficient road
maintenance often occurs and many cities and roads around the world suffer from pothole
issues. While some of these problems are minor and have little impact on traffic safety and
consistency, others can lead to dangerous situations. The growing number of road accidents
leading to vehicle damage and serious injuries necessarily requires better management of
these issues.

A pothole can be characterized as damage of road surface. Usually, it is a hole structure
which has developed over a specific time period as a result of traffic and weather. Potholes
can cause damage to car wheels (dents in the rims) and suspension parts, deflated tires, a
wheel alignment problem, damage to the undercarriage, and so on [3]. According to the
Fact Sheet of Pothole Damage, drivers of the United States have spent USD 15 billion to
repair vehicle damages caused by potholes between 2012 and 2016 [4]. Worn out technical
conditions of roads is also considered an aspect that lowers the resilience of transport [5].
Keeping the road infrastructure safe from potholes and tracking the condition of newly
discovered and existing potholes is a challenging task. It is necessary, not only for the traffic
safety and road administration, but also for autonomous vehicle driving and navigation
services where a major challenge is posed by a complex urban environment [6]. If the
location of road damage could be automatically detected and shared with other vehicles as
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well as with road maintenance services, such a system would contribute to improved road
safety [7].

Pothole detection and monitoring is a current topic across Europe, but still no unified
or standardized solution has been provided. There are various approaches for pothole
detection which unfortunately do not ensure accuracy in challenging light and weather
conditions. Therefore, an extensive dataset was developed and tested within chosen models,
which could serve as a starting point for further research in the future.

The Importance of Pothole Detection

The first question that may come to the reader’s mind might be: “Is there anything we
can do to reduce pothole creation?” Pothole creation is very complex process connected to
weather conditions and the construction materials used to build roads. That is why potholes
are a worldwide problem which does not have a straightforward solution. According to [8],
there are several stages during the forming of pothole:

• Potholes begin to form when water flows into cracks and small holes in the road.
These cracks and small holes are created due to road wear over time.

• The second stage is characterized by a change in temperature. When the temperature
drops below freezing, the water freezes to ice and expands its volume. As a result, the
road changes its shape and can rise.

• In the third stage, the road temperature rises during the day, the ice melts and the
vehicles gradually disrupt the damaged road surface as they pass through.

Although most of the potholes are developed within the cold climate, the road infras-
tructure in warm climate areas must also deal with potholes. High temperatures damage
the road surface and cause cracks and holes which transform into potholes over time.

According to [9], pothole issues are one of the most discussed topics in municipalities.
The number of citizen pothole reports and reports of unsatisfactory condition of road
infrastructure have risen every year since 2010 in Slovakia. In 2018, the share of pothole
related reports was more than 10% of the all-citizen reports across Slovakia (Figure 1).

Sensors 2022, 22, x FOR PEER REVIEW  2  of  19 
 

 

driving and navigation services where a major challenge  is posed by a complex urban 

environment  [6].  If  the  location  of  road damage  could  be  automatically detected  and 

shared with other vehicles as well as with road maintenance services, such a system would 

contribute to improved road safety [7]. 

Pothole detection and monitoring is a current topic across Europe, but still no unified 

or standardized solution has been provided. There are various approaches  for pothole 

detection which unfortunately do not ensure accuracy in challenging light and weather 

conditions. Therefore, an extensive dataset was developed and tested within chosen mod‐

els, which could serve as a starting point for further research in the future. 

1.1. The Importance of Pothole Detection 

The first question that may come to the reader’s mind might be: “Is there anything 

we can do  to  reduce pothole creation?” Pothole creation  is very complex process con‐

nected to weather conditions and the construction materials used to build roads. That is 

why potholes are a worldwide problem which does not have a straightforward solution. 

According to [8], there are several stages during the forming of pothole: 

 Potholes begin  to  form when water  flows  into cracks and small holes  in the road. 

These cracks and small holes are created due to road wear over time. 

 The second stage is characterized by a change in temperature. When the temperature 

drops below freezing, the water freezes to ice and expands its volume. As a result, 

the road changes its shape and can rise. 

 In the third stage, the road temperature rises during the day, the ice melts and the 

vehicles gradually disrupt the damaged road surface as they pass through. 

Although most of the potholes are developed within the cold climate, the road infra‐

structure in warm climate areas must also deal with potholes. High temperatures damage 

the road surface and cause cracks and holes which transform into potholes over time. 

According to [9], pothole issues are one of the most discussed topics in municipali‐

ties. The number of citizen pothole reports and reports of unsatisfactory condition of road 

infrastructure have risen every year since 2010 in Slovakia. In 2018, the share of pothole 

related reports was more than 10% of the all‐citizen reports across Slovakia (Figure 1). 

 

Figure 1. Number of pothole reports per year according to [9]. 

Pothole recognition can be a difficult task for humans, let alone for machines, espe‐

cially in adverse weather conditions. Among the well‐known hazardous driving condi‐

tions are rain, snow, and fog. On rainy days, potholes may be hidden under puddles or 

may resemble puddles. Water on the car windshield can obscure the field of view and 

prevent the detection of road damage. Poor visibility caused by fog can easily result in 

pothole damage to vehicles. 

0

200

400

600

800

1000

1200

1400

2010 2011 2012 2013 2014 2015 2016 2017 2018

N
u
m
b
e
r 
o
f 
re
p
o
rt
s

Figure 1. Number of pothole reports per year according to [9].

Pothole recognition can be a difficult task for humans, let alone for machines, especially
in adverse weather conditions. Among the well-known hazardous driving conditions are
rain, snow, and fog. On rainy days, potholes may be hidden under puddles or may
resemble puddles. Water on the car windshield can obscure the field of view and prevent
the detection of road damage. Poor visibility caused by fog can easily result in pothole
damage to vehicles.

The automatic detection of objects based on deep computer vision models can, to
some extent, suppress various adverse influences. The common approach to improve
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generalization of deep neural models is to use a training dataset consisting not only of
instances of road damage captured under clear weather, but also instances distorted from
illumination (different daylight) and various kinds of weather conditions as presented
in [10–12]. However, these studies did not dive deeply into adverse conditions.

Several works deal with automatic pothole detection [10,11,13–16], where either high
accuracy or real time inference was considered. Many of the authors and related works
dealt with computer vision-based object detection. Although many interesting results were
achieved, these studies lack consideration of various light and weather conditions. That is
why we consider our work notable in terms of further research, not only for computer vision
but also for intelligent transport systems, automated vehicles, and pavement condition
assessment monitoring.

We faced various challenges during our research. Data collection took place in a live
transport infrastructure over a long period of time. Data annotation and post processing
had to be carefully performed for proper use of the computer vision model. To ensure
as much accuracy as possible, the annotation was done manually by skilled drivers and
experts in the field of transportation systems and road construction. This process was
laborious and labelling in bad light and weather conditions was difficult, where it was
often problematic to recognize potholes and manhole covers.

Although the light conditions and adverse/hazardous weather are the main factors
influencing visual data obtained by camera, detailed academic results considering weather
and light conditions and even region are still missing. That is why it is important to
continually develop not only new datasets for AI but also to test these datasets using
various models and to define their weaknesses and strengths. Although the recent academic
research studies lack mentioned attributes, these studies set up important milestones for
our research.

It is quite a challenging task to detect potholes under adverse conditions and achieve
a high level of precision. The main approach to address this issue is a systematic approach
which could be established by creating a detailed adverse conditions pothole dataset. The
next step would be to use the created dataset in the computer vision models. This is the
approach we are presenting in our paper.

In this work, a performance comparison of automatic pothole detection under de-
graded light or bad weather conditions is presented. This task is closely related to the
development of a dataset consisting of samples collected under the adverse conditions,
which is one of the contributions of this work. Another contribution is proving that older
Yolo v3 is still a competitive solution mainly for lower performance hardware.

2. Related Works

There are various approaches to detect road potholes—from the basic ones which
involve manual in-person pothole recording to the sophisticated ones involving progressive
technologies like laser scanners, recording devices and object detection.

2.1. Sensors and 3D Reconstruction Techniques

Road condition assessment is a very laborious task, and the cost of the specialized
devices needed can often be high. Therefore, low cost solutions are sought, such as the
use of mobile sensors (accelerometer or vibration sensor [17,18], magnetometer, GPS)
and the concept of crowdsourcing or participatory sensing [19–21]. Accelerometer based
approaches can be of high accuracy and are not dependent on visibility conditions. On the
other hand, they can have low response time and driving through a pothole is required to
perform detection [22].

The point cloud models of road discrepancies can be modelled with laser or stereo
vision techniques. A 3D road profile can also be obtained using terrestrial laser scanning,
but it is necessary to plan ahead, especially for maximum efficiency, where it is important
to plan the correct placement of reference points, estimate the number of scanning positions
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and plan their correct placement to achieve the expected results [23]. LiDAR can detect
objects in low visibility conditions, thus enabling the detection of potholes at night.

A stereo vision-based system can retrieve information about the size and depth (vol-
ume), as well as the position of the potholes from two simultaneously captured images [24].
Despite considerable accuracy, pothole detection based on stereo vision might have dis-
advantages such as computational complexity and sensitivity to motion and undesirable
vibrations [10,25].

2.2. Two-Dimensional Vision-Based Techniques

Two-dimensional vision-based techniques consist of a variety of image processing
methods, edge detection strategies such as thresholding of transitions in colors, and ma-
chine learning. K-means clustering, and subsequent black color thresholding was applied
for pothole detection in [26]. Nienaber et al. [27] proposed simple image processing
techniques using Canny edge detection on road surface areas. Apart from pothole edge
detection, several undesirable edge instances such as shadows of leaves or edges from
other vehicles were also detected.

The pothole detection with traditional image processing approach highly depends
on illumination and weather conditions. Thus, the modification of image processing
techniques may be required for distinct road conditions. Moreover, this approach often
consists of complicated processes requiring expertise in image processing.

Nowadays, the computer vision based deep learning algorithms present a clean
and effective solution to 2D vision-based pothole recognition. When the training dataset
contains a variety of samples and proper neural network architecture is chosen, deep
learning algorithms can be tuned, to some extent, to handle the adverse road conditions.

The methods of visual based object detection are commonly divided into two groups:
two- and one-stage object detectors [10,28]. As the names imply, two-stage detectors are
composed of two separate networks: region proposal network (RPN) and object detection
network. The most common example of a two-stage detection approach is a region with
CNN features (R-CNN) [29]. R-CNN extracts category independent region proposals
(bounding boxes) for the input image with RPN firstly, and then the feature extraction and
classification (CNN + SVM) is performed on proposed regions. The drawback of R-CNN is
demanding optimization and slow performance for real-time use. Faster R-CNN [30], the
refinement of R-CNN architecture, further improves the inference time.

The demand for an end-to-end system with low computing costs for real-time appli-
cations was met with the invention of one-stage object detectors. This group of detectors
includes models such as Single Shot Detector (SSD) [31] and Yolo, which do not implement
the region proposal step and provide direct prediction of bounding boxes and classification
score for detected objects. Yolo (You Only Look Once), first introduced in 2015 [32], is
one of the most prevalent object detector architectures belonging to the group of convolu-
tional neural networks (CNN). Yolo version 1 consists of 24 convolutional layers as well
as four max pooling and two fully connected layers. Yolo is prone to worse detection
accuracy compared to Fast R-CNN. Moreover, small objects and objects located in clusters
are difficult for Yolo to detect [28]. There have been continual improvements of the original
Yolo. In 2016, Yolo v2 replaced its feature extractor with darknet-19 [33]. In 2017, Yolo
v3 used the darknet-53 backbone [34]. Among the improvements on the original version
are enhancement of feature extraction module, operation of upscaling and detection at
different scales [28]. In 2020, Yolo v4 was proposed by Alexey Bochkovskiy in [35]. The
feature extraction module of Yolo v4 is Cross Stage Partial connections based Darknet53. A
novel Mosaic and Self-Adversarial Training data augmentation was proposed. Yolo v5 [36]
utilizes the cross-stage partial bottleneck–based ResNet101 for feature extraction. Model
types of different sizes are available: XS, S, M, and L.

Depending on the purpose of the application, it is possible to choose between higher
detection accuracy achievable with a two-stage detector or high inference speed feasible
with a one-stage detector. Ideally, the goal of road damage detection is to reduce the
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computational cost for real-time deployment and improve the accuracy. In the next section,
the recent pothole detection systems based on deep neural networks are described.

Pena-Caballero et al. [11] evaluated various object detection and semantic segmenta-
tion algorithms in terms of detection speed and system accuracy. Segmentation algorithms
often provide precise results but at the cost of higher computational complexity. According
to the results, Yolo v3 outperformed Yolo v2 in both mAP and speed.

Chen et al. [13] proposed a two part location-aware convolutional neural network.
The localization part proposes numerous regions containing potholes and selects the most
relevant regions. Then the classification network performs the recognition of potholes on
selected regions.

Park et al. [14] applied three different architectures for detection of potholes: Yolo v4,
Yolo v4 Tiny, and Yolo v5s. The database of 665 pothole images from Kaggle [37] was used
for both training and inference. Yolo v4 and Yolo v4 Tiny achieved comparable accuracy of
77.7%, 78.7% (AP@0.5) and slightly outperformed Yolo v5s.

Ahmed [10] utilized and compared several object detection architectures, namely:
Yolo v5 models (for three different model sizes) with ResNet101 backbone, YoloR and
Faster R-CNN with ResNet50, VGG16, MobileNetV2, InceptionV3 backbones. Moreover,
the author proposed a modified VGG16 (MVGG16) which led to successful reduction
of the computational cost while maintaining detection accuracy. According to the final
comparison, Faster R-CNN with ResNet50 achieved the highest precision of 91.9% with
an inference time of 0.098 s for larger images. Yolo v5 had the best inference speed with
inference time up to 0.009 s (Ys), but at the cost of reduced accuracy. Ys model is therefore
more suitable for real-time implementation.

A summary of recent one-class (pothole) road damage detection systems is provided
as Table 1. Inference speed in FPS for the given image resolution are listed. Note that the
results are not directly comparable because each work uses a different dataset for training
and inference.

Table 1. A summary of recent road damage detection systems for one-class detection.

References Year Model Image
Resolution

Inference
Speed Precision AP@

[0.5:0.95] AP@0.5

Maeda et al. [38] 2018 SSD using Inception V2 300 × 300 16 FPS 67% – –
SSD MobileNet 300 × 300 33 FPS 99% – –

Pena-Caballero et al. [11] 2020 SSD300 MobileNetV2 300 × 300 – – – 45.10%
Yolo v2 – – – – 90.00%
Yolo v3 – – – – 98.82%

Chen et al. [13] 2020 LACNN – 49 FPS 95.2% – –
Ahmed [10] 2021 YoloR-W6 1774 × 2365 31 FPS – 44.6% –

Faster R-CNN: MVGG16 1774 × 2365 21 FPS 81.4% 45.4% –
Yolo v5 (Ys) 1774 × 2365 111 FPS 76.73% 58.9% –

Faster R-CNN: ResNet50 1774 × 2365 10 FPS 91.9% 64.12% –
Lin et al. [39] 2021 Yolo v3 416 × 416 35 FPS – – 71%

Park et al. [14] 2021 Yolo v5s 720 × 720 – 82% – 74.8%
Yolo v4 720 × 720 – 84% – 77.7%

Yolo v4-tiny 720 × 720 – 84% – 78.7%

Several road damage conditions, such as patches, cracks, bumps, and potholes, were
detected with Yolo v3 in [39]. The authors used Kalman filter tracking to further improve
the system accuracy. To deal with variable distances of potholes from the recording device,
two lenses with different fields of view (30◦ and 70◦) were used for the front car view
capturing. The results obtained on Taiwan pavement defect image dataset (TPDID) show
that the average detection accuracy reached 71% with miss rate of 29%. The compressed
Yolo v3 model was used in an embedded system for pavement defect detection with the
reported execution speed of 27.8 FPS with the original system accuracy.

Du & Jiao [15] improved results of Yolo v5S by incorporating enhanced feature extrac-
tion with Bidirectional Feature Pyramid Network. Further improvement was achieved by
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using Varifocal Loss for effective handling of the sample imbalance. This model is denoted
as BV-Yolo v5S.

A summary of recent multi-class road damage detection systems is provided as Table 2.
Yolo is predominant architecture achieving real-time inference speed (>30 FPS). Note that
the results are not directly comparable because different datasets for training and inference
were used.

Table 2. A summary of recent road damage detection systems for multi-class detection.

References Year Model Image
Resolution

Inference
Speed mAP@0.5

Pena-Caballero et al. [11] 2020 SSD300 MobileNetV2 300 × 300 – 41.83%
Yolo v2 – – 69.58%
Yolo v3 – – 97.98%

Lin et al. [39] 2021 MobileNet-Yolo 416 × 416 40 FPS 2.27%
TF-Yolo 416 × 416 28 FPS 2.66%
Yolo v3 416 × 416 35 FPS 68.06%

RetinaNet 416 × 416 30 FPS 73.75%
Yolo v4 416 × 416 35 FPS 80.08%
Yolo v4 618 × 618 30 FPS 81.05%

Du & Jiao [15] 2022 Yolo v3-Tiny 640 × 640 167 FPS 59.4%
Yolo v5S 640 × 640 238 FPS 60.5%

B-Yolo v5S 640 × 640 278 FPS 62.6%
BV-Yolo v5S 640 × 640 263 FPS 63.5%

2.3. Road Damage Datasets

Several collections of road damage data were accumulated throughout the years
of research. In Table 3, some known image datasets are listed. The visual data were
collected using a smartphone on a vehicle’s dashboard [11,12,38,40] or black-box/drive
cameras [27,41]. Samples can also be obtained through web search [42]. Data can be
collected from the vehicle view, or it can be captured right above the road discrepancy. The
first type of data is considered more suitable for real-world pothole detection.

Table 3. Available datasets used for road damage detection.

Database Year Num. of
Images

Num. of
Instances

Num. of
Classes

MakeML [43] – 665 – 1
MIIA Pothole Dataset [27] 2015 2459 – 1
Road Damage Dataset [38] 2018 9053 15,435 8
Road Surface Damages [44]

(Extended [38]) 2019 18,345 45,435 8

Pothole Detection Dataset [42] 2020 1243 – 1
RDD2020 [40] 2020 26,336 >31,000 4
RDD2022 [45] 2022 38,385 55,007 4

Various types of road damage such as alligator and longitudinal cracks, manhole
covers, potholes and even line blur can be considered during database development.
Table 4 provides the summary of common road damage categories per dataset.

During the real-time deployment of application for data collection, a constant stream
of images may result in recording of duplicate road damage. An effective way to deal with
duplicate instances is to take pictures at 1 s intervals at an average car speed of 40 km/h or
10 m/s [38,40].
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Table 4. Road damage categories across different datasets.

Database Categories of Road Damage

Road Damage Dataset [38]

• Linear crack, longitudinal wheel mark part
• Linear crack, longitudinal construction joint part
• Linear crack, lateral equal interval
• Linear crack, lateral construction joint part
• Alligator crack
• Rutting, bump, pothole, separation
• White line blur
• Cross walk blur

RDD2020 [40]

• Longitudinal cracks
• Transverse cracks
• Alligator cracks
• Potholes

Pena-Caballero et al. [11]

• Longitudinal crack
• Lateral crack
• Alligator cracks
• Potholes
• Manhole covers
• Blurred street line
• Blurred crosswalk

3. Materials and Methods

Light and weather conditions during the collection of road damage samples naturally
affects the accuracy of object detectors. Robust datasets containing various kinds of adverse
conditions combined with deep learning are often used to deal with the quality degradation
of the investigated road discrepancies [10–12]. Lin et al. [39] performed a test on Yolo v3
under adverse conditions such the snow and rain. Their findings demonstrated that the
proposed system could effectively detect potholes in difficult situations, however, none of
the results of detection accuracy were presented.

There is no detailed study on effects of adverse conditions on road damage detection
using computer vision algorithms. We attempted to address this problem by developing
the pothole detection dataset containing samples collected under various difficult light or
weather conditions.

3.1. Dataset Development

A specific road section with road damage in the industrial part of the city was selected
for collection of samples. Image samples were captured on the same road segment on
different dates (in May, June, July) thus the complexity of vehicle surrounding was changing
throughout the days (pedestrians, passing or parked vehicles). The resolution of all images
is 1920 × 1080. The labelling of main and the largest dataset that consists of clear weather
images is structured as follows:

Vid _ (day_ID) _ (direction) _ (frame_ID)

where the meaning of the individual parts of the label is:

• Vid—video frames were extracted and saved to images.
• day_ID—videos were captured on different days.
• direction—data collection was performed in both directions that are marked as Ca and

Pr. The designation Ca represents images recorded in the forward direction, and the
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designation Pr represents images recorded in the opposite direction. The abbreviations
are based on the naming of local areas.

• frame_ID—video frame identifier.

Additionally, every image contains information about date and precise time of data
collection. The round nature of manhole covers may be somewhat similar to the shape of
potholes and therefore the misclassification by an automatic algorithm can occur. With the
strong presence of potholes and manhole covers in collected images, we decided to include
the manhole cover class for better generalization of computer vision model.

A total of 1052 images under clear weather conditions were collected and annotated.
Dataset further consists of four subsets of adverse conditions—Rain, Sunset, Evening
and Night. The dataset statistics such as number of instances per subset and number of
instances per two categories are listed in Table 5.

Table 5. Statistics of the developed dataset.

Data Num. of Images Num. of
Instances Potholes Manhole Covers

Clear 1052 2128 1896 232
Rain 286 458 383 75

Sunset 201 404 364 40
Evening 250 339 286 53

Night 310 262 220 42

Potholes occur naturally in different shapes and sizes. The smallest size of pothole that
would be still relevant for a computer vision system is not precisely defined. There are cases
such as the smallest road discrepancies visible by human eye that can be considered as
potholes. However, a computer vision model that learned such representations effectively
could produce a false classification and mistake the pothole for a small shadow or dark
spot on the road. Therefore, the pothole labelling procedure is complex task, and it
can be viewed as a distance dependent problem, where only the potholes that fall into
some predefined threshold distance are considered. The developed dataset is publicly
available at [46].

3.2. Yolo v3

Yolo is one of the most popular one-stage object detectors that performs in real time [34].
Yolo v3 provided accurate results and fast inference time in previous works, which dealt
with the task of pothole detection [11,39]. Therefore, it was also selected for the experiments
with adverse conditions in this work.

Yolo takes the whole image as input and divides it into a grid of N×N size. Yolo v3
then uses darknet-53 backbone for feature extraction [34]. Darknet-53, as the name implies,
consists of 53 convolutional layers, some of which are formed into residual blocks. Figure 2
shows the internal layout of darknet based Yolo v3 feature extraction module. This module
is then followed by additional convolutional layers and operation of up sampling of feature
maps and concatenation. Ultimately, Yolo v3 can predict objects on three different scales
thus providing detection of large, medium, and small objects. It predicts four bounding
box coordinates: tx and ty (center of the box), tw and th (width and height). Each box is
assigned a value of objectness score and the independent logistic classifiers for multilabel
class predictions are also applied. Yolo implements non-maximum suppression algorithm
that selectively filters out redundant bounding boxes. K-mean clustering algorithm can be
applied to automatically determine the best anchor boxes for a given dataset. SPP block
(spatial pyramid pooling) is often incorporated to improve the detection accuracy. SPP
consists of max pooling layers at different scales, and it is used for extraction of multi scale
local region features on the same input [47].
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3.3. Evaluation Metrics

There are several criteria for assessing the accuracy of object detectors. The most used
metrics are precision, recall, and average precision (AP) or mean average precision (mAP).
Additionally, frame rate is an important indicator of speed of object detector.

Precision is the ratio of correctly detected instances, denoted as True Positives (TP),
to all positively detected instances (TP + False positives (FP) represented in Equation (1)).
Recall is the ratio of correctly detected instances to all tested instances (TP + False negatives
(FN) represented in Equation (2)). The Intersection Over Union (IOU) determines the
overlap between predicted and ground truth bounding boxes (Equation (3)), BP and BGT,
respectively. TP detection is then determined as a match between bounding boxes, which is
above a certain threshold. FP occurs when detection falls below the threshold. FN instance
denotes that the correct detection was missed. If a more than one detection is predicted for
a ground truth object, a condition is defined such that only the prediction with the highest
IOU is true.

precision =
TP

TP + FP
. (1)

recall =
TP

TP + FN
. (2)

IOU =
area (B P ∩ BGT)

area (B P ∪ BGT)
. (3)

AP is based on computation of precision-recall or PR curve and the area under the
curve (AUC). PR curve represents a trade-off between precision and recall at various thresh-
olds. AP measure defined for The PASCAL Visual Object Classes Challenge 2010 [48]
is determined from the PR curve by interpolating the precision at eleven recall levels
(0,0.1, . . . ,1) (Equation (4)). The precision at each recall level is denoted by ρinterp(r) and
it is interpolated by taking the maximum precision measured for which the correspond-
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ing recall exceeds r. AP metric is intended for unified evaluation of both classification
and detection.

AP =
1
11 ∑r∈{0,0.1, ...,1} ρinterp(r) . (4)

The overall precision is indicated by mAP and it is computed as average across all n
categories. mAP@0.5 denotes that the metric is evaluated for IoU detection threshold of
0.5. The metric mAP@[0.5:0.95], firstly used in MS COCO challenge [49], is averaged over
several IoU thresholds from 0.5 to 0.95 with step of 0.05.

mAP =
1
n

n

∑
i=1

APi

4. Results

For the experiments, Ultralytic Yolo v3 model was utilized [50]. It provides several
training options such as pretrained weights and three different models to test:

• Yolo v3 Tiny,
• Yolo v3,
• Yolo v3-SPP.

Since the current pothole detection task in the “wild” is focused on precision of results,
Yolo v3 Tiny (designed to achieve faster inference time) was omitted from our experiments.
Ultralytic implementation allows for rectangular training and provides for a wide range of
augmentation techniques. An automated batch size was selected with autobatch property.
Although the maximum number of epochs was selected to be 1000, the early stopping
criterion enabled the model to stop training if validation metrics did not improve over time.

The performance of Yolo v3 in terms of detection accuracy is then compared with
the Sparse R-CNN model [51]. According to [51], Sparse R-CNN model provides accu-
racy, run-time, and training convergence performance competitive with the state-of-the-art
object detectors on the large-scale COCO dataset. Our experiments are enriched with
pretrained Sparse R-CNN model which was utilized from MMdetection repository [52].
More specifically, configuration file consists of ResNet-50 Feature Pyramid Network,
3× training schedule and predefined augmentation techniques (random crop and multi-
scale from training images).

4.1. Yolo v3

Preliminary results of Yolo v3 performance on an incomplete dataset (of clear weather
samples only) that was still under development are shown in Figure 3. The initial set of
data was divided into training, validation, and test partitions, which are listed below the
graph. The third and final subset of about 1050 “clear” images was divided according to
70-15-15% ratio. This subset was also used for training in further experiments. Naturally,
the increase of image samples resulted in better model performance. Higher precision
signifies a lower amount of false positive detections, whereas higher recall relates to a low
false negative rate. Although the best precision was indicated in the middle partition, the
final subset achieved balanced precision-recall measures as well as slightly higher mean
precision metrics.

The results of two-class recognition with the final set of images under clear weather
conditions are shown in Table 6. The effects of pretrained weights, augmentation, an
increase in the image size and SPP pooling module were examined. There is clear improve-
ment of detection accuracy with the use of pretrained weights and augmentation. Naturally,
the longer image size length produced better results. The highest detection accuracy was
achieved using Yolo v3 with SPP module. The training time ranges from 2 h (basic Yolo v3
model without pretrained weights and augmentation) to 13 h (with SPP module and image
size of 1080). The mean inference speed of Yolo v3 was ~35 ms and ~82 ms for the input
image size of 640 and 1080, respectively. The use of SPP module results in slightly higher
inference time.
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Figure 3. The performance of Yolo v3 under clear weather conditions during the dataset development.

Table 6. Performance of Yolo v3 under clear weather conditions.

Model Image
Resolution

Pretrained
Weights

Data
Augmentation Precision Recall mAP@

0.5
mAP@

[0.5:0.95]
Inference

Speed

Yolo v3 640 × 640 6 6 0.434 0.346 0.285 0.092 ~35 ms
640 × 640 4 6 0.789 0.512 0.563 0.202 ~35 ms
640 × 640 6 4 0.708 0.684 0.681 0.268 ~35 ms
640 × 640 4 4 0.713 0.751 0.747 0.314 ~35 ms

1080 × 1080 4 4 0.777 0.771 0.771 0.330 ~82 ms
Yolo v3-SPP 640 × 640 4 4 0.812 0.663 0.711 0.286 ~36 ms

1080 × 1080 4 4 0.821 0.700 0.791 0.354 ~84 ms

The effects of adverse light and weather conditions on Yolo v3 detection accuracy are
given in Table 7. The natural degradation of results was observed with worsened light
conditions. Both mAP@0.5 and mAP@[0.5:0.95] accuracy metrics steadily decreased from
sunset and evening hours into the night hours. The detection accuracy on rainy days was
also influenced by lowered light. Moreover, the rain spots on a car’s windshield contributed
significantly to the increase in false detections. The real challenge for this computer vision
model was low visibility at night, where it performed the worst.

After a thorough inspection of the detection outcomes, several phenomena were
noticed. Reflection of the objects from the wet road or rain spots on a car’s windshield were
often falsely misclassified as potholes. Small cracks and dark spots on the road might be
identified as potholes in the images with low visibility. False detections were no exception
even in the case of images recorded under clear weather, for instance the reflection from a
car hood may be detected as a pothole.

It is obvious that manhole covers are more easily recognized compared to potholes.
The non-uniform appearance of road discrepancies naturally poses a challenge for computer
vision models. Moreover, the investigated objects are small compared to the overall image
of the scene, so the resolution of input image is also a significant factor for detection accuracy.
Image size plays an important role, especially when driving with reduced visibility at night.



Sensors 2022, 22, 8878 12 of 18

Table 7. Performance of the Yolo v3 model (1080× 1080) under different light and weather conditions.

Data Subset Class Image
Resolution Precision Recall mAP@0.5 mAP@

[0.5:0.95]

Clear All 1080 × 1080 0.777 0.771 0.771 0.33
Potholes 0.726 0.69 0.703 0.262
Covers 0.828 0.852 0.839 0.398

Rain All 1080 × 1080 0.613 0.519 0.505 0.199
Potholes 0.445 0.465 0.396 0.145
Covers 0.782 0.573 0.614 0.254

Sunset All 1080 × 1080 0.694 0.496 0.529 0.194
Potholes 0.537 0.418 0.399 0.133
Covers 0.852 0.575 0.659 0.256

Evening All 1080 × 1080 0.742 0.483 0.474 0.182
Potholes 0.609 0.57 0.518 0.194
Covers 0.874 0.396 0.429 0.17

Night All 1080 × 1080 0.36 0.157 0.175 0.062
Potholes 0.36 0.1 0.145 0.0493
Covers 0.36 0.214 0.204 0.0746

The comparison of PR curves (see Section 3.3 above) for the subsets of different
conditions is shown in Figure 4. The larger the area under the curve, the better the
performance of the model in terms of detection accuracy.
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The model performance can be to some extent considered similar on a rainy day (July,
11:45 am), at sunset in winter (December, 15:45 pm) and in the summer evening (June,
9 pm). The worse detection accuracy of the computer vision model was observed in the
nighttime environment. In this case, an improvement in results was noted when using
larger images (input size of 1080) which could contain finer details of potholes and manhole
covers. Different light and weather conditions are shown in Figure 5. The reader can clearly
see how the visibility of potholes varies according to light and weather change.
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4.2. Yolo v3-SPP

The effects of adverse light and weather conditions on detection accuracy of Yolo v3
model with different settings (input image size of 640 and 1080, utilization of SPP) is shown
in Figure 6. As mentioned previously, the larger input image size yields better detection
accuracy. As can be seen in Figure 6, the input image resolution has a positive effect on the
most challenging road conditions at night. Interestingly enough, Yolo v3 benefitted from
SPP module mainly for clear day and night conditions; however, Yolo v3-SPP performed
poorly under rainy, sunset and evening conditions. In view of this kind of deeper analysis,
the suitable methods for pothole detection can be chosen based on preference of detector
use case—e.g., whether the main operational time would be day or night hours.
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For completeness, the comparison of PR curves of Yolo v3 (1080) and Yolo v3 (1080)
with SPP module is shown in Figure 7. It can be repeatedly seen that SPP module improves
detection accuracy for the worst-case detection scenario occurring at night.
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Figure 7. The PR curves for different conditions. (Left) Yolo v3 model with input image size of 1080;
(Right) Yolo v3-SPP model with input image size of 1080.

4.3. Sparse R-CNN

The Yolo v3 is further compared with Sparse R-CNN model [51] which is, as the
name implies, completely sparse, i.e., object recognition head is given a fixed sparse
collection of learnt object proposals. This fully sparse model is different from the one-stage
detectors (Yolo) which are based on proposal of dense candidates and two-stage detectors
(R-CNN or Faster R-CNN) which offer sparse set of foreground proposals from dense region
candidates obtained through region proposal techniques. Within the Sparce R-CNN, the
total number of object candidates is reduced significantly and non-maximum suppression
step for reduction of redundant proposals is not utilized. Sparce R-CNN provides for
accuracy and run-time performance competitive with the state-of-the-art object detectors
on the COCO dataset.

Table 8 shows the comparison of detection accuracy of Yolo v3/SPP and Sparse R-
CNN. In our case, the performance of both architectures under the clear dataset can be
considered similar. In terms of model size, Yolo v3 is up to three times smaller than
Sparse R-CNN.

Table 8. Performance comparison of Yolo v3, Yolo v3-SPP and Sparse R-CNN on a clear weather
dataset.

Model Precision Recall mAP@0.5 mAP@
[0.5:0.95]

Elapsed
Time: Test Model Size

Yolo v3 0.777 0.771 0.771 0.330 24 s 123.7 MB
Yolo v3-SPP 0.821 0.700 0.791 0.354 25 s 125.8 MB

Sparse R-CNN – – 0.726 0.321 31 s 415 MB

The detection accuracy of Sparse R-CNN under different light and weather conditions
is shown in Figure 8. Sparse R-CNN outperformed Yolo v3 in almost all adverse conditions.
It was mainly beneficial for low light scenarios in evening and at night. Yolo v3 worked
better under the clear weather condition and sunset in winter. Sunset dataset can be
considered of brighter light conditions than summer evening and night. Each model deals
with degraded conditions differently. Therefore, such a detailed analysis is suitable for
object detectors performance comparison.
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Figure 8. The comparison of detection accuracy of Yolo v3, Yolo v3-SPP and Sparse R-CNN.

5. Discussion

According to related works and studies described in Section 2.3, comparative analysis
is not a straightforward task. This is due to the fact that each work utilized a different
dataset. For instance, experiments with data captured right above the road discrepancy
tend to achieve higher detection results than experiments with data collected from the
vehicle’s perspective. Moreover, different hardware environments are usually employed
for conducting experiments.

In general, similar papers do not consider pothole detection under adverse conditions.
Although we have presented some, they do not provide such level of adverse condition
details as was proposed in our dataset and models. The results we showed in our paper
have not been presented in this form before, even in the related literature. We see this as
a positive development, as it is also an opportunity for other scientists to enrich the field
with their research results.

In this paper, comparable accuracy to other works was achieved using Yolo v3-SPP
(1080 × 1080) with mAP@0.5 up to 0.791 in multi-class object detection (potholes and
manhole covers). Although higher accuracy was at the expense of reduced detection speed,
the near real time inference was achieved using Yolo v3 with input image size of 640 × 640
and mAP@0.5 of 0.747.

A detailed examination of the detection results under adverse conditions revealed
various oddities. In images with limited visibility, little cracks or dark areas on the road
may be mistaken for potholes. On rainy images, reflection of the objects from the wet road
or rain spots on the car’s windshield can also be falsely misclassified as potholes. The
detection accuracy of Yolo v3 model on a rainy day, at sunset and in the evening can be
considered similar to some extent.

Very low visibility at night, posed the major challenge for Yolo v3. Detection accu-
racy for Yolo v3 (640 × 640) in terms of mAP@0.5 dropped from 0.747 to 0.0701, which
represents close to 90% decrease in accuracy. In this case, an improvement in results was
observed when using larger input size of images that could contain finer details of pot-
holes and manhole covers. Further improvement was achieved with utilization of SPP
module that is used for extraction of multiscale local region features. However, not all
cases were improved with SPP solution. We were able to improve the pothole object detec-
tion in low light conditions using Sparse R-CNN. As was illustrated in the Figure 8, the
major improvement was recognized at night object detection, where mAP@0.5 rose from
0.226 (Yolo v3-SPP) to 0.319 (Sparse R-CNN). If the effects of adverse conditions on de-
tection accuracy can be measured, it is possible to take the precautions to deal with them
more effectively.
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Even though we achieved relatively high accuracy, there is an assumption that the
results could be further improved, and we perceive this as one defect of the method used.
This defect can be solved by upgrading the method and switching to Yolo 4 or Yolo 5.
Nevertheless, it is good to emphasize that the method using the Yolo 3 library significantly
reduces hardware requirements and processing time, which was also the reason why we
decided to use this method. Our continuous research will focus also on comparison of
newer Yolo versions with the results presented in this paper.

6. Conclusions

Encounters with road damage such as potholes or road cracks are almost unavoidable
when traveling. Safety, comfort, and avoidance of damage to vehicle during driving are of
great importance to road users. Nowadays, deep learning algorithms present an effective
solution to pothole recognition. In this paper, Yolo v3 the computer vision model is used to
automatically detect potholes. Because visual object detection performance is negatively
affected by various circumstances such as reduced light or bad weather, the detection of
potholes under adverse conditions was proposed. For this purpose, a dataset that consists
of image collections of diverse light and weather conditions was developed.

The results using Yolo v3 clearly showed a fairly high success rate. From the results,
we can conclude that Yolo v3 is still a suitable alternative for pothole detection when it is
possible to achieve results with lower computing time and significantly lower hardware
requirements. Although using Sparse R-CNN brought better results in low light conditions,
Yolo v3 proved better performance under brighter light conditions.

The main benefit of our work is the provision of an elementary foundation for further
research. Our research provides a detailed dataset and uses established methodology for
computer vision-based object detection. We have proven that pothole recognition under
adverse conditions is quite a novelty topic with a few research results so far, which opens
many possibilities for continued research.

In future experiments, the update of road damage dataset to other types of adverse
conditions will be proposed as well as further tests with various object detectors and other
relevant libraries [53]. We will also focus on running models with different hardware
configurations with the aim to compare performance of selected models.
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