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Abstract: This paper presents a simple and straightforward design of a discrete-time fractional-order
odd-harmonics repetitive controller (RC). Unlike general RC designs, the proposed method utilizes
an internal model with a half-period delay and a stabilizing controller with a fractional phase lead
compensator. First, the odd-harmonics internal model representing odd-harmonics frequencies
is constructed by using the information of the reference’s basis period and the preferred tracking
bandwidth. Secondly, an optimization problem synthesized from the stability condition of the RC
closed-loop system is solved to obtain the fractional phase lead compensator. Finally, the fractional
term of the stabilizing controller is realized by using a causal and stable infinite impulse response
(IIR) filter, where the filter coefficients are computed by applying the Thiran formula. Simulation
and experimental validation on a servomotor system are conducted to verify the effectiveness of the
proposed design.

Keywords: repetitive controller; odd-harmonics internal model; fractional stabilizing controller;
optimization

1. Introduction

Repetitive controller (RC) as a well-known control strategy was first developed by
Inoue et al. [1] for high accuracy control of a power supply. RC is a learning-type controller
like iterative learning controller used for tracking control or rejection of periodic signals,
which has been developed for many control applications such as precision irrigation [2,3],
mechatronics [4,5], renewable energy [6,7], power electronics [8,9] and biomedical [10,11].
The superior performance of RC is due to the use of an internal model as proposed by
Francis and Wohnam [12]. The internal model represents the periodic reference/disturbance
model and behaves as a periodic signal generator for tracking reference/compensating
disturbance signal with a zero-tracking error.

A general discrete-time internal model is constructed by a one-cycle delay z−N with
positive feedback forming the transfer function of z−N/1− z−N . Note that N is generally
an integer number representing the number of time steps per reference/disturbance period.
Then, a low-pass filter is usually cascaded to z−N for improving the robustness of the
RC system, but at the expense of tracking accuracies at higher frequencies. This type of
internal model offers a zero steady-state error for tracking/rejecting periodic signals at
fundamental frequency, even-and-odd harmonics components. In many real situations,
reference/disturbance signals generally involve odd-harmonics only. These situations
can be found in applications such as power electronic systems [8,9,13,14], magnetic rotor
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systems [15,16], nano-positioning systems [17], field-modulated magnetometer systems [18]
and centrifugal compressors [19]. Inspired by this fact, the use of a general internal model
is unnecessary if we only target odd-harmonics periodic components. If the general
internal model is applied in these situations, then infinite gains will be introduced at even
harmonics components too, which can reduce the system robustness and degrade the
system performance [20]. In addition, the general internal model also introduces slow
transient responses due to the presence of a one-cycle delay term z−N .

To deal with these situations, an odd-harmonics internal model was proposed in [20],
aiming to provide infinite gains only at odd-harmonic frequencies. This implies that
the infinite gains are introduced at the targeted odd-harmonic frequencies. Unlike the
general internal model, the odd-harmonics uses a half-period delay z−N/2, which improves
the transient performance of the RC system. Besides the internal model, the stabilizing
controller is also required to construct the RC system. The stabilizing controller is required
to guarantee the stability of the closed-loop RC system. Moreover, the stabilizing controller
also determines the convergence rate of the system error. The stabilizing controller is
sometimes designed as the inverse of the plant model/closed-plant model [21–23], which
is often not available due to the plant uncertainties and disturbances [24]. In addition, the
complexity of the stabilizing controller is easily increased when the plant has a higher-
order model. A pole placement-based design method was presented in [25,26], where the
numerator and denominator of the controller are acquired by solving the Diophantine
Equation. This design method yields a stabilizing controller with an order as high as the
internal model [27]. In [24,28], the stabilizing controller was designed as a phase lead
compensator Kpzm, where Kp is the learning gain and m is a lead-step integer. The design
task involves examining various phase responses for every lead step m trial in order to
determine the order m that provides a larger stable bandwidth. Moreover, the use of an
integer lead step m results in non-flexible phase compensation.

In this work, we develop a new and novel approach to designing the stabilizing
controller for the discrete-time odd-harmonics RC system. An optimization-based design
methodology is employed to obtain the stabilizing controller in the simple form of a phase
lead compensator. Unlike the conventional phase lead compensator in [24,28], we use a
fractional order phase lead compensator, where the compensator’s parameters are chosen
by solving the optimization problem. Hence, this design method is straightforward because
it avoids the manual tuning process in the frequency domain to obtain the stabilizing
controller as shown in [24,28]. A fractional order stabilizing controller is considered here in
order to provide more flexible phase compensation. Here, the fractional part is implemented
by using a causal and stable IIR filter, whose filter coefficients are computed by applying
the Thiran formula. Simulation and experimental results are demonstrated to verify the
superior performance of the proposed design. In order to highlight the originality of our
research work, the contributions to this work are listed as follows:

1. An internal model with half-cycle delay representing odd-harmonic periodic signals
is used to provide faster transient response.

2. An optimization-based design methodology is developed to obtain the fractional
order stabilizing controller.

3. The fractional order stabilizing controller is realizable since the fractional part of the
controller is approximated by using a stable and causal IIR filter.

The remainder of this paper is structured as follows. Section 2 explains the problem
statement and preliminaries underlying a repetitive control problem and a general design of
repetitive controller. In Section 3, the proposed design is described, covering the structure,
stability analysis, synthesis and realization of the fractional-order odd-harmonics repetitive
controller. Section 4 presents the simulation results, followed by experimental validation
in Section 5. A comparison study is also discussed in Section 5. Lastly, the conclusion is
drawn in Section 6.
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2. Problem Statement and Preliminaries
2.1. Repetitive Control Problem

In this work, we consider a discrete-time linear time invariant (LTI) system represented
as follows:

Y(z) = [P(z)]U(z) + V(z), (1)

where U(z), Y(z) and V(z) are the Z-transforms of discrete-time signals of u(k), y(k) and
v(k), respectively, and P(z) is the plant model. Here, u(k), y(k), v(k) ∈ R, respectively,
denote a control input, a plant output and an input disturbance.

Suppose that the LTI system (1) is required to track a periodic reference r(k) or/and
reject a repetitive disturbance v(k) such that the tracking error e(k) converges to zero. The
tracking error e(k) is defined as

e(k) := r(k)− y(k). (2)

The design objective is to synthesize the control input u(k) such that the reference
r(k) is tracked, the disturbance v(k) is cancelled, the tracking error e(k) quickly converges
to zero steady-state, and the resulting closed-loop system is both stable and has faster
transient response. Note that r(k) and v(k) are periodic signals having odd-harmonics
components with a similar fundamental frequency.

2.2. General Repetitive Controller

Suppose that the system (1) is subject to the periodic reference r(k) and/or repetitive
disturbance v(k) with a basis frequency of fb = fr = fv. Note that fr and fb are the fun-
damental frequencies of reference and disturbance, respectively. The repetitive controller
depicted in Figure 1 can be used to form a stable closed-loop system offering an accurate
reference tracking and/or a good disturbance rejection.

Figure 1. A general repetitive controller.

The controller shown in Figure 1 is then referred to as general RC, which is equivalent
to the following transfer function:

Cg(z) =
UR(z)
E(z)

=

(
q(z)z−N

1− q(z)z−N

)
F(z), (3)

where E(z) is an error signal, UR(z) is a repetitive control signal, q(z) is a low-pass filter,
F(z) is a stabilizing controller and N = Tb

Ts
is an integer number of samples per reference

period with Ts being the sampling period and Tb being the reference period. The term[
q(z)z−N/(1− q(z)z−N)

]
in (3) represents the general RC’s internal model, defined as

Ig(z) =
q(z)z−N

1− q(z)z−N . (4)

The internal model (4) has N evenly spaced poles on the unit circle at the harmonics of
the basis frequency fb. The filter q(z) in (4) aims to improve the system robustness against
unmodeled dynamics at the high frequencies. The presence of q(z) pushes the poles at
the higher frequencies toward inside of the unit circle. Since the poles of (4) are mostly
located at the unit circle, the internal model (4) has a capacity to perfectly track/compensate
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any periodic signal with frequency of n fb < fq, where n = 1, 2, · · · , nm, fq is the q(z)’s
bandwidth and nm fb < fq [27].

3. Proposed Method
3.1. Controller Structure

An odd-harmonics repetitive controller (OHRC) has a controller structure as shown
in Figure 2. Unlike general RC in Figure 1, the OHRC has negative input and negative
feedback. In addition, the OHRC utilizes a half-cycle delay z−N/2.

Figure 2. An odd-harmonics repetitive controller.

The input–output relation of the OHRC is then given as

Co(z) =
−q(z)z−N/2

1 + q(z)z−N/2︸ ︷︷ ︸
internal model

F(z), (5)

where Co(z) is defined as the transfer function of OHRC, q(z) is q-filter and F(z) is a
stabilizing controller.

Similar to (3), the filter q(z) is inserted to improve the robustness of the OHRC system.
This is due to the pure internal model such as [−z−N/2/(1+ z−N/2)] being also susceptible
to the instabilities. Here, the filter q(z) is chosen as moving average filter as follows:

q(z) =
h

∑
l=0

qlzl +
h

∑
l=1

qlz−l (6)

where 0 < ql < 1 and ∑h
l=1 ql + q0 = 1. The filter q(z) in (6) is a low-pass filter contributing

zero-phase for all frequency components and unity gain at the frequencies below the

filter bandwidth. Note that the term
[
−q(z)z−N/2

1+q(z)z−N/2

]
in (5) corresponds to an internal model

design proposed in [20]. This internal model represents the reference models at the odd-
harmonics frequencies only, i.e., f ∈ [ fb, 3 fb, · · · , (N/2− 1) fb]. This behavior can be seen
from Figure 3, indicating the magnitude responses of odd-harmonics and general internal
models with a basis frequency of 1 Hz. Observing the infinite gains of OHRC, it is obvious
that the trajectories at the desired odd-harmonics only will be tracked.

In the RC-controlled system, the stabilizing controller F(z) is compulsory to ensure the
stability of the RC closed-loop system. In addition, the stabilizing controller also determines
the convergence rate of the system error. A novel and new design of stabilizing controller
F(z) is covered in Section 3.3, i.e., Fractional Order Stabilizing Controller.
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Figure 3. Magnitude responses of the odd-harmonics and general internal models with a basis
frequency of 1 Hz (2π rad/s).

3.2. Stability Analysis

In this subsection, the stability conditions of the plug-in OHRC system are analyzed.
The stability conditions are then used to design our proposed stabilizing controller. The
block diagram of the overall control system is shown in Figure 4, where P(z) is the plant
model, D(z) is the feedback controller, Co(z) is the OHRC, R(z), U(z), V(z), Y(z) ∈ R are,
respectively, the reference, control input, disturbance and output signal.

Figure 4. Plug-in OHRC system.

The sensitivity function of the closed-loop OHRC system shown in Figure 4 is

E(z)
R(z)

=
1

1 + {1 + Co(z)}D(z)P(z)
(7)

Substituting (5) into (7), we have

E(z)
R(z)

=
1 + q(z)z−N/2

1 + q(z)z−N/2 + {1 + q(z)z−N/2 − F(z)q(z)z−N/2}D(z)P(z)
(8)
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Simplifying the denominator part of (8), we get

E(z)
R(z)

=
1 + q(z)z−N/2

[1 + D(z)P(z)]
[
1 + {1− F(z) D(z)P(z)

1+D(z)P(z)}q(z)z−N/2
] (9)

Let us define the stabilized plant model Ps(z) given by

Ps(z) =
D(z)P(z)

1 + D(z)P(z)
. (10)

Then, (9) can be rewritten as

E(z)
R(z)

=

[
1 + q(z)z−N/2

]
[1 + D(z)P(z)]

[
1 + {1− F(z)Ps(z)}q(z)z−N/2

] , (11)

which can be factorized into three parts as follows:

E(z)
R(z)

=
[
1 + q(z)z−N/2

]
︸ ︷︷ ︸

Part A

[
1

1 + D(z)P(z)

]
︸ ︷︷ ︸

Part B

[
1

1 + {1− F(z)Ps(z)}q(z)z−N/2

]
︸ ︷︷ ︸

Part C

. (12)

Based on (9), the plug-in OHRC system in Figure 4 is internally stable if the following
conditions are satisfied [20]:

– (C1): q(z) is stable.
– (C2): 1/[1 + D(z)P(z)] is stable.
– (C3): ‖{1− F(z)Ps(z)}q(z)‖∞ < 1, which also can be expressed as

‖{1− F(z)Ps(z)}q(z)‖∞ ≤ ‖1− F(z)Ps(z)‖∞‖q(z)‖∞ < 1. (13)

Note that the notation ‖X (z)‖∞ represents the H∞-norm of the transfer function X (z),
which can be interpreted as the maximum value of the magnitude responses of X (z) for all
frequencies (i.e., ∀ z = ejω , 0 < ω < π/T).

Remark 1. C1 and C2 are, respectively, needed to ensure the stability of Parts A and B in (12). In
addition, C2 also implies that the closed-loop plant model Ps(z) in (10) is a stable transfer function.
C3 is derived by using small gain theorem assuring the stability of Part C (12).

3.3. Fractional Order Stabilizing Controller

Several assumptions are made before proceeding to the design of stabilizing con-
troller F(z):

Assumption 1. The filter q(z) is chosen as a stable low-pass filter giving the unity gain at the
referred bandwidth ωq (i.e., Nq(ω) = 1 for all ω that satisfy 0 < ω < ωq and Nq(ω) � 1
for all ω that satisfy ωq < ω < π/T, where ωq = 2π fq). In addition, q(z) contributes zero-
phase for all frequency components (i.e., θq(ω) = 0o for all ω that satisy 0 < ω < π/T). Here,
Nq(ω) and θq(ω), respectively, represent the magnitude and phase characteristics of q(z).

Assumption 2. The plant model P(z) is known and the feedback controller D(z) is chosen such that
the Ps(z) in (10) has a stable transfer function. This implies that 1/[1 + D(z)P(z)] is also stable.

Assumption 3. The reference R(z) and disturbance V(z) are periodic with a common basis
frequency ωb, i.e., ωb = 2π/Tb. Note that ωb is known and R(z) and V(z) contain odd-harmonics
components. If the reference R(z) and disturbance V(z) have different basis frequencies, then multi
period-based RCs such as in [29,30] can be utilized.
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The following remarks are also provided to describe the conservation of Assumptions 1 to 3:

Remark 2. The zero-phase low-pass filter q(z) is a moving average filter with a non-causal form.
However, the presence of multiplication with a delay term (i.e, z−N or z−N/2) makes the filter
realizable (see Figures 1 and 2).

Remark 3. Assumption 2 reflects a model-based control system design. In this control system
design, we require an open-loop plant model P(z).

Remark 4. The exact values of the periodicity and the basis frequency of the reference R(z) and
disturbance V(z) are required in the design. One may observe them using measurement instruments,
including an oscilloscope and spectrum analyzer.

Based on Assumptions 1 to 3, we have the information about q(z), Ps(z) and ωb, which
is needed for designing the proposed stabilizing controller F(z). Instead of using an inverse
plant model [21–23], which is often not available due to plant uncertainties, the stabilizing
controller F(z) can be designed in simple form as follows:

F(z) = KpzM, (14)

where Kp is a positive learning gain and M is a positive number, which is not necessarily
an integer. This means that M is possibly a fractional positive number. This is different
to the references [24,28], where M is strictly an integer number. Here, we aim to obtain
the stabilizing controller (14), satisfying the condition (13) given that q(z), Ps(z) and ωb are
provided. The stability condition (13) is equivalent to

|{1− F(z)Ps(z)}q(z)| < 1 ∀z = ejω, 0 < ω <
π

T
, (15)

where |X (z)| operates as the magnitude response of the transfer function X (z).
Let Np(ω) and θp(ω) be the magnitude and phase responses of Ps(z). The trans-

fer function Ps(z) can be written as Ps(z) = Np(ω)ejθp(ω), while F(z) can be expressed
as F(z) = KpejMω. Following Assumption 1 that q(z) contributes a zero-phase for all
frequencies, condition (15) can be rewritten as

|{1− KpejMω Np(ω)ejθp(ω)}Nq(ω)| < 1. (16)

Then, (16) can be further adjusted to

|1− KpNp(ω)ej[θp(ω)+Mω]|Nq(ω) < 1

Nq(ω)

√(
1− KpNp(ω)ej[θp(ω)+Mω]

)(
1− KpNp(ω)e−j[θp(ω)+Mω]

)
< 1

Nq(ω)
√

1− 2KpNp(ω) cos
[
θp(ω) + Mω

]
+ {KpNp(ω)}2 < 1 (17)

Squaring both sides of (17), (17) becomes

N2
q (ω)

(
1− 2KpNp(ω) cos

[
θp(ω) + Mω

]
+ {KpNp(ω)}2

)
< 1. (18)

Remark 5. From (18), it can be seen that the ideal condition is achieved when KpNp(ω)→ 1 and[
θp(ω) + Mω

]
→ 0o for 0 < ω < π

T . This means that the magnitude compensation results in a
unity gain and the phase compensation gives a zero phase. However, this condition is hard to achieve,
especially at higher frequencies. The presence of q(z) offering Nq(ω) << 1 makes it possible to
satisfy condition (18).
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Now, we define F (ωj) as

F (ωj) = N2
q (ωj)

(
1− 2KpNp(ωj) cos

[
θp(ωj) + Mωj

]
+ {KpNp(ωj)}2

)
, (19)

which represents a cost function in the left hand side of (18) assessed at a single frequency ωj.
Since the repetitive model represents the reference/disturbance model at odd-harmonics
only, the following objective function is constructed:

FT =
L

∑
j=0
F (ωj) ∀ ωj = (2j + 1)ωb, L = ceil((N − 1)/4), (20)

where ωb is the basis frequency given by Assumption 3 and L is an integer number
calculated such that (2L + 1)ωb ≈ π/T. Finally, we present the optimization problem
as follows:

min
Kp ,M
FT =

L

∑
j=0
F (ωj) (21)

subject to

(1).
(

0
0

)
<

(
Kp
M

)
(2). F (ωj) < 1 ∀ ωj = (2j + 1)ωb, j = 0, 1, · · · , L.

Remark 6. The optimization problem (21) aims to find two unknown variables Kp, M, which
minimize the objective function (20) and satisfy two constraints. The first constraint is added to
guarantee that the obtained Kp and M are positive numbers. The second constraint is needed to
ensure that the stability condition at each frequency ωj is satisfied. Note that M is not necessarily
an integer.

3.4. Realization of the Controller

It is possible that the solution for variable M is a fractional number. Hence, the
stabilizing controller F(z) is not realizable. To deal with this problem, the stabilizing
controller F(z) is then split into:

F(z) = zMi
[
KpzM f

]
, (22)

where Mi + M f = M, Mi is positive integer number and M f is a negative fractional number,
i.e., Mi > M and M f < 0. The term zM f can be approximated by a stable and causal IIR
filter I(z) as follows:

zM f ≈ I(z) =
aRzR + aR−1zR−1 + · · ·+ a0

a0zR + a1zR−1 + · · ·+ aR
(23)

where R = ceil(M f ). The coefficients a0, a1, · · · , aR are designed by using Thiran fractional-
delay formula [31,32]. The Thiran formula is given by

a0 = 1, ak = (−1)j
(

R
k

) R

∏
i=0

M f − R + i
M f − R + k + i

, ∀ k ∈ {1, 2, · · · , R}, (24)

where (
R
k

)
=

R!
k!(R− k)!

. (25)
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If we pick Mi = ceil(M), then M f is within −1 < M f < 0. Now, zM f can be approximated
as a first-order filter as follows:

R = 1→ zM f ≈ I(z) =
a1z + a0

a0z + a1z
. (26)

Here,

a0 = 1, a1 =
1−M f

M f + 1
. (27)

By applying (27), the IIR filter coefficients can be easily obtained. Since zMi in (22) is
non-causal, it cannot be implemented separately without being merged with the internal
model. The modification shown in Figure 5 is presented to make the proposed controller
fully realizable.

Figure 5. Realization of the proposed controller.

4. Simulation Results

The plant model of Quanser SRV02 servo in [33] is used in the simulation. The
open-loop plant has the following model:

P(s) =
θo(s)
Vo(s)

=
1.74

s(0.0268s + 1)
, (28)

where θo(s) is an angle position (rad) and Vo(s) is an open-loop voltage (V). The plant
model (28) is sampled with zero-order-hold method at the sampling period T = 0.005 s,
resulting in the discrete-time model as follows:

P(z) = 10−4 7.634z + 7.7173
(z− 1)(z− 0.8288)

, (29)

which is a marginally stable plant since P(z) has one of its poles lying on the unit circle.
Recalling (10), we add a simple proportional gain D(z) = 10 to improve the stability margin
of (29). As a result, it leads to the minimal realization of the closed-loop plant model Ps(s)
given as

Ps(z) = 10−3 7.634z + 7.7173
z2 − 1.822z + 0.837

. (30)

Now, we have a second-order discrete-time model as shown in (30). The closed-
loop plant model Ps(z) has two stable complex poles located at p1 = 0.91 + i0.084 and
p2 = 0.91− i0.084. Hence, Condition 2 (C2) in Remark 1 is satisfied. Here, we consider
a tracking control problem with no presence of disturbance (i.e., V(z) = 0). A periodic
reference signal r(k) with a maximum amplitude 0.81 rad (46.19 deg) as illustrated in
Figure 6 is defined as a reference input of the system expressed as

r(k) =
π

6
sin(πkTs) +

π

6
sin(3πkTs) (31)
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Figure 6. Reference signal r(k).

It can be seen from (31) that the basis frequency of r(k) is ωb = π rad/s. Consequently,
the integer number N is computed as (2π/ωbTs) = 400. The q-filter q(z) is selected as
q(z) = 0.25z−1 + 0.5 + 0.25z, which is a stable low-pass filter with a cut-off frequency
as ωq = 228 rad/s. Using Ps(z), N and q(z), the optimization problem (21) can now be
constructed. Utilizing the Optimization Toolbox by MATLAB, the optimization problem
can be solved resulting in the stabilizing controller as follows:

F(z) = 1.131z7.927 (32)

Following the steps (22) to (27), we get

Mi = 8, M f = −0.073, zM f ≈ I(z) =
0.864z + 1
z + 0.864

(33)

Here, the IIR filter I(z) has a single pole at p1 = −0.864, confirming that zM f is replaced by
a stable and causal filter. Hence, F(z) in (32) can now be approximated by

F(z) ≈ z8
[

1.131
0.864z + 1
z + 0.864

]
. (34)

Finally, the transfer function of the proposed controller can be represented as

Co(s) = −
(
0.25z−1 + 0.5 + 0.25z

)
z−192

1 + (0.25z−1 + 0.5 + 0.25z)z−200

[
1.131

0.864z + 1
z + 0.864

]
. (35)

Based on Remark 2, we firstly examine the phase compensation and the stability
condition provided by the stabilizing controller F(z) given in (34). The phase compensation
and the stability condition are plotted in Figure 7a,b, respectively. As shown in Figure 7a,
the proposed stabilizing controller F(z) provides phase compensation with wider stable
range [−90◦, 90◦] to approximately 200 rad/s. The overall system is guaranteed to be
stable due to the magnitude responses of {1− F(z)Ps(z)}q(z) being less than one for all
frequencies. This behavior is clearly indicated from Figure 7b. The tracking output and
tracking error plots, respectively, given in Figure 8a,b demonstrate that the reference signal
r(k) with odd-harmonics frequencies is accurately tracked after about 3.25 s. Figure 8b
also indicates a significantly small steady-state tracking error; that is, |e(k)| < 0.05◦. These
simulation results show that the proposed method effectively works for tracking/rejection
of odd-harmonics repetitive control system.
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(a)

(b)

Figure 7. (a) Phase response of F(z)Ps(z) (b) magnitude response of {1− F(z)Ps(z)}q(z) .

(a)

Figure 8. Cont.
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(b)

Figure 8. Tracking performance of the proposed controller (simulation), (a) reference and tracking
output, (b) tracking error.

5. Experimental Validation

The real-time experiments are conducted to further validate the effectiveness of the
proposed design. Figure 9 shows an experimental setup consisting of PC (as host PC and
target system), DAQ Q8-USB (as ADC and DAC), Amplifier VoltPAQ-X2 (as two channels
signal conditioning) and Quanser SRV-02 (as an open-loop servomotor plant). The open-
loop plant model is similar to the model (28) used in the simulation. In the experiments, we
aim to regulate the servomotor SRV-02 such that the angle position θo(k) (deg) accurately
follows the periodic reference r(k) consisting of odd-harmonics frequencies as shown in
Figure 6.

In the experiments, we compare the performance of the proposed controller with gen-
eral RC using a similar stabilizing controller. The compared general RC has the following
transfer function:

Cg(z) =
(
0.25z−1 + 0.5 + 0.25z

)
z−400

1− (0.25z−1 + 0.5 + 0.25z)z−400 F(z). (36)

Here, F(z) in (36) is given as in (34). In addition, we also examine the root-mean-square
error (rmse) and the root-mean-square of steady-state error (rms-ess) defined as:

rmse :=

√√√√ 1
nT

nT

∑
k=1

e(k)2, (37)

rms-ess :=

√√√√ 1
(nT − nss)

nT

∑
k=nss

e(k)2, (38)

where nT = 20/0.005 = 4000, nss = tss/0.005 and tss is time to reach the steady-state
condition. The tracking errors of the proposed RC and general RC from the experimental
validation are plotted in Figure 10. The error plots given in Figure 10a show that the
proposed RC has a superior transient response compared to the general RC. The proposed
RC converges after about 3.5 s, which is almost half of the convergence time of the general
RC (i.e., 6.4 s). This phenomenon is obvious because the delay period of general RC (36)
is twice that of the proposed controller in (35). However, the general RC provides better
tracking accuracy compared to the proposed RC. This is noticeable from the steady-state
error shown in Figure 10b. We can also notice that the calculated rms-ess value of the
general RC is smaller compared to that of the proposed RC.
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Figure 9. Experimental Setup.

(a)

(b)

Figure 10. Tracking errors (experimental validation), (a) transient + steady-state, (b) steady-state.

We also evaluate the performance of both controllers when some integer phase lead
stabilizing controllers are considered. It can be seen from Table 1, that the proposed
controller gives the smallest rmse value, showing the superiority over the general RC and
OHRC with integer phase lead stabilizing controller.
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Table 1. Root-mean-square error (rmse) analysis (hardware experiments).

Stabilizing Controller rmse (deg)-general RC rmse (deg)-OHRC

1.131z7.927 2.189 1.599
1.131z8 2.207 1.605
1.131z7 2.224 1.616
1.131z6 2.247 1.656

Another comparison is also made to the integer phase lead RC developed in [24]. The
stabilizing controller in [24] has the following form:

Fp(z) = kpzm, (39)

where kp is a learning gain and m is an integer lead step. In [24], the design task is started
by choosing the lead step m which gives larger stable bandwidth and satisfies the following
phase condition:

|θp(ω) + mω| < 90o (40)

Here, the lead step m is assessed one by one, by plotting the phase responses shown
in Figure 11. As depicted in Figure 11, the lead step m = 4 is chosen. Then, the learning
gain kp is manually tuned to give fast convergence and theoretically determined to meet
the magnitude condition as follows:

kp <
2 cos(θp(ω) + mω)

Np(ω)
, (41)

where m is the chosen lead step (i.e., m = 4), and Np(ω) and θp(ω) are, respectively, the
magnitude response and the phase response of the closed-loop plant Ps(z).

Figure 11. Phase responses of zmPs(z).

Let us manually pick the learning gains kp as 0.5, 0.75, 1 and 1.25. The tracking
errors of the integer phase-lead RC system [24] with different learning gains are shown
in Figure 12a–d. Figure 12a–d indicate that even though the learning gain is increased,
the phase lead RC system remains, showing slower convergence rate compared to the
proposed RC. In addition, the calculated root-mean-square errors of the phase lead RC
system with different learning gains are significantly larger compared to the proposed



Sensors 2022, 22, 8873 15 of 17

RC. We can also notice that increasing the learning gain results in larger steady-state error.
As observed from Figure 12d, that tracking error tends to diverge after t = 10 s. This
implies that increasing the learning gain to 1.25 leads to an unstable closed-loop system.
The steady-state error and the rms-ess value of the phase-lead RC, especially at the gain
kp = 0.5, are also examined. Figure 13 indicates that the phase-lead RC has a bigger range
of steady-state error. Moreover, the rms-ess of phase-lead RC is also larger than in the
proposed RC. All the above results demonstrate the superiority of the proposed controller
over the general RC (3) and the integer phase-lead RC [24].

Figure 12. Tracking errors (experimental validation) of phase lead RC krz4 for different learning gains
(a) kp = 0.5, (b) kp = 0.75, (c) kp = 1, (d) kp = 1.25.

Figure 13. Steady-state error of the phase-lead RC at the gain kp = 0.5.

6. Conclusions

In this paper, a discrete-time fractional-order odd-harmonics repetitive controller has
been developed. First, an internal model with a half-cycle delay is used to track/compensate
periodic signals with odd-harmonics components. Second, the fractional-order phase lead
stabilizing controller is designed based on the optimization problem derived from the RC’s
stability condition. Finally, the fractional term of the stabilizing controller is approximated
by a causal and stable IIR filter, with coefficients that are calculated by using the Thiran
formula. Simulation, experimental validation and comparison study were conducted to
verify the effectiveness of the proposed design.
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