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Abstract: This paper focuses on the classification of seven locomotion modes (sitting, standing, level
ground walking, ramp ascent and descent, stair ascent and descent), the transitions among these
modes, and the gait phases within each mode, by only using data in the frequency domain from one
or two inertial measurement units. Different deep neural network configurations are investigated
and compared by combining convolutional and recurrent layers. The results show that a system
composed of a convolutional neural network followed by a long short-term memory network is able
to classify with a mean F1-score of 0.89 and 0.91 for ten healthy subjects, and of 0.92 and 0.95 for
one osseointegrated transfemoral amputee subject (excluding the gait phases because they are not
labeled in the data-set), using one and two inertial measurement units, respectively, with a 5-fold
cross-validation. The promising results obtained in this study pave the way for using deep learning
for the control of transfemoral prostheses with a minimum number of inertial measurement units.

Keywords: lower-limb prosthetic; deep neural networks; motion classification

1. Introduction

Research on micro-controlled lower limb prostheses focuses on providing them with
the ability of accurately understanding the user’s intention to achieve an intuitive use and,
ultimately, to improve the user’s quality of life. Moreover, to reduce any discomfort in
using the prosthesis, its response to a specific intention should occur within 300 ms [1].

Table 1 summarizes the main contributions in the literature for the classification and
the prediction of locomotion modes, transitions, and gait phases, and it indicates the
used methods (either machine learning or deep neural networks), their accuracy or error,
the used sensors and their placement on the subject’s body, and whether testing is done on
healthy or impaired subjects.

This paper focuses on the combined classification of locomotion modes, the transitions
among these modes, and the gait phases within each mode for healthy and transfemoral
amputee subjects, by relying on a minimum number of inertial measurement units (IMUs).
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Table 1. State of the art of machine learning and deep learning techniques for the classification and/or
prediction of (loco-)motion modes, transitions, and gait phases by means of IMU data of healthy
and/or impaired subjects. (CNN: convolutional neural network; RNN: recurrent neural network;
LSTM: long short-term memory; SVM: support vector machine; QDA: quadratic discriminant analysis;
HMM: hidden Markov models; GRU: gated recurrent unit; LDA: linear discriminant analysis; DT:
decision trees; KNN: k-nearest neighbors; NB: naive Bayes).

Ref.
Year Method Features Accuracy/

Error
IMU
Placement Classes Subject(s)

Locomotion Modes and/or Transitions

[2]
2020

CNN
classification

1 IMU
(time domain) 86.7–96.7% Lower Leg 5 Locomot. 30 Healthy

[3]
2018

RNN (LSTM)
classification

2 IMU
(time domain) 96% Upper Arm 5 Locomot. 11 Healthy

[4]
2020

SVM (multi-level)
classif., predict.

3 IMU
(time domain) 96%, 93%

Upper Leg
Lower Leg

5 Locomot.
9 Transit. 10 Healthy

[5]
2020

CNN
classif., predict.

3 IMU, 2 EMG,
3 GONIO
(freq. domain)

1.1%
(error rate)

Upper Leg
Lower Leg

5 Locomot.
8 Transit. 10 Healthy

[6]
2019

CNN
classif., predict.

3 IMU
(time domain)

94.15%
89.23%

Upper Leg
Lower Leg

5 Locomot.
8 Transit.

10 Healthy
1 Transf.

[7]
2017

SVM, QDA
classif., predict.

2 IMU, load cell
time domain

95.8%,
94.9% Lower Leg 5 Locomot.

8 Transit. 6 Transf.

[8]
2019

HMM
classification

1 IMU, 2 pres-
sure sensors
(time domain)

95.8% Lower Leg 5 Locomot. 3 Healthy
2 Transf.

[9]
2020

Wavenet
classification

2 IMU
(time domain)

97.88%
(F1-score)

Upper Leg
Lower Leg 7 Locomot. 10 Healthy

[10]
2021

RNN (GRU)
prediction

2 IMU (time and
freq. domain)

93.06%
(F1-score)

Upper Leg
Lower Leg

8 Locomot.
24 Transit. 1 Transf.

[11]
2021

LDA, DT
classification

1 IMU,
force sensor
(time domain)

2.8%
(error) Lower Leg 5 Locomot. 5 Transt.

[12]
2021

KNN, LD, SVM, NB
classification

1 IMU,
force sensor
(time domain)

0.56%
(error rate) Upper Leg 5 Locomot. 10 Healthy

[13]
2021

CNN
classification

Several IMUs
(time domain)

98%
(F1-score) Several 9 Locomot. 29 Healthy

[14]
2021

CNN-GRU
classification

1 IMU
(time domain) 96.54% Pelvis 18 Activities 51 Healthy

[15]
2022

CNN-LSTM
classification

Motion tracker
(time domain) 90.89% Several 12 Activities 20 Healthy

[16]
2020

Geometry-based
classif., predict.

1 IMU
(time domain) 98.5% Lower Leg 12 Transit. 3 Healthy

3 Transf.

Locomotion Modes and/or Gait Phases

[17]
2018

LDA, QDA
classification

1 IMU
(time domain) 100% Lower Leg Gait Phases

10 Healthy
5 Transf.

[18]
2016

Thresholding
classification

1 IMU
(time domain) 99.78% Lower Leg Gait Phases

4 Healthy
1 Transf.

[19]
2016

CNN
classification

7 IMU
(time domain) 97% Lower Leg 6 Gait Phases 12 Healthy
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Table 1. Cont.

Ref.
Year Method Features Accuracy/

Error
IMU
Placement Classes Subject(s)

[20]
2018

QDA (multi-level)
classification

2 IMU
(time domain) 97%

Upper Leg
Lower Leg Gait Phases

3 Stroke
survisors

[21]
2018

Bayesan
classification

3 IMU
(time domain)

99.87%
99.20% Lower Leg

3 Locomot.
Swing/Stance 8 Healthy

Locomotion Modes, Transition, and Gait Phases

[22]
2018

QDA
classification

2 IMU,
load cell
(time domain)

93.21% Lower Leg
6 Locomot.
10 Transit.
Swing/Stance

3 Transt.

[23]
2014

LDA
classif., predict.

3 IMU,
pressure insole
(time domain)

99.71% Upper Leg
Lower Leg

6 Locomot.
10 Transit.
Swing/Stance

7 Healthy

This work builds upon our previous studies on the classification of locomotion modes
for ten healthy subjects [9], and on the prediction of locomotion modes and transitions
for one transfemoral subject [10]. To jointly classify a high number of classes for both
healthy and transfemoral amputee subjects without the need for engineering the features,
we propose a novel multi-level architecture composed of multiple deep neural networks.
Specifically, we investigate different architectures in which convolutional neural networks
(CNN) are combined with long short-term memory (LSTM) layers and gated recurrent unit
(GRU) layers. As inputs to the networks, the spectrograms of IMU data, either from one
IMU (placed on the upper leg) or two IMUs (placed on both the upper and lower leg), are
used. The system is trained to classify seven locomotion modes (sitting, standing, level
ground walking, ramp ascent and descent, stair ascent and descent), the transitions among
them (twelve transitions in the ENABL3S public data-set [24] for ten able-bodied subjects,
and nineteen transitions in the MyLeg data-set for one osseointegrated transfemoral am-
putee), and the twenty-seven gait phases within each mode (only for the ENABL3S data-set
because the MyLeg data-set does not have gait phase labels). This study shows that a multi-
level architecture made of CNN-LSTM neural networks can classify locomotion modes,
transitions, and gait phases for ten healthy subjects with a mean F1-score of 0.89 ± 0.006
using one IMU and 0.91 ± 0.01 using two IMUs, and that the same CNN-LSTM multi-level
architecture can classify locomotion modes and transitions for one transfemoral amputee
with a mean F1-score of 0.92 ± 0.01 using one IMU and 0.95 ± 0.01 using two IMUs.
To summarize, the main contributions of this paper are:

• Design a novel multi-level architecture made of different deep neural networks for
the classification of a high number of classes (seven locomotion modes, twelve or
nineteen transitions, and twenty-seven gait phases). In the current literature, multi-
level architectures have been proposed in [4,22], where feature engineering methods
(SVM and QDA, respectively) are used for the prediction and/or classification of
locomotion activities and phases. However, besides not using feature learning meth-
ods, the considered number of classes is lower than in this study (i.e., fourteen and
eighteen, respectively).

• Use data only from either one or two IMUs and, specifically, their frequency informa-
tion as input to the neural network architectures. In the current literature, features in
the frequency domain from IMU data have been used for classification in combination
with other sensors’ data in [5], and with the same sensors setting in our previous
work [10].

• Validate the results with two different data-sets, one with ten healthy subjects and
the other with one osseointegrated transfemoral amputee, the former being able to
classify locomotion modes, transitions, and gait phases and the latter only locomotion
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modes and transitions. Even if deep neural networks have been previously used to
classify locomotion modes by using IMU data, this study extends to a high number of
classes and considers data-sets of both healthy and transfemoral subjects.

• Obtain, with a CNN-LSTM architecture, a top F1-score of 0.91 ± 0.01 with two IMUs
for the healthy subjects and 0.95 ± 0.01 with two IMUs for the amputee subject, with a
5-fold cross-validation. While machine learning techniques still outperform deep
neural networks [22,23], this study shows the potential of feature learning techniques
for the classification and, possibly, prediction of a high number of locomotion activities
and phases, while, at the same time, relying on a limited number of sensors.

The remainder of this paper is organized as follows: Section 2 presents the data-sets
used in this study and their pre-processing. Section 3 explains the multi-level architecture
and the different deep neural networks that have been designed and tested. Section 4
presents and discusses the obtained results. Concluding remarks are drawn in Section 5.

2. Materials

This section presents the two data-sets and the pre-processing to extract the sequences
used as inputs to the deep neural networks.

2.1. Data-Set
2.1.1. ENABL3S Data-Set

The publicly available ENABL3S (Encyclopedia of Able-bodied Bilateral Lower Limb
Locomotor Signals) data-set [24] contains IMU data (accelerometer and gyroscope data)
from ten able-bodied subjects. The data were gathered from seven males and three females
with an average age of 25.5 ± 2 years, a height of 174 ± 12 cm, and a weight of 70 ± 14 kg.
From this data-set, only data from the two IMUs located on the upper and lower leg are
used. The data are sampled at 500 Hz by means of the MPU-9250 (InvenSense, San Jose, CA,
USA), i.e., there are new data every 2 ms. The available locomotion modes are: sitting (S),
standing (ST), level ground walking (W), ramp ascent (RA) and descent (RD), stair ascent
(SA) and descent (SD). The ramps have slopes of 10◦, and the stairs consist of four steps.

The original data-set only provides the labels of the locomotion modes, but it also
contains information that helps with obtaining the transitions between two locomotion
modes, as well as the gait phases. To extract the transitions, a 500 ms window centered at a
transition point (the time step in between two subsequent locomotion modes) is created [10],
and the data inside are labeled according to the transition, e.g., the transition from walking
to sitting is labeled as W–S. The gait phases are obtained by means of the toe-off and heel-
strike events, and are linked to a specific locomotion mode, as shown in Figure 1 (retrieved
from [25–27]). Note that sitting and standing do not have any gait phase information since
they are static modes.

2.1.2. MyLeg Data-Set

This data-set was collected at the Roessingh Research and Development Center (En-
schede, The Netherlands) on one osseointegrated transfemoral amputee subject (male,
75 years old, 84.1 kg, 186.6 cm, left-sided amputation since 45 years, osseointegration since
4 years, functional level K3), using a 3R80 Ottobock prosthetic knee (www.ottobockus.
com, accessed on 13 November 2022) and a Variflex Össur prosthetic ankle (www.ossur.
com, accessed on 13 November 2022).

The data were collected from the subject by using wearable electromyographic sensors
and eight IMUs, as part of the Xsens MVN Link motion capture system (Xsens Technologies
B.V., Enschede, The Netherlands, www.xsens.com, accessed on 13 November 2022). In this
study, data from two IMUs (one on the left upper leg and one on the left lower leg) are used.
The IMU data are sampled at a frequency of 1000 Hz, which means there are new data every
1 ms. The available locomotion modes are: sitting (S), standing (ST), level ground walking
(W), ramp ascent (RA) and descent (RD), stair ascent (SA) and descent (SD). The ramps
have a slope of 10◦ for three meters, and continue on with a slope of 15◦.

www.ottobockus.com
www.ottobockus.com
www.ossur.com
www.ossur.com
www.xsens.com
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Load Resp.
(W1)
 Mid Stance (W2) Terminal Stance (W3) Pre Swing

(W4)
Initial Swing

(W5)
Mid Swing

(W6)
Forward

Continuance
Loading

Response Mid Stance (W2) Terminal Stance (W3) Pre Swing
(W4)

Initial Swing
(W5)

Mid Swing
(W6)

Forward
Continuance

0% 10% 30% 50% 60% 73% 87% 100%

Stance Swing

Walking

Weight Acp.
(RA1) Pull Up (RA2) Forward Continuance (RA3) Foot Clearance (RA4) Foot Placement (RA5)

0% 30% 60% 80% 100%

Stance Swing

Ramp Ascent

10%

Weight Acp.
(SA1) Pull Up (SA2) Forward Continuance (SA3) Foot Clearance (SA4) Foot Placement (SA5)

0% 30% 60% 80% 100%

Stance Swing

Stair Ascent

Weight Acp.
(RD1)

Forward
Continuance (RD2) Controlled Lowering (RD3) Leg Pull Through

(RD4) Foot Placement (RD5)

0% 10% 30% 60% 80% 100%

Stance Swing

Ramp Descent

Weight Acp.
(SD1)

Forward
Continuance (SD2) Controlled Lowering (SD3) Leg Pull Through

(SD4) Foot Placement (SD5)

0% 10% 30% 60% 80% 100%

Stance Swing

Stair Descent

10%

Figure 1. Locomotion modes and corresponding gait phases.

The original data-set only provides the labels of the locomotion modes. To extract
the transitions, the same procedure as for the ENABL3S data-set has been used but with a
500 ms window centered at the transition point.

2.2. Data Processing
2.2.1. Sequence Extraction

The inputs to the deep neural networks are sequences, which are formed by a portion
of sequential data from either one of the used data-sets. The data contain information
from the IMU, i.e., in the case of one IMU, the data are from one triaxial accelerometer and
one triaxial gyroscope for a total of six features, while, in the case of two IMUs, the data
are from two triaxial accelerometers and two triaxial gyroscopes for a total of 12 features.
The size for the sequences is 1.3 s (empirically found), with a sliding window of 50 ms
(also empirically found). This means that, for the ENABL3S data-set, a sequence contains
650 data while, for the MyLeg data-set, a sequence contains 1300 data.

When extracting sequences from the original labeled data-sets, three different scenarios
can occur: (i) the extracted sequence falls completely in one locomotion mode or transition
and, therefore, it gets labeled as such; (ii) the sequence falls in between a locomotion mode
and a transition and, therefore, it receives the label of the majority of the data (≥50%)
contained in said sequence; (iii) the sequence is in between a transition and a locomotion
mode and, therefore, it gets labeled as the locomotion mode. Figure 2 depicts an example
of multiple sequence extractions. The yellow sequences represent case (i), in which the
extracted sequence falls entirely into one locomotion mode or transition and thus it is
labeled as such. The green sequences represent case (ii), where the top sequence contains
more data from the walking locomotion mode and is labeled as walking, while the bottom
sequence has more data from the transition Walking to Sitting and so it is labeled as W–S.
The blue sequence represents case (iii), where the sequence starts in a transition and finishes
in a locomotion mode and is labeled as the locomotion mode. This last case is not labeled
as a transition since the main interest resides at the beginning of the transition rather than
at the end. Thus, by labelling it as the next locomotion mode, it will not interfere in the
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transition classification. Tables 2–4 show the number of sequences for the locomotion
modes, transitions, and gait phases in the two data-sets.

Walking Walking --> Sitting Sitting

Walking

Walking

W

W - S Sitting

Walking

Sitting

Sitting

Sitting

Time

Original
Labels


Sequences

50 ms

W - S

Figure 2. Example of sequence extraction. The original data-set is represented in grey with its
original labels. The sequences (with a size of 1.3 s and a sliding window of 50 ms) are represented in
yellow/green/blue and are relabeled as explained in Section 2.2.1.

Table 2. Number of sequences for locomotion modes and transitions in the ENABL3S data-set.

Label N. of Sequences Label N. of Sequences

S 6639 SA-W 257

W 10009 W-RD 272

RA 3284 RD-W 124

RD 3987 W-ST 531

SA 1304 ST-S 533

SD 1307 W-RA 215

ST 4424 RA-W 262

S-ST 525 W-SD 258

ST-W 128 SD-W 236

W-SA 262

Table 3. Number of sequences for the gait phases in the ENABL3S data-set. W1 corresponds to the
gait phase 1 of walking, etc. (see Figure 1).

Label N. of Sequences Label N. of Sequences

W1 937 RD3 682

W2 1813 RD4 981

W3 2049 RD5 1042

W4 1365 SA1 150

W5 1531 SA2 336

W6 1724 SA3 547

W7 2128 SA4 285

RA1 361 SA5 243

RA2 718 SD1 141

RA3 932 SD2 364

RA4 677 SD3 203

RA5 858 SD4 325

RD1 357 SD5 510

RD2 1049
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Table 4. Number of sequences for locomotion modes and transitions in the MyLeg data-set.

Label N. of Sequences Label N. of Sequences

S 5963 ST-RA 200

ST 4978 ST-RD 179

W 4182 W-SA 537

SA 2736 W-RA 186

SD 2225 W-S 291

RA 1612 W-SD 193

RD 2208 W-ST 147

S-W 136 SA-ST 71

S-ST 536 SA-W 521

ST-SD 474 SD-ST 77

ST-SA 71 SD-W 513

ST-S 45 RA-RD 427

ST-W 3164 RD-W 483

2.2.2. Frequency-Domain Encoding

The IMUs raw data are encoded in the frequency-domain by using a spectrogram [5,10],
since it allows for taking advantage of the periodic nature of the human movement. Firstly,
the short-time Fourier-transform (STFT) is computed to obtain the frequency–domain infor-
mation from the time-series data. Then, after squaring the output signal, the spectrogram
is modified by means of a nonlinear mel scale [5], which amplifies the lower frequen-
cies where most of the human movement information can be found (below 3.5 Hz [28]),
as shown in Figure 3. The mel scaling can be computed as 2595 · log10(1 + f /700), where
2595 is a constant value ensuring that 1000 Hz corresponds to 1000 mel, and 700 is the
corner frequency at which the scales changes from linear to logarithmic [29]. The signal
is then converted into dB and normalized in the [0, 1] range so it can be processed by the
neural networks. For the calculation of the STFT, a Hann window of size 20 with an offset of
13 is used. When using the mel scale, the Hz scale is partitioned in 10 bins in order for some
channels in the mel spectrogram to not return an empty response. For implementation,
the Python package LibROSA [30] is used.

0 0.25 0.5 0.75 1 1.3
Time (s)

0

350

H
z

STFT

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

(a)

0 0.25 0.5 0.75 1 1.3
Time (s)

0

350

H
z

Mel-frequency spectrogram

-100 dB

-80 dB

-60 dB

-40 dB

(b)

Figure 3. Initial spectrogram (a) and mel spectrogram (b) from one of the IMUs signals. The higher
frequencies are attenuated after the mel scaling.

2.2.3. Data Partitioning

The data-set has been divided as follows: 80% of the data was used for training, and
20% was used for validation. Within training, 20% of the data was used for testing.
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3. Methods

This section presents the overall system architecture, as well as the different neural
networks, implemented either with a CNN, CNN-GRU, or CNN-LSTM, as inspired by our
previous work [9,10]. In the end, an overview of the experimental setting is given.

3.1. System Architecture

This study proposes a multi-level architecture as depicted in Figure 4. The input,
i.e., the spectrogram of the input sequence, goes into a first level classification (blue box
in Figure 4), which classifies to which locomotion mode the input sequence belongs. It
is composed of one single neural network and, here, locomotion modes and transitions
sequences are treated the same. This means that, for example, sequences labeled as the
walking locomotion mode, and sequences labeled as transitions that start with walking,
are both labeled as walking. This level works as a pre-classification step for the next
level. The second level is made of two parts: one is in charge of classifying locomotion
modes and transitions (level 2A), and the other one is in charge of classifying gait phases
(level 2B). Level 2A is composed of seven different neural networks, each one in charge
of a different locomotion mode. Depending on the result of level 1, the input sequence
goes into one or another. While locomotion modes and transitions are treated equally in
level 1, they get classified as either one of the locomotion modes or one of the transitions in
level 2A. For example, a walking to standing transition that was classified as walking by
level 1 would be classified as W–ST in level 2A. In the case of having a walking sequence
classified as walking by level 1, it would be classified as W–W by level 2A, thus making the
distinction from locomotion modes and transitions. Level 2B is composed of five different
networks, one for each locomotion mode that has gait phases (i.e., sitting and standing
are excluded). The input sequence goes into one network or another depending on the
result of level 1, independently of being a locomotion mode or a transition. Note that, for
the MyLeg data-set, level 2B is ignored since there are no gait phases to be classified. It
should be also noted that level 2A and level 2B are independent from each other, thus they
could be implemented both sequentially and in parallel. In this study, it was decided to
implement them in parallel.

Input First Level
Classification

Sitting Locomotion/Transitions Network

Walking Locomotion/Transitions Network

Ramp Descent Locomotion/Transitions Network

Ramp Ascent Locomotion/Transitions Network

Stair Ascent Locomotion/Transitions Network

Stair Descent Locomotion/Transitions Network

Standing Locomotion/Transitions Network

Walking Gait Phases Network

Ramp Ascent Gai tPhases Network

Ramp Descent Gait Phases Network

Stair Ascent Gait Phases Network

Stair Descent Gait Phases Network

Output:
LM - Trans - GP


Level 1

2A - Transition Classification

2B - Gait Phases Classification

Level 2

Figure 4. Proposed multi-level architecture for the classification of the locomotion modes, transitions,
and gait phases. Level 1 performs a first general classification of locomotion modes, while level 2
distinguishes between locomotion modes and transitions as well as gait phases.
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Figure 5 shows an example of how an input sequence is processed through the system
architecture. Two input sequences are shown: one sequence corresponds to the walking
locomotion mode with gait phase W1 (red sequence), and another sequence corresponds
to a walking to standing transition with gait phase W6 (orange sequence). In the first
level, both of them are classified as W. In level 2A, the sequences go into the “Walking
Locomotion/Transitions Network”, being classified as W to W (red sequence) and W to ST
(orange sequence). Something similar happens in level 2B, where both sequences enter the
“Walking Gait Phases Network” and are classified as W1 (red sequence) and W6 (orange
sequence). The final results are “W to W–W1” for the red sequence and “W to ST–W6” for
the orange sequence.

First Level
Classification


Example 1

Walking 

Sequence


Example 2

Walking to Standing

Sequence

Sitting

Walking

Ramp Ascent

  Ramp Descent

Stair Ascent

Stair Descent

Walking Locom/Trans Network

W to SD
W to SA

  W to W

W to ST
W to RA
W to RD

2A - Locom/Trans Classification

Classified as
WALKING


Classified as
WALKING


Classified as
W to W


Classified as
W to ST


Walking Gait Phases Network

2B - Gait Phases Classification

W1
W2
W3
W4 W7

W5

W6

Classified as
W1


Classified as
W6


Output
W to W - W1


Output
W to ST - W6

Level 1

Level 2

Level 2


Level 1


Figure 5. Example of classification of a given sequence.

3.2. Convolutional Neural Network

Figure 6 shows the architecture for the convolutional neural network. The input to
the network is the mel-spectrogram image, which has a size of 10 × 50. The first two
layers are convolutional layers with 5 × 5 kernel size, and the number of filters equals
64 and 128, respectively. They use a rectified linear unit and a max-pooling of size 2 × 2.
Finally, there is a dropout layer with a value of 0.25, two dense layers of sizes 512 and
256, respectively, and a softmax layer whose size depends on the output of the network.
For example, the network classifying walking gait phases in level 2B has a size of 7, while
the network classifying ramp descent gait phases has a size of 5.
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64

128

n

50

10

25

5
3

13

Input
spectrogram

Conv 5x5
MaxPool

ReLU


Conv 5x5
MaxPool

ReLU

Dropout
0.25


Dense
Layer
512


Dense
Layer
512


Output

Softmax

Figure 6. CNN architecture.

3.3. Convolutional Recurrent Neural Network

Figure 7 shows the architecture for the convolutional recurrent neural network (CNN-
GRU or CNN-LSTM) [9]. The input to the network is the mel-spectrogram image, which
has a size of 10 × 50. The first two layers are convolutional layers with 5 × 5 kernel size,
and the number of filters equals 64 and 128, respectively. The recurrent layers follow, which
are either two GRU layers or two LSTM layers with 120 and 60 units, respectively. Finally,
there is a dense layer with a size of 30, a dropout layer with a value of 0.25, and a softmax
layer whose size depends on the output of the network.
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Figure 7. CNN-(LSTM/GRU) architecture.

3.4. Evaluation: Performance Metric

As it can be seen in Tables 2–4, there is an imbalance among the number of sequences in
the different classes. Because of this, the F1-score is used to measure the performance of the
deep neural networks. It can be calculated as F1 = 2 · (precision · recall)/(precision + recall),
where precision = tp/(tp + f p) and recall = tp/(tp + f n), with tp being the number of
true positive classifications, f p the number of false positives, and f n the number of false
negatives. For a classification to be considered correct, both the locomotion mode/transition
and the gait phase must be correct. This means that it is an end-to-end measurement of the
performance of the system (the F1-score for level 2A and level 2B are also not independent),
with the only drawback being that, if level 1 misclassifies a sequence, the error will be
propagated to the rest of the network.

3.5. Hyperparameters

This subsection describes the main hyperparameters that were taken into account
during the training process. The values for these hyperparameters are used as a baseline,
since later on a grid search is conducted on each individual network to optimize its
performance. The training is done on one computer with a GeForce RTX 2080 SUPER,
AMD Ryzen 7 3700X 8-Core Processor, and 8 GB RAM.
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3.5.1. Learning Rate

The learning rate is set at 0.0001. A high value for the learning rate could cause the
network to never converge while a very low learning rate could cause the network to get
stuck in a local minima, thus the chosen value.

3.5.2. Optimizer

As optimizers, the Adaptive Moment Estimation (Adam) optimizer is used to optimize
the gradient descent while training the network [31]. Adam computes individual adaptive
learning rates for different parameters. The Root Mean Square Propagation (RMSProp) is
considered as well as an optimizer during the network grid search optimization.

3.5.3. Loss Function

The categorical cross-entropy is used as loss function.

3.5.4. Class Weighting

The class weight function provided by the sklearn.utils module of the scikit-learn
Python library is used to deal with the class imbalance in the data used for training [32].
This way, without the need for creating augmented data or varying the number of data in
the data-set, the network penalizes the classification errors for the underrepresented classes
more (i.e., the transitions).

3.5.5. Epochs and Early Stopping

The data are presented 400 times to the networks during training to ensure that the
data are used enough and are not under-fitting. If necessary, early stopping is used to
stop the training if there has not been a sufficient improvement on the validation loss
for 10 epochs. The minimum difference to consider an improvement in the validation
loss is 0.001.

3.6. Experimental Steps

In this study, there are a number of steps taken from the optimization of the neural
networks to obtain the final results for each data-set, i.e.,:

• Train each deep neural network architecture both for one and two IMUs;
• Use the results from the previous step to find the best performing architecture by

using a paired t-test;
• Optimize the best performing network architectures with the grid search;
• Train and test on the ENABL3S data-set on a subject dependent basis, meaning that

80% of the data from the testing subject are included in the training process;
• Train and test on the ENABL3S data-set on a subject independent basis, meaning that

the data from the testing subject are completely excluded from the training process;
• Train and test on the MyLeg data-set;
• Test the effect of training with healthy subjects data (ENABL3S) and testing on the

amputee subject (MyLeg);
• Evaluate the classification time of the system.

4. Results

This section presents the results obtained in the different experiments listed above.
The results are reported separately for each experimental step and by distinguishing
between the use of data from one or two IMUs.

4.1. Individual Network Optimization

As shown in Figure 4, there are many neural networks in the final system, each one
in charge of classifying a certain subset of classes. In this step, all the different network
architectures are taken into consideration for each one of the classification problems, both
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for one or two IMUs. The networks are trained and tested on each subject of the ENABL3S
data-set, and the final F1-score is the result of averaging individual F1-scores.

Figure 8 reports the initial F1-scores of the networks in level 1. The CNN-LSTM
performs the best with F1-scores of 0.96 ± 0.01 with one IMU, and 0.97 ± 0.01 with two
IMUs. Figure 9 reports the initial F1-scores of the networks in levels 2A and 2B. The CNN-
LSTM performs the best with an F1-scores ranging from 0.69 ± 0.06 to 0.95 ± 0.03 with one
IMU, and from 0.74± 0.05 to 0.95± 0.01 with two IMUs. Additionally, according to a paired
t-test, there are significant differences between the CNN-LSTM and the other architectures
(CNN and CNN-GRU) with p-values of 6.20 × 10−5 and 3.47 × 10−5 in level 1 (Figure 8),
and with p-values of 0.001 and 0.021 in level 2 (Figure 9). Therefore, the CNN-LSTM
architecture is used for the subsequent steps, i.e., for the hyperparameter optimization and
the final experiments.

1 2
Number of IMUs
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0.6

0.8

1.0

F1
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co
re

0.91 0.940.95 0.960.96 0.97
Level 1 CLassfication

CNN
CNN-GRU
CNN-LSTM

Figure 8. F1-score of the different network architectures for one and two IMUs for the classification
task of level 1.

A grid search with a 5-fold cross validation is used for the hyperparameter opti-
mization. Table 5 reports the best performing set of hyperparameters values and thus
the configuration each neural network has for the remainder of this study.

Table 5. Grid search results. Best found hyperparameter value combination for each neural network.

Classif. Activ. Learn.
Rate Optimiser Hidden Units Dropout Accuracy

Locom.
modes relu 0.001 RMSProp [32, 64, 60, 30, 15] 0.25 0.96 ± 0.05

S trans. relu 0.001 Adam [32, 64, 60, 30, 15] 0.25 0.96 ± 0.00

W trans. relu 0.001 Adam [32, 64, 60, 30, 15] 0.5 0.97 ± 0.00

SA trans. elu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.93 ± 0.01

SD trans. elu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.92 ± 0.02

RA trans. elu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.96 ± 0.01

RD trans. elu 0.001 RMSProp [32, 64, 60, 30, 15] 0.25 0.92 ± 0.01

St trans. relu 0.001 Adam [32, 64, 60, 30, 15] 0.25 0.96 ± 0.00

W gait ph. tanh 0.0001 Adam [64, 128, 120, 60, 30] 0.5 0.92 ± 0.00

SA gait ph. relu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.94 ± 0.01

SD gait ph. tanh 0.001 RMSProp [32, 64, 60, 30, 15] 0.25 0.92 ± 0.02

RA gait ph. elu 0.001 Adam [32, 64, 60, 30, 15] 0.5 0.96 ± 0.01

RD gait ph. tanh 0.001 Adam [64, 128, 120, 60, 30] 0.25 0.95 ± 0.00
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Figure 9. F1-score of the different network architectures for one and two IMUs for the classification
tasks of level 2. (a) Walking Transitions; (b) Sitting transitions; (c) Standing transitions; (d) Ramp
ascent transitions; (e) Ramp descent transitions; (f) Stair ascent transitions; (g) Stair descent transitions;
(h) Walking gait phases; (i) Ramp ascent gait phases; (j) Ramp descent gait phases; (k) Stair ascent
gait phases; (l) Stair descent gait phases.

4.2. ENABL3S Subject Dependent

This experiment consists of training the system on each healthy subject of the ENABL3S
data-set, independently of each other, and test it on itself. The objective is to evaluate the
base performance of the networks on a personal subject, where all data used both for
training (80% of the data) and testing (20% of the data) belong to the same user. The F1-
scores are obtained after averaging the individual F1-score of the ten subjects. The system
achieves an F1-score of 0.89 ± 0.01 and of 0.91 ± 0.01 with one or two IMUs, respectively.
Additionally, it obtains an F1-score of 0.93 ± 0.01 in the locomotion modes and transition
classification (level 2A), and an F1-score of 0.95 ± 0.01 in the gait phases classification
(level 2B). Figures 10 and 11 report the corresponding confusion matrices, where it can
be noticed that some classes obtain an F1-score of ∼0.85. These scores mainly belong to
transitions, either transitions not being classified correctly or locomotion modes that are
mistakenly classified as transitions. The reason for this could be inferred to transition
classes being under-represented.
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Figure 10. Confusion matrix for the ENABL3S subject dependent scenario with an CNN-LSTM for
the locomotion modes and transitions’ classification.
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Figure 11. Confusion matrix for the ENABL3S subject dependent scenario on the CNN-LSTM
configuration for the gait phases classification.
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4.3. ENABL3S Subject Independent

This experiment tests the generalization capabilities of the system by testing on a
novel subject. From the ENABL3S data-set, nine subjects are used for training, and the
remaining one is used for testing. After that, the network is retrained with 80% of the data
from the missing subject to see how much the network is able to improve. This process
is repeated until all subjects have been used once for testing. Before retraining with the
missing data, the system achieves an F1-score of 0.50 ± 0.03 and of 0.61 ± 0.05 with one
or two IMUs, respectively. After retraining, the system achieves an F1-score of 0.89 ± 0.02
and of 0.91 ± 0.02 with one or two IMUs, respectively. This lack of generalization might be
caused by the fact that different subjects move in different ways. Even though a locomotion
mode across multiple subjects is essentially very similar, differences in aspects such as the
speed or the range of movement of the limbs might produce a reduction in the overall
performance of the system’s classification.

4.4. MyLeg Subject Dependent

In this experiment, the system is tested on the osseointegrated transfemoral amputee of
the MyLeg data-set. Note that, in this case, there is no gait phase classification. The system
achieves an F1-score of 0.92 ± 0.01 and of 0.95 ± 0.01 with one or two IMUs, respectively.
Figure 12 reports the corresponding confusion matrix, where it can be noticed that some
classes obtain an F1-score of ∼0.85, which could be inferred to the class distribution.
The main difference with respect to the ENABL3S data-set is that, this time, there is no
classification coming from level 2B as there are no gait phases involved, which makes the
multi-level architecture be less influential on the overall F1-score.
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Figure 12. Confusion matrix for a MyLeg subject dependent scenario on the CNN-
LSTM configuration.
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4.5. MyLeg and ENABL3S Subject Independent

This experiment tests the performance of mixing healthy with amputee data. Initially,
the system is trained with data from either one or ten healthy subjects of the ENABL3S
data-set and, then, tested on the amputee data of the MyLeg data-set. After that, the system
is retrained with the amputee data and tested again to see if there is any improvement.
Finally, the system is tested also on the healthy data to check the effect of retraining the
networks with amputee data.

As summarized in Table 6, when using only one ENABL3S subject, the initial peak
F1-scores are 0.24 ± 0.06 and 0.21 ± 0.04 with one and two IMUs, respectively. After re-
training with the amputee data, they increase to 0.87 ± 0.01 and 0.95 ± 0.01, respectively.
Testing on the healthy subject after retraining the system with the amputee data pro-
duces low performance, i.e., F1-scores of 0.33 ± 0.02 and 0.37 ± 0.03 with one and two
IMUs, respectively.

Table 6. F1-scores obtained with the CNN-LSTM with one ENABL3S subject. The row ‘Before’ shows
results obtained without the independent subject data during training, while the row ‘After’ shows
results obtained with the independent subject data during training. The row ‘ENABL3S’ shows
results on ENABL3S data after retraining with the MyLeg data.

F1-Score 1 IMU F1-Score 2 IMUs

Before 0.24 ± 0.06 0.21 ± 0.04
After 0.87 ± 0.01 0.95 ± 0.01

ENABL3S 0.33 ± 0.02 0.37 ± 0.03

As summarized in Table 7, when using ten ENABL3S subjects, the initial peak F1-
scores are 0.29 ± 0.01 and 0.22 ± 0.02 with one and two IMUs, respectively. After retraining
with the amputee data, they increase to 0.84 ± 0.02 and 0.95 ± 0.01, respectively. Testing on
ten healthy subjects after retraining the system with the amputee data produces low perfor-
mance, i.e., F1-scores of 0.24 ± 0.03 and 0.34 ± 0.01 with one and two IMUs, respectively.

Table 7. F1-scores with CNN-LSTM with 10 ENABL3S subjects. The row ‘Before’ represents results
obtained without the independent subject data during training, while the row ‘After’ represents
results obtained with the independent subject data during training. The row ‘ENABL3S’ shows
results on ENABL3S data after retraining with MyLeg data.

F1-Score 1 IMU F1-Score 2 IMUs

Before 0.29 ± 0.01 0.22 ± 0.02
After 0.84 ± 0.02 0.946 ± 0.01

ENABL3S 0.24 ± 0.03 0.34 ± 0.01

From the tables, it can be concluded that testing the amputee data on a system trained
with healthy data does not produce desirable results. This result can be explained by
observing that healthy and amputee movements are not comparable given the differences
in locomotion abilities between these two groups. After retraining with the amputee data,
the F1-scores improve but not significantly when compared to the F1-score obtained in the
subject dependent experiment with the MyLeg data-set. This also implies that there is no
effect in pre-training the networks on a different number of subjects since the results will
most likely be the same.

4.6. Running Time

Table 8 shows the average running time for the classification of one sequence, averaged
over 1000 sequences, each one containing six or twelve spectrograms (one or two IMUs,
respectively) extracted from 1.3 s of data. In both cases, the time necessary to perform the
classification of one sequence is below 50 ms, which is the sliding window time that is
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set to obtain a new sequence, and it is also below 300 ms, which was the maximum time
allowed not to cause any discomfort to the prosthesis’ user. It is worth noting that there is
no clear difference between classifying data from one or two IMUs. The only difference is in
computation time to obtain the spectrograms, which are computed with twice the signals.
This overall computation time is calculated on a desktop computer, whose computational
power is comparable with processors that can be placed on prosthetic leg prototypes.

Table 8. Running time for the classification of one sequence (averaged over 1000 data) when using
one and two IMUs.

Time 1 IMU [ms] Time 2 IMUs [ms]

Spectrogram 2.45 ± 0.02 4.79 ± 0.04
Classification 36.73 ± 5.61 37.09 ± 6.45

Total 39.19 ± 5.63 41.88 ± 6.49

4.7. Comparison to the State-of-the-Art

In this subsection, the results obtained in this study are compared to the literature,
as summarized in Table 1.

4.7.1. Locomotion Modes, Transitions, and Gait Phases

The proposed multi-level CNN-LSTM neural network can classify seven locomotion
modes, the transitions among them (twelve transitions in the ENABL3S data-set and
nineteen transitions in the MyLeg data-set), and the twenty-seven gait phases within
each mode (only for the ENABL3S data-set). Previous research has been devoted to the
disjoint classification/prediction of locomotion modes and/or transitions or of gait phases.
Compared to [22,23] (where locomotion modes, transitions, and gait phases are jointly
classified), this study makes use of only one or two IMUs (no force sensors nor pressure
insoles are used) and considers a higher number of classes (especially for the gait phases).

With respect to the results obtained in [4], this study achieves comparable results while,
however, using less IMUs (one or two instead of three), including twenty-seven gait phases
in the classification, and extending the results to transfemoral amputees. With respect to the
results in [5], this study achieves comparable results while, however, using six sensors less,
including also gait phases in the classification, and extending the results to transfemoral
amputees. With respect to the results in [9], this study achieves comparable results while,
however, considering locomotion modes, transitions and gait phases instead of only seven
locomotion modes, and extending the results to transfemoral amputees.

4.7.2. Multi-Level Architectures

The proposed multi-level architecture differs from others in the literature. Specifically,
in [4], a machine learning method (based on SVM) is used to extract the features from
data in the time domain of three IMUs. Herein, the multi-level architecture distinguishes
between steady-state and transitions in the first level and, in the second level, between five
locomotion modes and nine transitions. In [22], a machine learning method (based on
QDA) is used to extract the features from data in the time domain of 2 IMUs and a load cell.
Herein, the multi-level architecture distinguishes between ambulation and standing in the
first level, in the second level between stance and swing depending on the load cell and,
in the third level, between five locomotion modes and ten transitions.

4.7.3. Data-Sets

The proposed multi-level architecture builds upon our previous work in which the
ENABL3S [9] and the MyLeg [10] data-set were used, and extends them to include the
combined classification of locomotion modes, transitions, and gait phases. The study in [5]
on the ENABL3S data-set outperforms our work, however excluding the gait phases.
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4.7.4. Generalization from Healthy to Amputee Subjects

This study has investigated the generalization capabilities among healthy and amputee
subjects, showing that there is a poor generalization given the differences in locomotion
gaits among these two groups, with little to no improvement when retraining the neural
network with amputee data after initially training it with healthy data, when compared
to training the neural network only with the amputee data. The improvements of the
robustness of the proposed multi-level architecture for the generalization from healthy to
amputee subjects are left for future work.

4.8. Limitations and Future Outlook
4.8.1. Transition Extraction and Data-Set Structure

As reflected in Figures 10 and 12, the transition classification achieves an average F1-
score of ∼0.90. This might be due to the way in which transitions are extracted, which makes
some transition sequences contain information about previous or subsequent locomotion
modes. A more comprehensive study of the transition sequence extraction, together with
the obtainment of transition information directly from the subjects, could help improve
the final performance of the whole system as well by reducing the under-representation of
transition data.

4.8.2. Implementation

For the user to not feel any kind of discomfort, predictions must be made approxi-
mately within 300 ms. With the approach proposed in this study, one sequence, which is
extracted from 1.3 s of data, is processed in ∼40 ms (about 4 ms to process the sequence
and 37 ms to classify the sequence). This is not only inside 300 ms but also inside the 50 ms
sliding window by which a new sequence is ready to be processed.

It must be taken into account that, for the experiments in this study, all necessary
neural networks were loaded into memory at once since there was no need to optimize for
memory efficiency. On a real prosthesis, this might not be possible, and neural networks
need to be loaded every time they are needed and discarded right after, which might
increase the amount of time necessary to process one sequence. On the other hand, in the
experiments, every classification was run sequentially (level 1, then level 2A, then level 2B),
so the running time can be improved if parallelism approaches are taken into consideration
when designing the whole system.

4.8.3. Clinical Requirements

Future research should focus on the implementation and evaluation of the proposed
method on osseointegrated amputees in clinical trials. This study can be the starting point
since the overall F1-score for the amputee subject reaches 0.95, with individual classes
mostly above 0.9, as shown in Figure 12. The F1-scores might improve by the addition of
new data to the data-sets since, in general, in deep learning, the more data, the better the
final performance is.

5. Conclusions

This paper presented the design of a system for the classification of locomotion modes,
transitions, and gait phases for both healthy and osseointegrated lower-limb amputee
subjects by using IMUs. Different deep neural network configurations are investigated by
combining convolutional and recurrent layers. As input to the networks, the frequency-
domain information in the form of a spectrogram of one IMU (located on the upper leg) or
two IMUs (located on both the upper and lower leg) are used.

The results showed that a system composed of CNN-LSTM networks is able to cor-
rectly classify with a mean F1-score of 0.89 ± 0.01 and 0.91 ± 0.01 for the healthy subjects
(considering the locomotion modes, transitions, and gait phases), and 0.92 ± 0.01 and
0.95 ± 0.01 for the amputee subject (only locomotion modes and transitions) by using one
and two IMUs, respectively. Moreover, it was shown that the generalization capabilities for
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this type of classification task might be difficult to achieve given the nature of the data that
are used, and that healthy and amputee data should not be mixed since they worsen the
performance of the classification.
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