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Abstract: This paper presents bearing fault diagnosis using the image classification of different
fault patterns. Feature extraction for image classification is carried out using a novel approach of
Color recurrence plots, which is presented for the first time. Color recurrence plots are created
using non-linear embedding of the vibration signals into delay coordinate space with variable time
lags. Deep learning-based image classification is then performed by building the database of the
extracted features of the bearing vibration signals in the form of Color recurrence plots. A Series of
computational experiments are performed to compare the accuracy of bearing fault classification
using Color recurrence plots. The standard bearing vibration dataset of Case Western Reserve
University is used for those purposes. The paper demonstrates the efficacy and the accuracy of a new
and unique approach of scalar time series extraction into two-dimensional Color recurrence plots for
bearing fault diagnosis.

Keywords: recurrence plot; nonuniform embedding; transfer learning; feature extraction; bearing
fault diagnosis

1. Introduction

Any rotating equipment, which is part of heavy machinery, or comprising of me-
chanical motors employs rolling or other types of ball bearings as one of the key elements
for the purpose of uni- or multi-dimensional rotations. Repeated use of the bearing and
excessive vibrations, combined with limited lubrication of machine parts could sometimes
lead to the development of mechanical faults in the bearing. These mechanical faults if
gone undetected for some time could result in machine failure, consequently resulting in
downtime and sometimes could also lead to injuries. Timely interventions or preventive
maintenance is key to keeping high up-time of the rotating equipment. One way to ensure
that preventive maintenance could be performed is if an early bearing fault detection could
be available. Early fault detection is not easy as it is sometimes hard to nearly impossible to
implement non-intrusive inspections of heavy machinery due to inaccessibility. Intrusive
inspections are not always welcome as they could result in heavy downtime and impact
production. Non-intrusive inspection is the preferred route to limit downtime. One way to
perform the non-intrusive inspection is through the use of vibration data from the machine
and analyzing it with help of machine learning algorithms.

Machine learning algorithms have been successively used for early fault detection in
rotational bearings. Tools such as support vector machines and artificial neural networks have
been used in feature extraction for bearing fault diagnosis [1]. An image classification approach
which results in a confusion matrix as an evaluation parameter is employed. A review of
different artificial algorithms used in fault diagnosis can be found in [2–4]. A brief overview
of the main artificial intelligent architecture used for bearing fault diagnosis is discussed
in [5].
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Advanced ANN architectures are often utilized for bearing fault identification and
classification [6–8]. Bearing fault analysis has been carried out using permutation entropy
approaches and has been discussed in great detail in the paper [9,10]. Recurrence anal-
ysis has also been employed in bearing fault diagnosis using uniform time delays, see
paper [11,12]. Some other authors have also tried to apply Recurrence Quantification analy-
sis for Bearing Fault detection [13]. Deep learning-based bearing fault analysis has been
extensively looked at [1]. Fault diagnosis of bearings using recurrences based on uniform
time delays and artificial intelligence techniques, such as rotation forest, artificial neural
network, and support vector machine, has also been looked at recently by [14]. Supervised
and unsupervised methods for fault diagnosis using feature representation have also been
investigated [15,16]. The capability of recurrence plots to extract visual features from a
scalar time series has been extensively exploited in deep learning-based algorithms for
intelligent fault diagnosis. For example, recurrence plots with optimal time delay have
been used in [11] for quantitative analysis of fault diagnostic. The recurrence plot-based
damage method was also introduced in [12]. Although deep learning has been used in
bearing fault diagnosis, a comprehensive review of the literature published in the field of
bearing fault diagnosis, using deep learning, presented in [17] suggest that the transfer
learning approach should be explored in bearing fault diagnosis.

One area where there is still a large gap is the use of non-uniform time delay space
combined with colored recurrence analysis and deep learning. The literature in this area is
largely missing to the best of the authors’ knowledge. Our paper addresses this gap. In this
paper, we plan to study the ability of deep-learning CNN models to automatically learn
the useful texture features in order to classify bearing faults. One-dimensional raw current
signals are converted to 2D images, and the CNN model is used to successfully capture
the temporal and spatial dependencies in the colored images, which are generated using
recurrence analysis.

The main objective of this paper is to propose Color recurrence plots as a new feature
extraction technique for bearing fault diagnosis. Color recurrence plots are capable to
extract visual features from a vibration signal represented in the form of a scalar time series.
The paper demonstrates that the performance of fault classification is considerably im-
proved by the combined implementation of feature extraction using Color recurrence plots,
and the CNN classifier. The paper also highlights the role of non-uniform embedding in the
generation of the database of images used for training the machine learning model. Since
the main aim of this paper is to introduce novel feature extraction techniques; therefore,
the transfer learning approach is used for training two different trained networks, namely
Alexnet and SqueezeNet. The networks are chosen on the basis of their computational cost
and accuracy. A detailed comparison is presented in the paper using these two networks
for bearing fault diagnosis.

The paper is presented as follows: The Introduction is presented in Section 1. Section 2
describes the non-uniform embedding approach and principles behind recurrence plot
Creation. Definitions of the proposed Color recurrence plot analysis approach are presented
in Section 3. Details of the data set used in the paper are described in Section 4. Section 5
describes the networks used for transfer learning and the input data requirements for
training and testing of these networks for the Color recurrence plot-based classification
task is presented. Results from the application of transfer learning for Color recurrence
analysis are presented in Section 6. Conclusions and discussions follow in Section 7.

2. Preliminaries

In this section, the basic building blocks for the fault diagnostic algorithm presented
in this paper are discussed. First, the principles of non-uniform time-delay embedding are
presented followed by details of recurrence plot concepts for feature extraction are introduced.
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2.1. Non-Uniform Embedding

Let us consider a scalar time series on a regular grid:

{xk}, k = 1, 2, . . . , N; xk ∈ R (1)

where N is the length of the observation window. Uniform embedding maps the time series
into a trajectory matrix: [

xk xk+τ xk+2τ · · · xk+(d−1)τ
]
;

k = 1, 2, ..., (N − (d− 1)τ), (2)

where d is the embedding dimension and τ ∈ N is the time lag. One of the classical meth-
ods used for the determination of the optimal embedding dimension is the false nearest
neighbor (FNN) method [18]. The identification of the optimal time lag is performed by
using algorithms based on the auto-correlation function [19], the mutual information [20],
or the geometric approach where the optimality of the time delay is based on the maximal
spreading of the embedded attractor in the delay-coordinate space [21]. In general, the op-
timal time lag should make column vectors of the trajectory matrix to be independent as
far as possible, yet not too far to preserve the information about the dynamic properties of
the embedded time series.

Non-uniform attractor embedding also maps the original time series into a trajec-
tory matrix: [

xk xk+τ1 xk+τ1+τ2 · · · xk+τ1+···+τd−1

]
;

k = 1, 2, ..., (N − (τ1 + · · ·+ τd−1)), (3)

when time lags τ1, τ2, . . . , τd−1 ∈ N are not necessarily equal. It has been demonstrated that
non-uniform embedding has many advantages over uniform embedding. For example,
it is shown in [19] that non-uniform embedding is preferable for the reconstruction of
attractors in a multi-dimensional delay coordinate space when a time series involves
several incommensurate frequencies. It is demonstrated that non-uniform embedding
does outperform uniform embedding in time series forecasting applications [22,23]. Non-
uniform embedding is efficiently exploited for the detection of the causal coupling and the
transfer entropy in multivariate time series [24,25].

Many different techniques exist for the determination of the set of optimal time lags
{τ1, τ2, . . ., τd−1}. Evolutionary algorithms for the selection of time lags based on the near-
optimal spreading of the reconstructed attractor in all possible projections of the delay
coordinate space are employed in [26]. A greedy strategy for constructing the embedded
vector based on direct-coupling information measure is presented in [27]. The conditional
entropy criteria and greedy forward selection are exploited for nonuniform embedding
in [28]. The feature selection technique, in which the objective function of nonuniform
embedding is based on the relevance analysis, is presented in [29]. A pure geometric
approach for the determination of optimal time lags of the non-uniform embedding is
presented in [30]. This approach is based on the maximization of the following target
function T:

max
1≤τ1,...,τd−1≤m

T(τ1, τ2, . . . , τd−1) =
1

(N − δ)
√

d

×
N−δ

∑
k=1

√
x2

k + x2
k+τ1

+ x2
k+τ1+τ2

+ · · ·+ x2
k+δ (4)

where δ is the length of the embedding window: δ = ∑d−1
k=1 τk, and m is the upper limit for

the time lags. This is a simple, straightforward, and efficient method for the determination
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of the optimal set of time lags for a scalar time series in a finite observation window [30].
We will use this method for the determination of non-uniform time lags in this paper.

2.2. The Standard Recurrence Plot

Dynamical systems may exhibit recurrence relationships in some time-space coordi-
nate systems. A trajectory generated by a dynamical system does repeat itself at some time
interval τ through a phase space [31]. The recurrence plot is a medium to visualize such a
relationship in 2D.

The recurrence plot shows the distance of every data point xti , at time ti, to all other
points in the phase space. Explicitly, this distance is given by D(i, j) = ‖(Xi − Xj)‖).
The value of the recurrence plot at coordinates (i, j) is set to 1 if ‖(Xi − Xj)‖) is less than
a given threshold parameter ε, and is set to 0 otherwise. The recurrence plot obtained
this way is a dichotomous plot of black and white pixels. The selection of the threshold
parameter ε is crucial for building a meaningful and representative recurrence relationship.
If ε is too small then there is almost no recurrence relationship and we would not be able to
learn anything about the recurrence relationship of the dynamical system. Otherwise, if ε is
too large then as well it would result in a recurrence relationship which may mask the true
behavior of the dynamical system. Usually, ε is chosen in such a way that the proportions
of white and black pixels in the recurrence plot are equal [30].

Mathematically the recurrence relationship is expressed as the collection of pairs of
indexes at which the trajectory is at the same place:

R(i, j) =
{

1 i f | xi − xj |6 ε;
0 otherwise,

(5)

where indexes i, j sweep over the time series producing a square symmetric digital image:
1 ≤ i, j ≤ N. Recurrence plots are beneficial to visualize the recurrent dynamics of a time
series and can be used for the distinction of periodic, quasi-periodic, chaotic, and random
time series [32].

Although the concept of the recurrence plot was introduced by Eckman in 1987 [31],
over time it has become a powerful method for graphical representation and analysis of
nonlinear time series.

A standard recurrence plot generated by a normal bearing vibration signal without a
fault is shown in Figure 1 (bearing vibration signal is retrieved from the standard dataset
of the Case Western Reserve University Bearing Data Center database [33]). The threshold
parameter ε used for the construction of the recurrence plot in Figure 1 is set to 0.253 (that
results in an equal proportion of black and white pixels).

Time Series Data for Normal Bearing Without Fault

0 0.5 1 1.5 2 2.5

105

0

0.2

0.4

−0.2

Figure 1. The standard recurrence plot generated by a normal bearing vibration signal without a
fault (the dataset of Case Western Reserve University School of Engineering [33]). The threshold
parameter ε is set to 0.253 which results in an equal proportion of black and white pixels.

The selection of this particular value of ε is illustrated in Figure 2. The ratio between
black and white pixels is 30% at ε = 0.21 (Figure 2A); the ratio between black and white
pixels is 70% at ε = 0.295 (Figure 2C). The graphical relationship between the ratio of pixels
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and ε is a monotonous sigmoidal-type function (Figure 2). A proper selection (optimization)
of ε helps to generate a representative standard recurrence plot.

0 0.05 0.1 0.21 0.253 0.295 0.4 0.45
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

p

��

A                          B                           C

Figure 2. The standard recurrence plot of a normal bearing vibration signal without a fault. The line
graph shows the relationship between the percentage of black pixels in the recurrence plot from the
threshold parameter ε. The ratio between black and white pixels is equal at ε = 0.253. Part (A) shows
the standard recurrence plot at ε = 0.21; part (B) at ε = 0.144; part (C) at ε = 0.295.

2.3. Recurrence Plots for Bearing Fault Diagnosis

A recurrence plot can be interpreted as a feature extraction algorithm from a time
series. A scalar time series is mapped onto a 2D digital image through the recurrence
relationship. That enables the use of machine learning algorithms for the classification of
features (digital images) extracted from the original time series.

A typical engineering application of recurrence plots is the bearing fault diagnosis.
A standard dataset used for such purposes is the Case Western Reserve University Bearing
Data Center database [33]. The database has become a standard test set for intelligent defect
detection algorithms in rolling bearings systems. The data come from the experimental test
rig comprised of a 2-hp motor, a torque sensor/encoder, a power meter, accelerometers,
and electronic control unit. The faults are created by electrical discharge machining. There
are four different health states of rolling bearings—the inner race fault, the outer race fault,
the ball fault, and no fault. Vibration data are classified into fault data when the defect is
on the drive end (sampled at 12k), fault data when the defect is on the drive end (sampled
at 48k), fault data when the defect is on the fan end, and normal baseline data [33]. Several
authors have already successfully used standard recurrence plots for the classification of
bearing faults [11,12].

3. The Color Recurrence Plot

The main objective of this paper is to introduce the concept of the Color recurrence
plot. Non-uniform embedding plays a major role in the algorithm generating the Color
recurrence plot.

3.1. The Proposed Recurrence Plot Based on a Fixed Time Lag

Without loss of generality, let us consider a 2× 2 standard recurrence plot (Figure 3).
The elements of the standard recurrence plot in Figure 3 are marked as moduli of differences
between the data points according to the indexes of the row and the column (the comparison
to the threshold parameter ε is omitted for brevity). Only the first two data points of the
time series x1 and x2 are used in the formation of the standard recurrence plot. These two
first data points are marked by black dots in the schematic representation of the time series
(Figure 3).

Let us consider a two-dimensional embedding of the time series into a planar phase
plane. The algorithm for the construction of the standard recurrence plot could be extended
in order to represent the process of two-dimensional embedding in several different ways.
If the time lag used for time series embedding is τ, then the index of the second element
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in the modified recurrence plot can be set increased by τ. Such an approach is illustrated
by Algorithm A in Figure 3. Note that Algorithm A does not produce a symmetric matrix.
The number of data points used for the formation of the modified 2× 2 recurrence plot
according to Algorithm A is equal to four (the data points are marked as empty circles in
Figure 3).

Figure 3. Figure showing 3 different recurrence plot generation algorithms. Standard recurrence plot,
Algorithm A corresponds to a recurrence relationship involving non-uniform time delay with time
delay τ +/− 1, Algorithm B corresponds to the recurrence relationship involving purely non-uniform
time delays τ.

However, the difference between indexes of data points in the modified recurrence
plot generated by Algorithm A is not always equal to τ. The difference between indexes
is equal to 5, 6, and 7 in the 2× 2 modified recurrence plot at τ = 6 (Figure 3). Note that
the variation interval of those differences around τ will be much longer if the size of the
modified recurrence plot is larger. In other words, the information about the pre-selected
time lag τ will be kept only on the main diagonal of the modified recurrence plot.

As mentioned previously, the concept of the Color recurrence plot will be closely
related to the non-uniform multi-dimensional embedding. The set of optimal time lags
does comprise d − 1 time lags (when the dimension of the delay-coordinate space is d).
It is important to keep particular values of time lags fixed during the embedding process.
Therefore, we do introduce Algorithm B (Figure 3) which will be used as the main building
block in the process of the construction of the Color recurrence plot.

Algorithm B is directly related to the geometric representation of the embedding
process—the pre-selected time lag τ is kept unchanged during the whole embedding
process. The number of elements in the 2× 2 proposed recurrence plot is 4 (Figure 3).
The index of the first data point in the difference runs consecutively through the time series
starting from the first data point (Algorithm B). The index of the second data point in the
difference is lagged strictly by τ (Figure 3). Eight data points are used for the formation of
the proposed 2× 2 recurrence plot according to Algorithm B; those data points are marked
by empty rectangles in (Figure 3).

Note that the proposed recurrence plot produced by Algorithm B also produces a
dichotomous digital image (the pixels are either black or white). Moreover, the proposed
recurrence plot does not need to be a square matrix; there are no restrictions for the
dimension of the generated plot (except the length of the time series).

Let us denote the axes of the delay-coordinate space as X1, . . . , Xd (Figure 4). Then,
the total length of the embedding window is τ1 + τ2 + · · ·+ τd−1; the number of rows of
the trajectory matrix (3) is:

L = n ·m ≤ N − (τ1 + · · ·+ τd−1), (6)

Let us define the size of the binary image representing the recurrence plot based on a
fixed time delay as n×m. Let us choose a planar projection generated by coordinate axes
Xk and Xl ; 1 ≤ k, l ≤ d− 1.
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X1                    X2                       X3                         X4                                     X5       t

x(t)

������������� ���  ��������������������������������������������������������

Figure 4. A schematic diagram illustrating non-uniform embedding of a scalar time series into a
5-dimensional delay-coordinate space. X1, . . . , X5 denote the axes of the reconstructed phase space;
τ1, . . . , τ4 denote time delays.

Note that the time lag δkl between axes Xk and Xl is (Figure 4):

δkl = τk + · · ·+ τl−1; 1 ≤ k < l ≤ d. (7)

Therefore, the recurrence plot in the planar projection generated by Xk and Xl reads:

P(n×m)
kl (i, j) =

{
1 i f | xpi − xpj |6 ε;

0 otherwise,
(8)

where pi = (i− 1)m + j; pj = pi + δkl ; 1 ≤ k < l ≤ d; 1 ≤ i ≤ n; 1 ≤ j ≤ m. Note that the
time lag between indexes pi and pj is always kept constant.

3.2. The Color Recurrence Plot Based on Non-Uniform Embedding

Let us consider that the dimension of the delay-coordinate space is d > 2. In other
words, a scalar time series is embedded into a d-dimensional space. The properties of the
embedded attractor can be evaluated by assigning a measure function for the attractor’s
planar projection. Then, the values of the measure function produced by all possible planar
projections in the d-dimensional phase space can be averaged. The resulting value can be
used as a numerical estimate of the properties of the embedded attractor [23]. By the way,
the measure function used in [23] is the area occupied by the attractor in a planar projection.

The proposed Color recurrence plot is constructed using the same principle of arith-
metic averaging throughout all possible planar projections of the d-dimensional phase
space. However, the measure function used to construct the proposed Color recurrence
plot does not map the projection of the attractor into a single scalar value (as used in [23]).
The proposed measure function µ maps the projection of the embedded attractor (the k-th
and the l-th columns of the trajectory matrix) into P(n×m)

kl :

µ(Xk, Xl) : RL×2 → P(n×m)
kl . (9)

The number of different planar projections in the d-dimensional phase space is d(d−1)
2 .

The arithmetic averaging through all possible planar projections yields the Color recur-
rence plot:

C(n×m) =
2

d(d− 1) ∑
1≤k,l≤d;k 6=l

P(n×m)
kl . (10)

The maximal number of different colors in the Color recurrence plot is d(d−1)
2 + 1. This

number exceeds 256 only at d = 23. Therefore, the different colors of C(n×m) can be linearly
distributed throughout the standard grayscale interval [0, 255].
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3.3. Color Recurrence Plots Produced by Bearing Vibration Signals

Let us consider a normal ball-bearing vibration signal without a fault (the same signal
used in Figure 1). The first step in the process of building the Color recurrence plot is the
determination of the optimal embedding dimension d. The classical FNN algorithm [34]
yields d = 5 for this vibration signal.

The maximization of the target function (4) yields the following set of optimal time
delays: τ1 = 5; τ2 = 39; τ3 = 5, and τ4 = 15. Ten different recurrence plots based on the
fixed time delay (corresponding to ten different projections of the embedded attractor) are
depicted in Figure 5. The threshold parameter ε is set to 0.253 for all ten recurrence plots.
The arithmetic average of ten dichotomous digital images yields the Color recurrence plot
(Figure 5).

X1X2

X2X3

X3X4

X4X5

X1X3

X1X4

X1X5

X2X5

X2X4

X3X5

Figure 5. A schematic diagram illustrating the formation of the Color recurrence plot for a normal
bearing test data without a fault. The embedding dimension d = 5 yields ten different dichotomous
recurrence plots based on a fixed time lag. The first column represents recurrence plots with a single
time delay (τ1, τ2, τ3, and τ4). The second column represents recurrence plots with double time
delays (τ1 + τ2, τ2 + τ3, and τ3 + τ4). The third column represents triple time delays (τ1 + τ2 + τ3,
and τ2 + τ3 + τ4). The fourth column represents a recurrence plot with the maximal time delay
(τ1 + τ2 + τ3 + τ4). The Color recurrence plot is produced by the arithmetic averaging of dichotomous
plots; the number of different colors is 11. The Color recurrence plot is enlarged for clarity.

Ten recurrence plots based on a fixed time delay (corresponding to ten different
projections of the embedded attractor) are depicted in Figure 5. All ten dichotomous
recurrence plots are grouped into four columns. The first column represents recurrence
plots with a single time delay (τ1, τ2, τ3, and τ4). The second column represents recurrence
plots with double time delays (τ1 + τ2, τ2 + τ3, and τ3 + τ4). The third column represents
triple time delays (τ1 + τ2 + τ3, and τ2 + τ3 + τ4). Finally, the fourth column represents a
single recurrence plot with the maximal time delay in the five-dimensional delay coordinate
space (τ1 + τ2 + τ3 + τ4).

The Color recurrence plot is generated by computing the arithmetic average of all ten
dichotomous recurrence plots based on a fixed time lag; the number of different colors
is 5·4

2 + 1 = 11 (marked from 0 to 10 in Figure 5). Note that the size of dichotomous
recurrence plots and the Color recurrence plot in Figure 5 is the same (the Color recurrence
plot is enlarged for clarity).

Color recurrence plots generated by vibration signals recorded on the normal bearing,
the bearing with a ball fault, the bearing with an inner race fault, and the bearing with
an outer race fault are depicted in Figure 6. A naked human eye can see clear visual
differences between the four digital images. That is a good indication that the proposed
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feature extraction algorithm is able to differentiate between different working conditions of
the ball bearing.

Averaged Recurrence Plot Ball Fault Averaged Recurrence Plot Normal with no Fault 

Averaged Recurrence Plot Inner Race Fault Averaged Recurrence Plot Outer Race Fault 

A B

C D

Figure 6. Color recurrence plots generated by vibration signals of a ball bearing. Part (A) shows the
Color recurrence plot produced by a normal bearing without a fault. Parts (B–D) show recurrent plots
generated by the bearing with the ball fault, the inner race fault, and the outer race fault accordingly.

4. The Description of the Data Set

The data set used in this work comes from the Case Western Reserve University School
of Engineering [33]. The data corresponds to ball bearing test data for normal and faulty
bearings. Data comes from laboratory-based experiments, which were conducted using a
2Hp reliance Electric motor, and acceleration data was measured at locations near to and
remote from the motor bearings.

The fault-bearing data set has faults ranging from 0.007 inches to 0.040 inches (the
faults are created by an electrical discharge machine). The data corresponding to the
0.007-inch fault is used in our study. We use the least significant faults only to demonstrate
the sensitivity of the proposed fault diagnosis approach. There are four different health
states of the bearings depending on their position relative to the near or far end of the
motor. These states are namely, the normal state with no fault, the inner race fault, the outer
race fault, and the ball fault. The original data set has data available for varying speeds of
the motor ranging from 0 to 3 HP. In our study we have focused on a single motor speed of
0 HP. Again, we are choosing the vibration signals with the least expressed fault sensitivity.

Four sets of Color recurrence plots are generated for vibration signals corresponding
to the normal state, the ball fault, the inner race fault, and the outer race fault. Non-
overlapping windows are used for the time delays to create averaged recurrence plot
for each data set resulting in a total of 221 images each for normal, ball fault, inner race,
and outer race fault data sets.

5. Transfer Learning for Bearing Fault Diagnosis

The transfer learning approach is used for training, testing, and validation of the
machine learning approach used in this paper. Such an approach is used due to several rea-
sons. First, the transfer learning approach allows for the testing of several well-established
deep learning networks. Additionally, the transfer learning approach saves time as it
eliminates the need for the development of a network from scratch, which is not an easy
task and needs network designing expertise. Finally, the transfer learning approach is
easy to implement and allows for faster simulation and better sensitivity which could be
achieved in a relatively short amount of time in a real-world application scenario.
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5.1. Transfer Learning Definition

The basic idea of the transfer learning approach is to use a well-trained network
and utilize the knowledge it has acquired for another task, which is similar in nature by
exposing or training it on some additional set of parameters [35]. A real-world analogy
would be to take a person who has programming skills to code in languages such as C++ or
Java and expose him to programming in python. The person would be able to use the skills
acquired in learning C++ or Java and would be able to learn python much faster compared
to a person who has no previous programming knowledge.

In this paper, since the focus is on image classification, several pretrained image
classification networks exist, SqueezeNet [36] and Alexnet [37]. Both networks have been
trained to classify over 1000 images. Therefore, in principle, it is possible to take one of
these networks and re-train them for a new classification task. This could be achieved by re-
training the network on an additional set of images by changing some network parameters
to classify a new set of images. Fine-tuning the network parameters of a pretrained network
is much faster and easier compared to creating a network from scratch. This is exactly the
approach that has been used in this paper. A sample workflow of the approach is shown in
Figure 7.

Figure 7. Workflow showing retraining of a pretrained network.

5.2. Pretrained Network Selection

The first task in transfer learning is to select the pretrained network to be used for the
transfer learning approach. For this purpose, we draw upon a comparison of prediction
time vs. prediction accuracy, see Figure 8 taken from [38]. The plots show some pretrained
networks, which are very fast but have poor prediction accuracies, such as Squeezenet and
some pretrained networks, which are very accurate but take a lot of computational time
such as Inception-ResNet-V2 [39].

12,000

10,000

8,000

6,000

4,000

2,000

Figure 8. Figure showing a comparison of speed for different classification networks tested on images
from the Mendeley DataSet, for details please see [40,41].

In the work presented in this paper, we wanted to perform many sensitivities; hence,
we required pretrained networks that are fast for initial testing. Since the main aim of
this paper is feature extraction and not network engineering, we made a choice of using
SqueezeNet and AlexNet due to their fast computational speed.

5.3. Transfer Learning for AlexNet and SqueezeNet

Once the pretrained networks are selected transfer learning approach is used to
re-train the pretrained networks. In this section, some details of the two networks are
provided along with the details of the procedure used for the retraining of the AlexNet and
SqueezeNet networks is also provided.
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5.3.1. Transfer Learning for AlexNet

AlexNet is an image classification network comprising 25 layers and has been trained
to classify up to 1000 images. Input image size for the network is 227× 227 pixels resolution.
For retraining of the AlexNet, the last three layers that are configured for 1000 classes must
be fine-tuned for the new classification problem. These last three layers are extracted and
replaced by a fully connected layer, a SoftMax layer and a classification layer. Some learning
parameters are then adjusted to, e.g., Weightlearnfactor and Biaslearnfactor. The initial
learning rate parameter is also adjusted to slow down the learning rate of the new network
to increase its prediction capabilities. Now, the new network is retrained with a new data
set of images.

5.3.2. Transfer Learning for SqueezeNet

SqueezeNet is an image classification convolutional neural network, which has 18 deep
learning layers and a total of 68 neural network layers. The SqueezeNet is also trained to
classify up to 1000 classes of images. Input image size for the network is 227 × 227 pixels
resolution. The network is trained on a wide range of images and has a rich feature represen-
tation. The convolutional layer of the network extract features that the last learnable layer
and the final classification layer use to classify the input image. The two layers ‘conv10’ and
‘classificationLayer_preidction’ contain information on how to combine the features
that the network uses for class probabilities. For retraining of the SqueezeNet the last two
layers are replaced with a new set of layers to adapt to the new data set. In SqueezeNet, the
last learnable layer is the final convolutional layer instead, which needs to be replaced by
a new convolutional layer with a number of filters equal to 2 for the classification of the
new data set with crack and without crack. Some learning parameters are then adjusted
to, e.g., Weightlearnfactor and Biaslearnfactor. The initial learning rate parameter is also
adjusted to slow down the learning rate of the new network to increase its prediction
capabilities. Now, the new network is retrained with a new data set of images.

5.3.3. Network Parameter Optimization

In this paper, we have used an experimental design approach to test the impact of
network parameters on output accuracy, to help identify, and then change the most impact-
ing network parameters. A conceptual approach for the experimental design workflow is
shown in Figure 9. The workflow used is rather simple and straightforward to implement.
The steps of the workflow are as follows:

• Identify the most impacting network parameter through a sensitivity analysis.
• For sensitivity analysis, a parameter range is decided and then prediction is performed

using the set of network parameter impact on prediction accuracy is checked.
• Several combinations of different network parameters are tested.
• Finally, the network parameters giving the best prediction accuracy are selected

Figure 9. Figure showing a conceptual workflow for network parameter optimization.
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For the network parameter optimization, we have taken a step-by-step approach
described above. We first test a set of network parameters on AlexNet and SqueezeNet.
Two sets of parameter optimization experiments are conducted. In the first test, the impact
of the initial learning rate is tested on AlexNet and SqueezeNet using the half and the full
data set of images. The experimental design approach runs several trial runs and tests the
impact of each run on prediction accuracy, see Figure 10. The figure shows that validation
accuracy is lower for smaller data sets and using a smaller value of initial learning rate
gives better results for the full data set for both AlexNet and SqueezeNet.

Trial Status Progress Time Data Set
Learn 
Rate

Network
Training 
Accuracy

Training 
Loss

Validation 
Accuracy

Validation 
Loss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

Finished

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

9min 50sec

9min 48sec

6min 27sec

6min 27sec

9min 45sec

9min 48sec

6min 27sec

6min 28sec

20min 3sec

20min 27sec

13min 44sec

13min 42sec

20min 28sec

20min 27sec

13min 28sec

13min 47sec

Full no aug

Full with aug

Small with 
aug

Small with 
aug

Full no aug

Full with aug

Small no aug

Small with 
aug

Full no aug

Full with aug

Small no aug

Small with 
aug

Full no aug

Full no aug

Small no aug

Small with
aug

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

Squeezenet

Squeezenet

Squeezenet

Squeezenet

Squeezenet

Squeezenet

Squeezenet

Squeezenet

93.75%

93.75%

89.06%

85.94%

94.53%

92.20%

92.20%

92.20%

99.22%

98.43%

95.31%

88.28%

94.53%

83.60%

95.31%

67.60%

92.50%

92.83%

90.01%

90.92%

74.39

77.82%

72.69%

91.93%

90.20%

86.76%

84.95%

93.05%

94.13%

89.53%

88.68%

95.45%

0.06

0.10

0.24

0.15

0.40

0.17

0.56

0.25

0.15

0.33

0.33

0.26

0.16

0.26

0.03

0.03

0.28

0.23

0.30

0.26

0.54

0.51

0.57

0.21

0.27

0.36

0.39

0.20

0.17

0.31

0.30

0.13

Figure 10. Figure showing application of network optimization workflow on AlexNet and
SqueezeNet using the database of images and trial runs for initial learning rateparameter optimiza-
tion. The blue box highlights the best case with optimum parameters selected from the experimental
design.

In the next set of experiments, given the poor performance of the smaller data set, a
full data set is used and the impact of two parameters, initial learning rate and network
dropout probability, are tested simultaneously, on the validation accuracy of AlexNet and
SqueezeNet. Again the experimental design approach runs several trial combinations and
helps to suggest the best initial learning rate and the best network dropout probability,
which will give the best accuracy, see Figure 11. Based on the output of these tests the
network parameters are fine-tuned and then both networks are used for further analysis.
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Figure 11. Figure showing application of network optimization workflow on AlexNet and
SqueezeNet using the database of images and trial runs with Initial Learning rate and Dropout
Probability variations.
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6. Color Recurrence Plot Analysis Using Transfer Learning

For machine learning, one of the important steps is the preparation of data for training,
testing and validation. For this purpose, the bearing fault data set described earlier in
Section 4 is used. Averaged recurrence plots are created for normal data without bearing
fault, drive end (inner race) bearing fault data and far end (outer race) bearing fault data set,
see Figure 12, which shows some sample subset of images from each of the four data classes.

Initially, we used non-overlapping windows for creating averaged recurrence plots,
which resulted in about 221 images for each category, but we realized that during the
training and test that this data set was not adequate. Then to increase the number of
averaged recurrence images we had to use overlapping windows on the data set with
a window size of 550 data points, which results in 442 averaged images for each of the
categories. The images are also converted into corresponding pixel resolution, 227 × 227,
which would be suitable for AlexNet and SqueezeNet architecture.

Normal No Fault Ball Fault 

Inner Race Fault Outer  Race Fault 

Figure 12. Images showing a subset of the images used for training the deep learning network.

Data is divided into two bigger sets comprising fan end and drive end data, where
each set is further subdivided into four classes comprising normal, inner race, outer race
and ball data sets. For classification, two problems are solved, first, where the subsets
are kept intact and tested with normal data without any fault for the fan end and drive
end individually, which results in a classification problem with four classes. The second
classification task involved combining sub-classes of drive end and fan end, which results
in 10 classes each for the fan end and drive end data set and therefore, a more challenging
classification task.

As described earlier in Section 5, once the data set was ready the transfer learning
approach was used for carrying out recurrence plot analysis on the averaged image for
each data set. A typical conceptual workflow of how the analysis could be carried out is
shown in Figure 13. The figure shows how an image class was used to train the neural
network such as Alexnet or Squeezenet using transfer learning and resulting confusion
matrices are generated.
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Input 
Layer

Hidden 
Layers

Output 
Layer

Figure 13. Figure showing conceptual workflow of how Alextnet or Squeezenet will be used for
image classification using Color recurrence plots.

For the first classification task, four subsets of the total data set were created for the
drive end and fan end data set corresponding to data series any fault “normal”, inner race
fault, outer race fault and ball bearing fault. Each subset comprised 442 images, which
were divided into training, testing and validation using 80/20 ratios. Figures 14 and 15
show the training metrics of the AlexNet and SqueezeNet, respectively. Once the network
is trained it is then ready to be used for the classification task.

Figure 14. Figure showing training of SqueezeNet using Transfer learning on the Color recurrence
plots combining the classes into a single classification problem.

Figure 15. Figure showing training of AlexNet using Transfer learning on the Color recurrence plots
combining the classes into a single classification problem.
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Several sensitivities were carried out to achieve high accuracy by adjusting some of the
network parameters and the number of images used for training and testing. Particularly,
the use of overlapping time series windows helped, to improve the initially lower accuracy
rates, in achieving high accuracy rates with an increase in the number of images. The output
of the classification algorithm in the form of a confusion matrix is shown in Figure 16,
for the drive end data set. The figure shows the results of the test carried out using both
AlexNet and SqueezeNet networks. A total of 99.7% accuracy is obtained for AlexNet and
100% accuracy is achieved for SqueezeNet. Figure 17 shows the confusion matrix using
AlexNet and SqueezeNet for the fan end data set. A total of 99.6% accuracy is obtained for
AlexNet and 98.4% accuracy is obtained for Squeezenet.

65

66

133

66

66

66

133

66

Predicted Class Predicted Class

Tr
ue

 C
la

ss

Tr
ue

 C
la

ss

105 _B 105 _IR 105 _OR

Drive End 

Normal 105 _B 105 _IR 105 _OR Normal

10
5 

_B
10

5 
_I

R
10

5 
_O

R
N

or
m

al

10
5 

_B
10

5 
_I

R
10

5 
_O

R
N

or
m

al

Figure 16. Figure showing Confusion Matrix for AlexNet and SqueezeNet using Transfer learning on
the Color recurrence plots for the drive end bearing subset of the data set.
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Figure 17. Figure showing Confusion Matrix for AlexNet and SqueezeNet using Transfer learning on
the Color recurrence plots for the data set corresponding to the fan end bearing subset of the data set.

For the second classification task, we use a larger data set for a combined classification
problem with 10 classes each for the fan end and the drive end data sets. First, the results
for the confusion matrix generated using AlexNet and SqueezeNet for the drive end data
set are shown in Figure 18. A total of 99.4% accuracy is achieved for AlexNet and 98.4%
accuracy is achieved for SqueezeNet. Next, the same is performed for the fan end data
set, accuracy, in this case, is lower at about 93% for AlexNet and 95% for SqueezeNet,
respectively, see Figure 19.
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Figure 18. Figure showing Confusion Matrix for AlexNet and SqueezeNet using Transfer learning on
the Color recurrence plots combining the classes into a single classification problem.

Figure 19. Figure showing confusion matrix using AlexNet and SqueezeNet for the fan end bear-
ing data.

7. Conclusions and Discussions

In this paper, a detailed analysis of bearing fault diagnosis is presented with the
help of Color recurrence plots analysis. Standard recurrence plots are based on uniform
time lags and are black and white. Whereas, the algorithms proposed in this paper use
non-uniform time lags combined with an image averaging method, which results in unique
Color recurrence plots. The Color recurrence plots make the analysis more interesting as
the difference between different bearing types is enhanced through the use of color plots.

The recurrence plots are then analyzed with the help of an image classification ap-
proach using transfer learning, for which AlexNet and SqueezeNet are used. A large image
database is created, from the data set using overlapping time series windows comprising
550 data points resulting in around 442 images for each class, which is used for training
and testing of the networks using transfer learning. Network parameters are optimized
based on an experimental design approach. The comparative results obtained using the
image classification approach show a very high accuracy of around 99% accuracy for the
two networks. The approach presented in this paper clearly demonstrates that recurrence
analysis combined with machine learning forms a very powerful tool for early detection of
bearing fault analysis using vibrations data.

Moreover, in this paper, only a simple averaging method is used to generate Color
recurrence plots. It is possible to further explore other averaging methods such as harmonic
or power law averaging and perform a comparative analysis of image classification between
the different averaging methods. One of the aspects of averaging is that information is
reduced due to averaging it could also be explored if only some specific projections could
be averaged, which would lead to the creation of multiple groups of Color recurrence plots.
It is an idea that needs further exploration and testing.

Additionally, in this paper, we have tested two extremes of the image classification
task one with four classes, taking a subset of the data, and the other with 10 classes, taking



Sensors 2022, 22, 8870 17 of 18

a larger data set. It is possible to explore other intermediate groups of classes and further
check the accuracy of the method proposed in this paper.

Finally, the novelty of the bearing fault diagnosis approach presented in this paper
comes from two aspects. First, the use of Color recurrence plots, which, first have never
been presented before, and second enhance the image patterns and help to significantly
improve the classification task even in the case of bigger data sets where 10 classes are
used for fan end and drive end data sets. The second aspect of novelty comes from the
use of transfer learning, which does not require the design of a network from scratch but
takes advantage of the existing networks, which have already been trained on a large data
set of images. Although the second aspect is not completely new, its use in bearing fault
diagnosis is new [17].
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