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Abstract: Compressive sensing (CS) is a signal sampling theory that originated about 16 years ago. It
replaces expensive and complex receiving devices with well-designed signal recovery algorithms,
thus simplifying the imaging system. Based on the application of CS theory, a single-pixel camera
with an array-detection imaging system is established for high-pixel detection. Each detector of
the detector array is coupled with a bundle of fibers formed by fusion of four bundles of fibers of
different lengths, so that the target area corresponding to one detector is split into four groups of
target information arriving at different times. By comparing the total amount of information received
by the detector with the threshold set in advance, it can be determined whether the four groups of
information are calculated separately. The simulation results show that this new system can not only
reduce the number of measurements required to reconstruct high quality images but can also handle
situations wherever the target may appear in the field of view without necessitating an increase in
the number of detectors.

Keywords: compressive sensing; adaptive imaging; fiber array; high pixels

1. Introduction

As a type of signal sampling theory, CS theory overcomes the shortcomings of tra-
ditional Nyquist theorem sampling, namely a large amount of data and a large waste of
storage space and time. Researchers proposed that if the original signal is sparse or com-
pressible, a precise reconstruction can be recovered from a small number of random mea-
surements by solving linear equations [1–4]. Since the non-adaptive linear measurement
results of a small number of compressible signals or images contain enough information for
reconstruction processing, CS theory can be used to directly obtain the compressed signal
representation without first sampling the signal [4–7]. CS theory transfers the burden of
sampling to data processing, it shifts the focus of the imaging system from the traditional de-
sign of expensive receiver hardware to the novel design of signal recovery algorithms [5,7].
At present, CS technology has been widely used in three areas—wireless communication,
array signal processing, and imaging systems—and plays a major role in fault diagnosis and
signal recognition [8,9]. A single-pixel camera is an important application of compressed
sensing theory. It uses a digital micromirror device (DMD) to perform optical calculations
on the linear projection of images on the pseudo-random binary pattern [10]. Single-pixel
camera technology has been widely used in spectral imaging, radar imaging, and medical
imaging [11,12]. Similarly, it also supports a variety of applications for three-dimensional
(3-D) imaging, such as multispectral imaging [13], depth estimation of imaging scenes [14],
and video rate improvement [15].

In previous research [16], the sparsity problem was identified, which has a great impact
on array detection imaging systems based on CS theory; consequently, a method using
irregularly arranged fibers was proposed to solve this problem. However, this method

Sensors 2022, 22, 8848. https://doi.org/10.3390/s22228848 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228848
https://doi.org/10.3390/s22228848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22228848
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228848?type=check_update&version=1


Sensors 2022, 22, 8848 2 of 10

should be applied under a certain condition, i.e., the target should always be in the middle
of the field of view. The reconstruction of an image using fibers with fewer data is a hot
research topic; one method is proposed by Yu et al. [17]. However, our method is based
on CS theory rather than machine learning algorithm, and uses fewer datasets. Another
related method is to conjunct the photon-counting imaging system with a fiber optic taper
to extend the field of view of the images [18]. Therefore, in this article, taking advantage of
the flexibility of the fiber array arrangement, the threshold judgment method is used to
determine the position of the target, which facilitates the rapid completion of the pixels
imaging process without increasing the number of detectors.

2. Theory
2.1. CS and Single-Pixel Camera

The CS theory enables researchers to stably reconstruct the image with fewer measure-
ment results than the number of reconstructed pixels [7]. It comprises three main parts:
sparse representation of signal, measurement matrix and reconstruction algorithm.

Figure 1 shows the principle of CS. If the N-dimensional signal x is K-sparse on the Ψ
transform domain, it will be processed in the Φ domain. The measurement matrix y can be
obtained after M linear measurements by:

y = ΦΨα = Θα (1)

where Θ is called the effective observation matrix. An accurate or approximate solution
can be obtained by the optimal norm using a small number of measured values y, so that
x = Ψα has a higher probability of being reconstructed accurately. The process of signal
reconstruction faces a typical complexity non-deterministic polynomial (NP) problem.
According to CS theory, if the condition of restricted isometry property (RIP) is met [3], it
can be converted to the L1 norm to reconstruct x, and can be written as:

α∗ = argmin
α
‖α‖1

s.t. ‖y−Θα‖2 ≤ ε
(2)

where ε is the maximum noise energy limit during reconstruction.
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Figure 1. Linear measurement of CS [4].

The single-pixel camera is an optical computer that sequentially measures the inner
products y[m] = 〈x, φm〉 between an N-pixel sampled version x of the incident light-field
from the scene under view and a set of two-dimensional (2-D) test functions {φm} [9]. The
structure of the single-pixel CS camera is shown in Figure 2.
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Figure 2. Schematic diagram of single-pixel camera.

The light-field is focused by biconvex Lens 1 onto a DMD consisting of an array of N
small mirrors. Each mirror corresponds to a particular pixel in x, and φm can independently
rotate in the direction controlled by the codes. The reflected light is then collected by
biconvex Lens 2 and focused onto a single photon detector that integrates the product
x[n]φm[n] to compute the measurement y[m] = 〈x, φm〉 as its output voltage and digitized
by the A/D converter. Values of φm can be obtained by dithering the mirrors back and
forth during the photodiode integration time [7].

2.2. Problem

Baraniuk et al. proposed that if the relationship between the number of random
measurements M and the K-sparse vectors satisfies

M ≥ O(K log(N/K)) (3)

these compressible vectors can be exactly reconstructed and approximated stably with
high probability [19]. That is to say, at least M measurements are required to reconstruct
a K-sparse signal with high quality. Among them, sparsity can be simply understood
as the number of non-zero elements in the signal information, and values close to zero
are sometimes approximated to zero. Large coefficients generally contain signal-related
information, while sparse signals are small coefficients (such as background) that contain
little information.

For example, a single-pixel CS camera is used to image a target and reconstruct an
image of 256 × 256 pixels (65,536 pixels), in which background information occupies more
than 70%, and a high-quality reconstructed image that meets the recognition needs may
require approximately 1700 random measurements. This reflects the advantage of CS
theory; that is, compared with 256 × 256 detector array imaging, it not only reduces the
detection cost but also shortens the detection time compared with the traditional single-
pixel detection. However, in actual detection, more and more complex scenes or fine targets
need to be captured, sampled, and processed faster in 3D imaging systems, with lower
power consumption and larger detection pixels. Therefore, a compromise solution was
proposed in previous studies: an array detector with a small number of pixels and a DMD
array are used to image the target. Each detector can be regarded as a single-pixel camera,
using compressed sensing theory to reconstruct the corresponding sub-image block to
achieve the purpose of reducing the reconstruction time through parallel measurement
and calculation. In the array detection imaging system, assuming that a 4 × 4 pixel array
detector is used to detect the target to reconstruct a high-quality image of 256 × 256 pixels,
the sub-imaging block corresponding to each detector is 64 × 64 pixels (4096 pixels).
This method of image cutting results in several sub-imaging blocks that may be full of
target information (close to 0-sparse), and the number of measurements calculated by
Equation (3) is close to 4096 pixels, which removes the advantage of the CS technology
in the array imaging system. Simultaneously, there may be several sub-imaging blocks
that are almost full of background information, resulting in redundant measurement work.
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In previous studies, assuming that the target is always in the middle of the field of view
and the background information is distributed around, it is proposed that the number of
pixels of the image block corresponding to the target and the background information can
be redistributed using an optical fiber arrangement, thereby shortening the high-quality
reconstruction time for low-sparse sub-image blocks, and the redundant calculations of
high-sparse sub-image blocks reconstruction are reduced [16]. However, the target may
appear anywhere in the actual field of view, as shown in Figure 3. In this case, the previous
optical fiber arrangement method cannot be used.
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2.3. Proposed System

For this situation where the target position is not fixed, the structure of an adaptive
imaging system is proposed, as shown in Figures 4 and 5.
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The pulsed beam is emitted by the laser and reflected from the target. The reflected
signal reaches the DMD array board after passing through lens 1, and then is focused on the
optical fiber array by lens 2. The DMD array board is composed of DMD boards arranged in
6× 6, and each DMD board is composed of small mirrors arranged in 100 × 100 (that is, the
final reconstructed target image is 600 × 600 pixels). At the input of the optical fiber array,
36 groups of optical fiber bundles are closely arranged in a 6 × 6 arrangement. Each group
of optical fiber bundles consists of four optical fibers, and the lengths of these four optical
fibers follow an arithmetic sequence. The tolerance ∆L can ensure that the time length of the
signals returning from the same sub-region of the target do not overlap. The output of the
four optical fibers is fused into one optical fiber and connected to a detector in the detector
array, and the 36 detectors in the detector array are also arranged in a 6 × 6 arrangement.
It is equivalent to each detector receiving the signal reflected by its corresponding one
DMD board. The computer first judges the amount of signal received according to a preset
threshold. If the total signal amount of one 100 × 100 pixels sub-image area exceeds the
threshold within a certain period, the signal of the four time periods of this sub-image area
is respectively measured and processed in parallel using CS theory. The reconstructed four
50 × 50 pixel images are finally spliced into a 100 × 100 pixel reconstructed image. On
the contrary, when the total amount of signal is less than the threshold, the information
of this sub-image area does not need to be processed separately, but can be directly used
to reconstruct a 100 × 100 pixel image. Finally, all the reconstructed images are spliced
together in the correct position to obtain a reconstructed image of 600 × 600 pixels.

It can be concluded from the previous analysis that when more information of the
target is processed, longer measurement time is required for high-quality reconstruction.
Therefore, the threshold is used to determine the location of the target, the sub-image blocks
with target information greater than the threshold are further divided into four parts, and
the measurement time is reduced through parallel calculation to achieve the purpose of
shortening the overall detection and imaging time.

3. Comparative Experiment

In order to better demonstrate the advantages of the proposed system, a simulation
system is built, and a series of simulation experiments are performed. Simulation parame-
ters mainly include laser radar (LADAR) ranging equation, fiber loss, detector conversion
efficiency, etc. The LADAR range equation describes the relevant parameters of the radar
system, target characteristics, receiving parameters, and atmospheric transmission [20,21].
In the following simulation experiments, it is assumed: that the laser transmission in the
atmosphere conforms to the geometrical optics principle; the atmosphere is uniform and
isotropic; the target object belongs to the Lambert radiator; and the laser energy distribution
on the surface of the target object is uniform [18]. The equation to compute signal power at
the detector Pdet that incorporates these efficiency terms is expressed by:

Pdet =
τ0τaD2

Rρt(dA)Pt

R2θR(θtR)
2 (4)
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where Pt is the laser transmitted power, θt is the laser transmitter beam diameter and
angular divergence, R is the range between target and detector, dA is the effective target
area, ρt is the target surface reflectivity, θR is the target surface angular dispersion, τ0 is the
transmission of the optics, τa is the atmospheric transmission, and DR is the area of the
circular receiver aperture with diameter [18].

The parameters mentioned above are set to appropriate values, as shown in Table 1.

Table 1. System simulation parameters.

Parameter Value

laser power (J) 1
fiber diameter (µm) 125

atmospheric transmission 1
laser dispersion angular 0.012
detector dark current (A) 10−9

CCD pixels 800 × 800
optics transmission 1

detector quantum efficiency 0.75
width of laser pulse (ns) 6

background power (w/m2) 100

Figure 6a is the original array detection imaging method. For the 6× 6 array-detection,
each detector corresponds to a detection area of 100 × 100 pixels. The 36 sub-image
blocks are reconstructed separately and then spliced together to obtain a 600 × 600 pixel
reconstruction image.
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Figure 6b is the method to obtain the reconstructed image based on the threshold.
It can be seen that in the original 100 × 100 pixel block, six received target signals are
higher than the threshold, and they are divided into four 50 × 50 pixel image blocks and
reconstructed respectively. The remaining 100 × 100 pixel image blocks do not need to be
subdivided, and all the signals received by their corresponding detectors are directly used
to reconstruct the target image of the corresponding 100 × 100 pixel area. Finally, these
54 image blocks are spliced together to obtain a reconstructed image of 600 × 600 pixels.

It should be noted that the value of the length difference ∆L of the fiber bundle is the
key to whether the reflected signal of the target area with low sparsity can be subdivided
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correctly. ∆L should ensures that the information of the four sub-imaging blocks does not
interfere with each other. If ∆L is too small, the information in different areas will overlap
and the reconstruction will fail. If ∆L is too large, it will waste fiber cost and increase
detection time. Therefore, ∆L must satisfy:

∆L > c× (∆S/c) (5)

where c is the speed of light, and ∆S is the depth of the target. It can be obtained that
the value of ∆S should be greater than ∆S. Information for the next sub-imaging block
will not reach the detector until the detector receives all the information of the previous
sub-imaging block.

The quality of the reconstructed image is characterized by the difference between the
reconstructed image and the original image. The higher the number of measurements, the
smaller the obtained variance value, and the better the quality of the reconstructed image.
Through multiple simulation and recognition, we set a variance value, which corresponds
to a high-quality reconstructed image that meets the requirements of recognition. We also
set the threshold of segmented pixel detection for the detector of the improved system.
Figure 7a shows the intensity image of the target. Three groups of simulation experiments
were organized, ten times for each group. The original and proposed system models
were used to reconstruct 600 × 600 pixel image, and to calculate the average number of
measurements required to obtain high-quality reconstruction results set in advance, as
shown in Figure 7b.
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Figure 7. The intensity image of the target and the result of the comparison experiment.

In a parallel measurement system, the total measurement time depends on the image
block with the maximum number of measurements required for reconstruction. After
the reconstruction effect is set, more measurements are required, which means that the
corresponding image block is more important for the overall target recognition, and may
even affect the overall recognition result. Therefore, the time consumption of the two
systems can be compared by comparing the peak value of the relationship curve in Figure 7b.
It can be concluded that, compared with the original method, the peak value corresponding
to the proposed method is significantly reduced. The extra time cost caused by the fiber
array and threshold judgment only accounts for a small proportion, and becomes less as
the demand for imaging pixels increases.

4. Threshold Selection

After verifying the advantages of the proposed system, it is considered whether the
measurement time can be further shortened by adjusting the threshold. The target is
placed in two positions, and three thresholds are used to reconstruct the same level of high-
quality images. Figure 8a–c correspond to the first position of the target, and Figure 8d–f
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correspond to the second position of the target. The thresholds used in Figure 8a,d are
lower than those in Figure 8b,e, and higher than those in Figure 8c,f. It can be seen from
the blue and yellow blocks in Figure 8 that different thresholds result in different target
area subdivision schemes. Due to the further subdivision of image blocks, the abscissa of
Figure 9 corresponds to the number of sub-image blocks in Figure 8a–f, as 54, 45, 60, 51, 42,
and 54, respectively.
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By comparing the peaks of the curves in Figure 9a,b, it can be obtained that the number
of measurements required to reconstruct a high-quality image with a larger threshold
(Threshold 2) is much higher than the others. The difference between the number of
measurements required for Threshold 1 and Threshold 3 is relatively small, between which
the number of measurements of Threshold 1 is slightly more. However, the lower the
threshold selected, the more image blocks are subdivided.
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5. Conclusions

The single-pixel camera is able to efficiently and scalably handle high-dimensional
data sets from hyperspectral imaging. Target detection and recognition have increasingly
higher requirements for imaging pixels. Using a single-pixel camera to build an array-
detection imaging system can greatly reduce hardware burden; however, the time cost
of reconstructing images will also increase. Therefore, an improved adaptive method is
proposed, which uses a flexible optical fiber array structure to connect to the detector
array. The computer performs a threshold judgment on the total signals received by each
detector in the detector array, and further divides the sub-image blocks that exceed the
threshold (low-sparse); then, images are reconstructed separately, so the aim of shortening
the reconstruction time can be achieved by parallel measurement and calculation. The
comparative experiment proves the effect of the system for shortening the measurement
time, and another simulation result provides suggestions for the selection of the threshold.
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