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Abstract: A Kalman filter can be used to fill space–state reconstruction dynamics based on knowledge
of a system and partial measurements. However, its performance relies on accurate modeling of the
system dynamics and a proper characterization of the uncertainties, which can be hard to obtain
in real-life scenarios. In this work, we explore how the values of a Kalman gain matrix can be
estimated by using spiking neural networks through a combination of biologically plausible neuron
models with spike-time-dependent plasticity learning algorithms. The performance of proposed
neural architecture is verified with simulations of some representative nonlinear systems, which
show promising results. This approach traces a path for its implementation in neuromorphic analog
hardware that can learn and reconstruct partial and changing dynamics of a system without the
massive power consumption that is typically needed in a Von Neumann-based computer architecture.

Keywords: Kalman filter; artificial intelligence; spiking neural networks; robotics; dynamics

1. Introduction

System dynamics can be represented as a set of differential equations in a space–state
manner, and they are defined by using several techniques that explore the system’s ener-
getic relationships, such as Newtonian, Lagrangian, or Hamiltonian mechanics. However,
trying to describe some phenomena correctly without knowing the governing modeling
equations or without a proper selection of the space–state variables results in inaccurate
representations or a complex set of equations that could be represented in a more straight-
forward but unknown form [1]. Data-driven system modeling refers to a set of optimization
techniques intended to obtain a system’s description based on data observations and mea-
surements of the system’s evolution. For example, the sparse identification of nonlinear
dynamics (SINDY) [2,3] creates a matrix filled with proposed functions and a coefficient
matrix, which must be obtained by using well-documented optimization techniques, such
as least-square optimization, to replicate the proportionated data as closely as possible.

Artificial neural networks (ANNs) have tackled this challenge on multiple frontiers.
Physics-informed neural networks (PINNs) use prior knowledge of the laws of general
physics as a regularization agent during their training process, thus limiting the space of
admissible solutions [4]. For instance, a Kalman filter (KF) is a model-based technique that
allows sensor fusion in order to construct a full space–state recovery based on preliminary
knowledge of the system’s model and the nature of perturbation noise, which is useful
for unknown perturbances or noisy sensor measurements [5,6]. In [7], the proposal of
KalmanNet replaced parts of the equations of the extended Kalman filter (EKF) with an
ANN with gated recurrent units (GRUs) to find the proper Kalman gain matrix that would
allow a full state recovery.

For example, robotic systems exhibit changing dynamics during their lifespan due
to the attrition of joints or their interactions within a changing environment. Therefore,
compact and energy-efficient learning platforms are required for any autonomous robotic
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solution [8]. However, the Von Neumann computer architecture, which is present in all
commercially available computing solutions, separates processing and storage into different
functional units. Emulating an ANN, a computing strategy that inherently performs storage
and processing as closely as possible creates a data bottleneck, as the interactions of neurons
and synapses are represented in terms of massive matrix multiplication. The state-of-the-art
research on ANNs is performed with sizable graphic processing units (GPUs) or multiple-
core computing solutions, the power consumption of which is estimated to surpass humans’
current energy generation capacity if this rate continues [9].

It is necessary to rethink how to perform computing in a move away from the Turing
machine, which requires many layers of abstraction, into parallel hardware with distributed
memory [10]. Spiking neural networks (SNNs) are considered the third generation of ANNs.
These models reflect complex biological and temporal dynamics in order to construct
artificial software/hardware counterparts with the same behaviors as those of neurons and
synapses [11]. Neuromorphic computing has emerged as a branch in computer science
that aims to create computer architectures that resemble the brain’s energy efficiency,
learning plasticity, and computing capacity [12]. This has become the inherited hardware
platform for SNNs, which usually dictate the design of the building blocks for hardware
solutions [13] that are usable for robotic platforms. For instance, in [14,15], an SNN learned
the inverse kinematics (IKs) of a robotic arm manipulator, which are usually hard to obtain.
While such networks can be used to reconstruct IK values, the extraction of the specific
modeling functions from the network is still a research topic.

On this basis, the development of neuromorphic accelerators based on existing com-
plementary metal-oxide semiconductor (CMOS) digital technology is enabling research
in neuromorphic computing. such technologies usually include peripheral devices and
software/hardware bridges with conventional computing architectures, thus enabling
network analysis, performance measurement, and reconfiguration, such as in Intel’s Loihi 2
chip with 130 million silicon neurons and 256 million synapses [16], which is programmable
with the Lava neuromorphic compiler, Truenorth from IBM with 1 million neurons and
256 synapses [17], or BrainChip’s Akida [18], which was built with TSCM’s 28 nm tech-
nology, among others. These have been used to obtain remarkable results in robotics [19],
sensing, and classification tasks. However, as the construction of these accelerators relies
on expensive proprietary CMOS chip technologies, they face the same scaling and energy
consumption limits [20] as those of their Von Neumann counterparts.

From the perspective of analog electronics, a passive electric device called a memris-
tor [21], which was theorized by Leon Chua, can be used for in-memory computing. It
maintains its internal conductance state based on the current that has flowed through its
terminals. These passive devices can be used in high-density crossbar arrays (CBAs), which
can perform parallel vector–matrix multiplication with ultra-low energy consumption.
Analog neurons and synapses have been assembled to compute values that rely on current
summation rather than digital Boolean operations [20,22], resulting in some already-built
analog neuromorphic architectures [23,24].

This article explores the concept of KalmanNet by entirely replacing its ANN archi-
tecture with a proposed SNN architecture to assemble biologically plausible neuron and
synapse models. In addition, we propose a new differentiable function for modeling the
encoding/decoding algorithms. The proposed architecture was tested in numerical sim-
ulations using two well-known nonlinear systems, which showed the feasibility of the
solution. At the same time, its possible construction requirements were explored with the
aim of its construction in neuromorphic hardware that would be capable of online learning
in a space- and energy-efficient neuromorphic hardware solution.

This article is structured as follows: In Section 2 (Materials and Methods), neurons,
synapses, and encoding/decoding models are described, and it is shown how these can
be interconnected to create the proposed network solution. Section 3 (Results) shows
numerical simulations with the nonlinear canonical Van der Pol and Lorenz systems used
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to test the capabilities of the architecture. Section 4 discusses the results, while Section 5
closes this work by showing our conclusions and proposing future research.

2. Materials and Methods

In this section, we start by reviewing how neurons, synapses, and learning rules are
modeled. Then, we show encoding/decoding algorithms to determine the current input
for the neurons in order to represent the signals used in our proposal. Next, the Kalman
filter algorithm is illustrated. After the building blocks are introduced, our proposal is
shown at the end of this section.

2.1. Neuron Modeling

Leaky Integrate and Fire (LIF) is one of the simplest models available for neuron
modeling. It resembles the dynamics of a low-pass filter [25], as it considers a neuron as a
switching resistance–capacitance circuit that is governed by:

τm
dvm(t)

dt
= EL − vm(t) + Rm Isyn(t) (1)

In (1), vm(t) represents the membrane’s potential, EL is the membrane’s potential
at rest, τm = RmCm stands for the membrane’s temporal charging constant, Rm is the
membrane’s resistance, and Cm is the membrane’s capacitance. Isyn(t) acts as an excitatory
input current for the neuron, which charges the membrane’s potential vm(t) until it passes
a threshold voltage value vth, at which point a spike is emitted. The spike’s voltage, vs(t),
is shaped as follows:

vs(t) = vspkδ(t− t f ) (2)

where t f is the last moment at which a spike was produced, whereas δ(·) ∈ [0, 1] is the
Dirac delta function that models the impulse’s decay alongside the synapses, which decay
from a maximum value vspk at t = t f to zero at the following post-synaptic rate τpstc:

δ(x) = e
−( x

τpstc
)2

(3)

Once the spike is produced, vm(t) resets to EL. The neuron will not spike again during
a refractory period τre f , as it does not admit an excitatory input current. When Isyn(t) = 0,
vm(t)→ EL.

Given a connection between the j-th and k-th neuron by a synapse with a certain
conductance value wjk (the modeling of which will be reviewed in Section 2.2), the input
current for the postsynaptic neuron will be a function of each spike from the presynaptic
neuron and its propagation through the corresponding synapse. For j presynaptic neurons,
the current Isyn(t) for the k-th neuron is modeled by the following expression:

τsyn
dIsyn

dt
= −Isyn(t) + Csyn ∑ wjk · vspk · δ(t− t f

pre) (4)

where t f
pre is the firing time of each presynaptic neuron. Equations (1) and (4) make up the

conductance-based LIF model [26], where τsyn is the injection current time decay and Csyn
stands for the temporal injection current constant, which models the scale of the current
injection of the presynaptic impulses. Figure 1 shows a step impulse of 1.5nA fed to a
single neuron, which is modeled by Equation (1), showing its internal state vm(t) and the
produced spike voltage vs(t). The parameters used for the neuron that is used are provided
in Table 1.
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Figure 1. (a) Membrane voltage vm(t) and spike voltage vs(t) of an LIF neuron for an excitatory
input current of Isyn = 1.5001nA. (b) Tuning curve of the neuron, which shows the riobase value for
the parameters given in Table 1.

Table 1. Neuron, synapse, and encoding parameters.

LIF Model Parameter Value

Membrane charging constant τm = 10 ms
Membrane resistance Rm = 10 MΩ

Capacitance of the neuron Cm = 1 nF
Threshold voltage of the neuron vth = −55 mV
Resting potential of the neuron EL = −70 mV
Reset potential of the neuron vreset = −70 mV

Spike amplitude vspk = 20mV
Postsynaptic current decay time τpstc = 10 ms

Refractory Period τre f = 2 ms

Conductance-Based LIF

Time decay of the injection current τsyn = 10 ms
Temporal injection current constant Csyn = 1× 10−5

Frequency Response of the Neuron

To compute how much current has to be fed into the neuron to obtain a given frequency
response, first, we need to compute how much time it will take for the neuron to pass from
a resting stage to a firing stage by analytically solving the differential Equation (1):

vm(t) = EL + Rm Isyn + C1e−t/τm (5)

For t = 0, we can rewrite C1 = vm(0)− EL − Rm Isyn(t). Setting the initial conditions
to the values of vm(0) = EL, and vm(t) = vth in Equation (5), we can solve for t to obtain
the expression of the membrane’s potential charging time tspk:

tspk = −τm ln
(

vth − EL − Rm Isyn(t)
−Rm Isyn(t)

)
(6)

As the firing frequency fspk = 1/Tspk, where Tspk = τre f + tspk, we have:

fspk(t) =
1

τre f − τm ln
(

vth−EL−Rm Isyn(t)
−Rm Isyn(t)

) (7)
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Equation (7) computes the frequency response of a neuron given a certain current. The
inverse function computes the opposite—the amount of current needed for a given frequency:

Isyn(t) =
vth − EL

Rm

1− e
τre f −

1
fspk(t)

τm

 (8)

Figure 1b shows the firing response of a neuron with respect to the firing frequency
response for a given excitatory input current; this is called a tuning curve, and it was obtained
using Equation (7) (analytical solution) and a numerical simulation of Equation (1), with
a sweep from 0 A to 6 nA, using the neuron parameter values that appeared in Table 1.
Setting f = 1 Hz, we obtain Ir = 1.5 nA. This is called the riobase current of the neuron.

2.2. Synapse Modeling

Spike-time-dependent plasticity (STDP) is a Hebbian learning algorithm that reflects
how a synapse’s conductivity increases or decreases according to the neuron spiking
activity [27]. Given the j-th layer of N presynaptic neurons and the k-th layer of M postsy-
naptic neurons, a matrix of W = [wjk] ∈ RN×M synapses will form between them, and its
weight value will be modified by:

∆w(∆t) =

A+e−
−∆t
τ+ , ∀∆t ≥ 0

A−e
∆t
τ− , ∀∆t < 0

(9)

wij = ∑
t f

pre

∑
t f

post

∆w (10)

In Equation (9), ∆t = t f
post − t f

pre is the difference between the firing times of the
postsynaptic and presynaptic neurons. τ+, τ− are the long-term potentiation (LTP) and long-
term depreciation (LTD) constants, which map the decay effect of a spike in the modification
of the weight. For each spike, the synaptic weight is then modified by a learning rate of
A+, A−. When A+ = A− and τ+ = τ−, the response is symmetrical, that is, the synapse
modifies its value equally for presynaptic or postsynaptic spikes. STDP is included in the
unsupervised learning paradigm [8], as there is no teaching signal involved, rather than the
input and output signals to be processed.

2.3. Reward-Modulated STDP (RSTDP)

In order to introduce a teaching signal, some modifications to the STDP algorithm were
described in [8] based on dopamine’s modulation of the learning ability in the synapses
observed in biological systems. Starting from Equation (9), an eligibility trace E can be
defined by taking into account only the last pre- and postsynaptic spike potentials at time t:

dE
dt

= −E(t)
τE

+ A+vspkδ(t− tpre) + A−vspkδ(t− tpost) (11)

The eligibility trace is intended to model the tendency of the change in the synaptic
weight value as a transient memory of all of the spiking activity, where τE depicts its decay
time. The rate of change in the synaptic weights w is then obtained as follows:

dw
dt

= R(t)× E(t) (12)

where R(t) ∈ [−1, 1] is a reward signal, which is defined according to the network’s
objectives. It is worth mentioning that when R = 0, learning is deactivated, as no change in
synapses is produced. When R = −1, the weights are forced to converge in the opposite
direction. Finally, when R = 1, the eligibility trace remains unaltered.
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Three presynaptic neurons and one postsynaptic neuron were arranged as shown in
Figure 2a, and they produced different spiking activities (Figure 2b), showing how the
output neuron’s membrane voltage accumulated with each arriving spike (Figure 2d). As
each neuron spiked with a different frequency, the synaptic weight evolved into different
values (Figure 2c).

SNN 3-to-1 configuration

Weight evolution

Spike Activity for each pre-synaptic neuron

Spike Activity for the output neuron

time[s]

time[s]time[s]

SNN
1.51nA

2nA

3nA

w11
w12

w13

R-STDP synapse

LIF neuron

LIF conductance-based

Spike voltage

v m
(t)[

m
V

]
I sy

n(t)
[nA

]
v s

(t)[
m

V
]

v s
(t)[

m
V

]
v s

(t)[
m

V
]

v s
(t)[

m
V

]

(a) (b)

(c) (d)

Figure 2. (a) An SNN with three LIF neurons in the input layer and one output layer. (b) Spiking
activity of the first layer. (c) Evolution of the weight of the synapse. (d) Neural activity (input current,
membrane voltage, and spike voltage) of the output neuron.

2.4. Encoding and Decoding in Spiking Neural Networks

Given an analog input signal that is intended to be processed by an SNN, a proper
truly excitatory input current that represents every possible value from the input signal
should be computed (encoding). Furthermore, the spiking activity of a neuron must be
interpreted back from the spiking domain into the analog domain in order to interact with
external systems (decoding).

Encoding Algorithm

There are several encoding and decoding algorithms that have been proposed in
the literature. Some of them have the intention of reflecting biological plausibility, or
easing the construction of neuromorphic devices. Rate-based encoding takes an input signal
x(t) ∈ [xmin, xmax] and a minimum and maximum spiking frequency operation of the
neuron F = [Fmin, Fmax], and it uses Equations (7) and (8) to encode/decode, respectively.
Nonetheless, the encoding process can be performed as a function of the variability of the
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signal, which can be divided into phase encoding and time-to-first-spike encoding, among
others [27,28]. Step-forward encoding, which was described in [29], is a temporal encoding
algorithm that harnesses the low-pass filter dynamics of the LIF neuron in conjunction
with a temporal encoding methodology. The input signal x(t) is compared with an initial
baseline signal xb(t) and a sensibility encoding threshold value xth. If x(t) > xb + xth,
a certain current I+syn is fed into an LIF neuron, which is denoted as N+. However, if
x(t) < xb − xth, a fixed current I−syn is then fed into another LIF neuron (denoted as N−).
Therefore, N+ will only spike for a growing signal, while N− will spike for decreasing
signals. In this work, the conditional part of this encoding algorithm is replaced with
differentiable functions with the aim of easing future mathematical convergence analyses.
Setting α = tanh(c · (x(t)− xb(t)),

I+syn(t) = Ir(1 + α) (13)

I−syn = Ir(1− α) (14)

where c is a slope modulation constant, which, for high values, approximates tanh(·)
function as closely as the hardlim function. The baseline signal for the encoding is then
updated by:

xb(t) = xb(t− 1) + αxth (15)

For decoding, the output signal x̂(t) is computed with the following expression:

x̂(t) = x̂(t− 1) + xthδ(t− t+f )− xthδ(t− t−f ) (16)

where t+f stands for the spiking time of the N+ neuron and t−f is the firing time of the N−

neuron. Figure 3a shows a simple configuration for reconstructing an input sine signal,
which is shown in Figure 3b, by using the spiking activities of two neurons (Figure 3c) that
are fed by an encoding block composed of Equations (13) and (14), which feed N+ and N−

with the current levels shown in Figure 3d.

2.5. Discrete Extended Kalman Filter

The discrete extended Kalman filter (EKF) allows full state estimation of system dynamics
based on partial and/or noisy measurements. Given a system represented in a discrete
space–state manner [5],

xk = f (xk−1, uk) + wk (17)

yk = h(xk) + vk (18)

where xk ∈ Rn is the state vector of the system, and f (·) is nonlinear and describes the
evolution of the dynamics given the state value at the previous timestep xk−1 and a control
input uk ∈ Rn. yk ∈ Rm is the available output of the system, which is described by h(·).
w ∼ N(0, Q) and v ∼ N(0, R) are additive white Gaussian noise (AWGN) with a covariance
matrix Q ∈ Rn×n and R ∈ Rm×m, respectively, representing the system uncertainties given
by perturbations or noisy measurements. The EKF algorithm retrieves an estimation x̂k|k
that ideally tends to x̂k|k → xk. As f (·), h(·) are nonlinear, the EKF uses a linearized version
of the system’s model by obtaining their respective Jacobians:

A =
∂ f
∂x
|x̂k−1|k−1,uk (19)

C =
∂h
∂x
|x̂k|k−1

(20)



Sensors 2022, 22, 8845 8 of 16

where x̂k−1|k−1 is the estimation of the EKF in the previous timestep. The discrete EKF is a
two-step procedure involving a prediction and an update:

1. Prediction: First, a preliminary estimation x̂k|k−1, ŷk|k−1 is computed by:

x̂k|k−1 = f (x̂k−1|k−1, uk) (21)

ŷk|k−1 = h(x̂k|k−1) (22)

Then, a covariance estimate Pk|k−1, Sk|k−1 is computed, and the noise covariance ma-
trices Q, R and the estimate in the previous timestep Pk−1|k−1 are taken into account:

Pk|k−1 = A · Pk−1|k−1 · AT + Q (23)

Sk|k−1 = C · Pk|k−1 · CT + R (24)

2. Update: The second step consists of computing the Kalman gain matrix κ ∈ Rn×m with

κ = Pk|k−1 · CT · S−1
k|k−1 (25)

in which the difference between the measurable output and estimated output of the
prediction step is used:

∆yk = yk − ŷk|k−1. (26)

We can obtain a final estimation x̂k|k that considers errors in measurement and
noise statistics:

x̂k|k = x̂k|k−1 + κ · ∆yt (27)

Finally, the moment of the prediction Pk|k, which will be used for the next timestep in
prediction, is computed:

Pk|k = Pk|k−1 − κ · Sk|k−1 · κT (28)

In order to successfully reconstruct the full state, both the KF and EKF demand full
knowledge of the system dynamics, as the correct characterization of perturbations and
measurement noise can become cumbersome or unavailable in real scenarios.

2.6. Proposed Kalman-Filtering SNN Structure

An SNN structure of an EKF that replaces Equations (23), (24), and (28) is shown in
Figure 4. First, the error between the current and prior estimations is defined for all of the
space–state variables:

∆x̂k|k = x̂k|k − x̂k|k−1 (29)

Then, ∆x̂ and ∆yt are stacked into an input vector sin for the SNN as follows:

sin = [∆x̂1, ..., ∆x̂n, ∆y1, ..., ∆ym] (30)

This vector is encoded using Equation (13), which produces excitatory input current
vectors for two ensembles of neurons inside the SNN, which are called Ens+ and Ens−,
and they spike for increasing and decreasing input signals, respectively. Both ensembles
count with two densely connected LIF neuron layers—the j-th layer with n + m neurons,
which is modeled by Equation (1), and the k-th layer with n× m LIF neurons, which is
modeled by Equations (1) and (4). These are connected by RSTDP synapses, as depicted
in Equations (11) and (12), with the reward signal set to R(t) = 1. The spikes of the k-th
layer from Ens+ and Ens− are finally decoded with Equation (16) to obtain each value of
the Kalman gain matrix in order to properly reconstruct the full state vector of the system.
Figure 5 shows the described SNN structure.
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Figure 3. Signal reconstruction using neurons and encoding/decoding algorithms. (a) Assembly of
the encoding/decoding, which alternate the input currents of two different neurons. (b) Comparison
between the original signal x(t) and reconstructed signal x̂(t). (c) Spiking activity response for each
neuron. (d) Input currents I+syn, I−syn for the neurons (Blue) versus the riobase (red dotted). (d) Output
spikes for each neuron in the assembly.
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Figure 4. Block diagram of the Kalman filter in which the typical Kalman gain-obtaining procedure
is replaced by an SNN.



Sensors 2022, 22, 8845 10 of 16

Encoding

Encoding

Encoding

Encoding

Decoding

Decoding

Decoding

κ1,1

κ2,1

κn,m

Δ ̂x1

Δ ̂x2

Δ ̂xn

Δym

Ens+

R-STDP synapseLIF neuron LIF conductance-based

SNN

.

..

Δy1

Encoding

.

..

...

...

...

Ens−

...

...

...

...

Figure 5. Proposed SNN network architecture for finding the values of the Kalman gain matrix.

3. Results

In order to show the performance of the proposal, two nonlinear systems were used.
For each system, the nonlinear equations were simulated to create noiseless ground-truth
data x(t). Then, the resulting vector was noised as described in (17) and (18) by setting
wk, vk with the diagonal covariance matrices Q, R as follows:

Q = I · q2, R = I · r2, ν =
q2

r2 (31)

where ν = 1 would imply that the state noise and the observation noise have the same
variance, i.e., q2 = r2. The resulting contaminated data then corresponded to a system
with noisy measurements and unknown perturbations. The simulation was intended
to compare the performance of a standard EKF against the SNN proposal under equal
conditions; that is, only noisy measurements were provided. The SNN had to be able to
recover this information, while for the EKF, Q, R were set as identity matrices, as these
were supposed to be unknown.

To create the system’s synthetic data, as the used models were shaped with ẋ =
A(x, u) · x, the solution of the nonlinear system could be expressed as a Taylor series
expansion with five terms, as in [7], assuming that for a small timestep ∆t, f (x(t)) ≈
f (x(t + ∆t)). By doing this, we obtained a system that shaped as described in Equation (17).

For the SNN, the neuron parameters in Table 1 were used. The synapse, encod-
ing/decoding, and simulation parameters are found in Table 2. The synapses were ran-
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domly initialized in the range of [wmin, wmax]. To display the neural activity, the observed
spike frequency for each neuron fobs was computed as follows:

fobs = (nT)

(
1

Tobs

)
(32)

where nobs counts how many spikes were produced inside a period of length Tobs = 50 ms.
The procedure was repeated for the whole simulation timeline of t = 60 s, with simulation
a timestep of ∆t = 1× 10−4 s.

Table 2. Encoding/decoding and RSTDP parameters in the simulation.

RSTDP Synapse Model

Long-term potentiation constant A+ = 1 µS/mSeg
Long-term depreciation constant A− = −1 µS/mSeg

Transient memory decay time τE− = 10 ms
Max. conductance Value wmax = 1 ms
Min. conductance Value wmin = 1 µs

SF Encoding and Decoding

Encoding sensibility threshold value in a Van der Pol test xth = 1× 10−4

Encoding sensibility threshold value in a Lorenz test xth = 1× 10−5

Decoding sensibility threshold value in both tests xth = 1× 10−5

Slope modulation constant c = 1

Noise Parameters

Measurement noise’s standard deviation r = 0.1
System uncertainties’ standard deviation q = 0.0316

The simulation scripts were coded from scratch using Python (v+3.8) [30] and the
Numpy (v+1.20) and Sympy (v+1.8) [31] libraries. However, during our testing, the Lorenz
system’s SNN network was also coded using the SNNtorch (v+0.5.3) library [32]. The
resulting code is available in the Data Availability Statement section.

3.1. Van der Pol Simulation

Proposed by electrical engineer and physicist Balthasar Van der Pol, this nonlinear
model is used to find oscillations on electric circuits using vacuum tubes, and it can be
written in the ẋ = Ax form as follows:(

ẋ1
ẋ2

)
=

(
µ
(

1− 1
3 x2

1

)
−µ

1
µ 0

)(
x1
x2

)
(33)

where µ = 3 refers to the damping strength of the oscillations. For this test, we set our
output to y = [1, 0]x, that is, only x1 was available for the measurement, while x2 was set
to be recovered from the system.

Figure 6a shows a correct estimation of x2. This can also be seen in the difference x− x̂
shown in Figure 6b. The κ ∈ R2×1 matrix values estimated by the SNN are displayed in
Figure 6c; these were obtained by using the spikes of the output layer. The evolution of the
synaptic weight is also shown for both ensembles (Ens+, Ens−) in Figure 6d,e, respectively.
While the SNN’s estimation became noisier as the time moved forward, it can be seen in
Figure 6f that the EKF was not able to properly reconstruct the missing states at any point.
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x 1

x 2

time[s] time[s]

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Time evolution of the reconstruction of the Van der Pol oscillator using the proposed
architecture in comparison with the ground truth. (a) Comparison of the ground truth x (blue)
with the of the reconstruction x̂ (orange) made using the proposed architecture. (b) Time error
reconstruction x− x̂ of the two states of the system. (c) Time evolution of each value of the resulting
Kalman gain matrix. (d,e) Weight value evolution over time of the 3× 2 synapse set (multiple colors)
for Ens+ and Ens−, respectively. (f) Time error state estimation of the Van der Pol system using the
standard discrete EKF algorithm without knowledge of the covariance matrices Q, R.

3.2. Lorenz System Simulation

A typical dynamic system for testing the obtention of unknown or partial dynamics is
the Lorenz attractor, which is composed of the following nonlinear dynamics:

ẋ =

−10 10 0
28 −1 −x1
0 x1 − 8

3

x1
x2
x3

 (34)

For this system, the EKF can be implemented by using five Taylor series approximation
terms, as in [7]. In this test, we set the output to y = [1, 0, 0]x, which meant that only the x1
state was available for measurement. Therefore, x2, x3 should be recovered.

Figure 7a shows the estimation of x2, x3. The error x− x̂ is shown in Figure 7b for the
three states. The κ ∈ R3×1 matrix values estimated by the SNN are displayed in Figure 7c.
The weight evolution is also shown for both ensembles (Ens+, Ens−) in Figure 7d,e,
respectively. In this test, while the error estimation converged to close to zero for the three
states (Figure 7b), Figure 7f shows that the EKF quickly diverged to infinity at t = 6.9 s due
to the missing noise characterization of the system.
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x 1

x 2
x 3

time[s] time[s]

1 × 106

(a)

(b)

(c)

(d)
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(f)

Figure 7. Time evolution of the Lorenz system’s reconstruction when using the proposed architecture
in comparison with the ground truth. (a) Comparison of the ground truth x (blue) with the recon-
struction x̂ (orange) made by using the proposed SNN architecture. (b) Time error reconstruction
x− x̂ of the three states of the Lorenz system. (c) Evolution of each value of the Kalman gain matrix.
(d,e) Weight value evolution over time of the 4× 3 synapse set (multiple colors) for Ens+ and Ens−,
respectively. (f) Time estimation of the Lorenz system using the standard discrete EKF algorithm
without knowledge of the covariance matrices Q, R.

4. Discussion

A proper full state reconstruction of the space state was achieved. However, some
considerations should be addressed. On the one hand, in the KalmanNet structure, the
intention being the usage of GRUs is to use them as storage for the internal ANN’s memory
in order to jointly track the underlying second-order statistical moments required for implicitly
computing the KG [7]. In our SNN proposal, the intention is to replace them with the eligi-
bility traces defined by the RSTDP weight update mechanism (Equation (11)), as E collects
the weight changes proposed by STDP; thus, they represent the potentiation/degradation
tendency of the synaptic weight [8].

The energy consumption of an SNN relies on the spiking activity. Therefore, only
the necessary spikes should be performed to represent our signals. Rate-based encoding
mechanisms return a constant excitatory input current for a constant input signal (no
matter its magnitude), resulting in spiking activity for non-changing signals. In temporal
encoding schemes, such as the one used in this work, the neurons are only excited based
on the rate of change in the input signal. The introduction of Equations (13) and (14) is
intended to restrain the excitatory input current of the neurons to minimum and maximum
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values. In the range of tanh(·) ∈ [−1, 1], for high rates of change, the maximum input
current is Isyn = 2Ir; according to Equation (7) and the neuron parameters in Table 1, this
would correspond to a spike frequency of f ≈ 120 Hz for a maximum input current of
Isyn = 2(1.5nA) = 3nA. This can be seen in the resulting spike frequency graphs for both
the Van der Pol and Lorenz tests (see the Data Availability section).

However, while the neuron parameters were selected to resemble biological plausibil-
ity, proper selection of the encoding/decoding sensibility and the values of the learning
rates is fundamental. xth should proportionate enough to Isyn to produce a suitable spiking
activity, though selecting sufficiently high A+, A− values should appropriately modify the
synaptic weights with the supplied spikes. Low learning rates may require a higher spike
frequency but a higher precision, leading to slow convergence. In contrast, high learning
rate values require less spiking activity but lead to a lower precision, which may result in
divergence. In addition, to translate this SNN structure into a hardware implementation,
the min/max synaptic weight values might be restricted to the observed values in available
memristive devices.

A mathematical convergence analysis would determine the boundary conditions for
selecting proper parameters. However, the LIF reset condition makes this dynamic non-
differentiable, which disables this analysis or the adaptation of back-propagation for SNNs.
A way to deal with this is to move the analysis to the frequency domain by solving the
LIF model and obtaining the tuning curve produced by Equation (7) and its corresponding
graph (Figure 1b). It can be seen that the function only is differentiable in the range of
[Ir, ∞). In [15], the authors used a polynomial differentiable tuning curve (which can
be obtained through least square regression) to avoid this restriction. In this work, the
introduction of bounded and differentiable encoding/decoding functions and the usage of
two (Ens+, Ens−) neuron ensembles allowed the usage of this approximation to be avoided,
as the dynamics of Ens+ are only affected by the growth of input signals, while for Ens−,
only the decay is processed, thus creating a switching dynamical system [33] that might
allow us to propose a Lyapunov candidate function whose derivative is negatively defined.

5. Conclusions and Future Work

An SNN-embedded architecture inside the extended Kalman filter algorithm was
used to perform the full state recovery of a nonlinear dynamic system based on partial
knowledge while assuming unknown but bounded perturbations. Numerical simulations
showed the feasibility of the system. While in other works, the encoding/decoding process
was performed by using a function approximation relating the input current with the
spike frequency, the proposed modifications allow this to be avoided by setting a switched
current designation that lets each ensemble of neurons and their respective synapses evolve
towards the growth/decay of the SNN input signals while bounding the excitatory input
current, thus limiting the spike frequency.

In order to move towards a hardware construction, neuron design with a very large
scale of integration (VLSI), the replacement of synapses with memristive devices, and a
VLSI design of the encoding/decoding modules would define the building blocks for a
system-on-a-chip proposal. However, moving to a hardware implementation in currently
available technologies might lead to modifications, such as changes in the values of the
memristive range or achievable spike frequencies. Therefore, a framework for mathematical
convergence analysis should be defined to study the SNN’s performance with these new
parameters. Nonetheless, it was shown that a few resources (in terms of the number of
neurons, synapses, and energy consumption) were able to achieve proper performance by
taking advantage of existing explainable PINN architectures.
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