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Abstract: Around the world, the COVID-19 pandemic has created significant obstacles for education,
driving people to discover workarounds to maintain education. Because of the excellent benefit
of cheap-cost information distribution brought about by the advent of the Internet, some offline
instructional activity started to go online in an effort to stop the spread of the disease. How to
guarantee the quality of teaching and promote the steady progress of education has become more
and more important. Currently, one of the ways to guarantee the quality of online learning is to
use independent online learning behavior data to build learning performance predictors, which
can provide real-time monitoring and feedback during the learning process. This method, however,
ignores the internal correlation between e-learning behaviors. In contrast, the e-learning behavior
classification model (EBC model) can reflect the internal correlation between learning behaviors.
Therefore, this study proposes an online learning performance prediction model, SA-FEM, based on
adaptive feature fusion and feature selection. The proposed method utilizes the relationship among
features and fuses features according to the category that achieved better performance. Through the
analysis of experimental results, the feature space mined by the fine-grained differential evolution
algorithm and the adaptive fusion of features combined with the differential evolution algorithm can
better support online learning performance prediction, and it is also verified that the adaptive feature
fusion strategy based on the EBC model proposed in this paper outperforms the benchmark method.

Keywords: e-learning behavior classification; feature selection; feature fusion; prediction of learning
performance; prediction and analysis

1. Introduction

As COVID-19 spread rapidly around the world since 2019, the normal operations of
educational institutions were more seriously affected, and offline teaching was shifted to
online in order to prevent the spread of the pandemic and ensure the progress of teaching [1].
At the same time, the development of the Internet and its advantage of disseminating
information is the inevitable trend of online education. Due to the unevenness of regional
development, educational resources also tend to gather in regions with good economic
development areas [2], and online learning also helps to alleviate the general environment
of educational inequity. Online education in China is late compared to developed countries,
so it has more room for development. In the process of conducting online teaching, teachers
and students may be inexperienced in online education and are unable to provide real-
time feedback to each other, leading to uneven teaching quality and eventually to student
dropout [3]. How to guarantee the quality of e-learning and reduce the overall dropout
rate is an urgent issue.
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The development of online learning needs the help of platform equipment. When
many learners use various online learning platforms for online learning, a large amount of
learning behavior data are collected and recorded. Many researchers have done much work
on improving the quality of learners’ online learning. For example, Marras et al. extracted a
new feature set based on online learning behavior data and revealed that the performance of
student performance prediction is highly dependent on learning behavior [4]. Using these
behavioral data, such as video clickstream data and assignment submission behavior data,
can maximize the value of learning behavior data and improve the prediction of online
learning performance. He et al. [5] proposed a joint RNN-GRU neural network approach to
fit static and sequential data in the Open University Learning Analytics Dataset (OULAD),
which showed high accuracy in predicting at-risk students. Hao et al. [6] constructed a
Bayesian network, SPBN, for student performance prediction by the hill-climbing method and
maximum likelihood estimation. The experimental results on OULAD show the accuracy of
the SPBN in predicting student performance. Such methods show better performance based
on independent learning behavior data. The predicted results help teachers correct teaching
methods, promptly provide feedback on teaching effectiveness, inform students to adjust their
learning status, and serve as a monitoring and feedback function.

The aforementioned methods can produce accurate predictions, but they have certain
drawbacks. First, the use of manual methods for data pre-processing has the problem of
low efficiency when facing a large amount of learner behavior data. Second, the opera-
tion is generally crude when using online learning prediction models for feature space
construction. It usually classifies all the learning features directly based on the algorithm
and then uses them for learning performance prediction. Third, the learning behavior
features tend to be homogeneous and ignore the intrinsic connection of learning behaviors.
Online learning behaviors do not occur independently, regardless of the order in which
they occur or the correlation between learning behaviors. Reducing the time and labor
cost of data pre-processing and considering the correlation between behaviors for feature
dimensionality reduction is a key problem that needs to be urgently solved.

In conclusion, this paper proposes an online learning performance prediction model,
SA-FEM, with adaptive feature fusion and selection to further optimize the effectiveness of
online learning performance prediction. The main contributions are as follows:

• This paper proposes an end-to-end learning performance prediction model. First, we
construct a wrapper method using differential evolution algorithms as an evaluation
function to implement feature selection. Second, we further use the e-learning behavior
classification model to fuse the preliminary selected features with finer granularity.
While reducing the computational load of the model, the feature fusion based on
the learning process behavior classification model takes into account the correlation
between the behavior features and fuses the same category of features as the input of
the prediction model, which greatly enhances the interpretability of the model;

• This paper presents an adaptive feature fusion method. Firstly, through data visual-
ization, the distribution rules of different types of learners are observed. Secondly,
according to the discreteness of each learner’s distribution, different feature fusion
strategies are formulated. Finally, the cluster similarity is used to identify the learner
categories, and the corresponding feature fusion strategies are selected adaptively;

• In the aspect of advanced validation of mechanism construction, through a large
number of experimental comparisons, it is found that the ablation experiments of
feature fusion show that the performance and efficiency of the model can be effectively
improved after feature fusion. Comparative experiments of the different mutation
strategies show the advancement of our differential evolution algorithm.

• In terms of validation of algorithm advancement, an experimental analysis on the
course FFF of the Open University Learning Analytics Dataset (OULAD) demonstrates
the validity of the SA-FEM proposed in this paper, and it is superior to the benchmark
method in model performance, such as accuracy, F1 score, etc.
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The rest of the article is organized as follows: Section 2 introduces predictors of e-
learning behavior and methods for predicting learner performance; Section 3 describes our
proposed model for predicting learning performance; Section 4 presents the experimental
design and evaluation metrics; Section 5 discusses the experimental results; and Section 6
gives conclusions and an introduction to future work.

2. Related Work

We reviewed research on e-learning behavior and categorized e-learning performance
features into two categories: dispositional features and behavioral features. Dispositional
features are inherent properties of learners themselves, which are generally static data and
mostly private and cannot be shared publicly; behavioral features are dynamic features of
learners in the learning process, such as collaborative communication and forum discussions,
and can be a good indicator of the time and effort students spend on a particular course.

Because behavioral performance features do not involve privacy, a large number
of researchers have invested in this research, and with the improvement of computer
computing power and more and more intelligent algorithms, it is possible to predict
learners’ online learning performance.

2.1. E-Learning Performance Features

Predicting students’ online learning performance has been a hot topic of interest in
the field of learning analytics in recent years. Students generate a large amount of data
during the process of registering and logging into the platform and performing learning.
When using the data recorded and stored in the online learning platform for learning
performance prediction, feature engineering operations are often required to make the
original data better serve the prediction of online learning performance after pre-processing
and feature extraction operations. For example, Wang [7] collected and filtered student
behavior data through data preparation, statistics, and analysis, used the apriori algorithm
to mine association rules, and calculated data similarity. Finally, they used a fuzzy neural
network to mine student behavior data for online English learning. The method achieved
high data processing efficiency and low prediction error. Mai et al. [8] proposed a new data
pre-processing method for learning behavior data in programming education, which dealt
with the noise and trend effect in the data to improve the analysis and prediction based on
the learning behavior dataset.

The predictive characteristics of students’ e-learning performance can be grouped
into two categories, namely, dispositional and behavioral performance features [9]. Dispo-
sitional features are inherent to the learners themselves, such as students’ demographic
information [10] and historical education data, mostly static data that are not updated or
frequently changed. Many researchers have chosen propensity features to predict students’
learning at various stages of a course or a semester, such as predicting the probability
of dropping out of a computer science major by the academic performance in previous
courses [11]. However, there are some problems with using propensity features for pre-
diction. First, most propensity features are out of the control of students and instructors,
making it difficult to make subsequent changes. Then, there are privacy issues. Propensity
traits reflect personally identifiable information and are often difficult to collect and share
due to privacy concerns. Finally, the accuracy rate is not high, and it is difficult to achieve
good prediction results only through student demographic information and historical
education data. For example, machine-learning-based systems identify and select features
from personal information, students’ scores, behavioral information, and data from online
questionnaires to assess students’ academic performance [12].

Prediction with behavioral performance features generally does not have such a
problem. Behavioral performance features, i.e., the dynamic features of learners during
the learning process, include online behaviors, textual data, and other multimodal data.
These data are easy to collect and easy to change. In online learning, students’ behavioral
data are constantly accumulated and updated, and it is important to make online learning
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performance predictions based on learners’ learning behavior data. Many studies have
been conducted to show that students’ online learning behaviors are related to academic
performance. For example, Yu et al. [13] used learners’ video clickstream records in a
Massive Open Online Course (MOOC) platform to predict learning performance and found
a correlation between video viewing behavior and learning outcomes.

However, many researchers have performed learning performance predictions based
only on independent online learning behavior data. Loginova et al. [14] embedded learning
behavior data and then used RNN to predict student performance. A few researchers also
performed feature extraction and selection to achieve more accurate learning performance
prediction. Yoo et al. [15] extracted the teaching video viewing behavior of 237 students
from LMS and extracted 19 and 21 factors from 157 important predictors using Enet
and Mnet to predict the final performance of students. These are predictions based on
independent online learning behaviors, and the predictions could be improved. A few
researchers also performed feature extraction and selection due to the many sources and
types of learning behavior data in online learning to achieve more accurate learning
performance prediction. Zheng et al. [16] extracted continuous behavioral features from
learners’ learning activity logs. They used the proposed convolutional neural network
model FWTS-CNN that fuses feature weighting and behavioral time series to integrate
the effects of behavioral features and behavioral time on dropout to improve the accuracy
of dropout prediction. Wen et al. [17] proposed a new simple feature matrix to preserve
information related to the local relevance of learning behavior and a new convolutional
neural network (CNN) model to predict dropouts.

2.2. E-Learning Performance Prediction Methods

Online learning platforms store many learning behavior data, such as students’ assign-
ment submission information and video viewing records. More research has proven that
having more data does not automatically equate to having better forecasting ability. Akram
et al. [18] employed 10 prediction algorithms to identify learning disabilities in pupils by
observing how they submitted their assignments. They discovered that as the amount of
input data increased, the prediction performance of all algorithms diminished. Therefore,
there is a need for more effective methods for learning performance prediction based on a
reasonable selection of numerous dynamic features.

The online learning process can be divided into three phases: pre-course, during-
course, and end-course. Early pre-course prediction is usually intended to provide hints
and warnings. Khan et al. [19] proposed a scalable algorithm called a random wheel for
predicting binary and providing desired confidence in prediction to achieve the purpose of
predicting failure, degradation, and improvement before the start of the course, allowing
the instructor to provide timely help. The algorithm achieved excellent results in numerous
datasets. In-class prediction often aims to allow teachers and students to correct promptly,
and Syed et al. [20] proposed a gradient-enhanced automatic optimization model to identify
and predict students’ procrastination behavior. The model allows teachers to monitor and
correct student behavior instantly. Hooshyar et al. [21] used clustering methods to label
students as procrastinators, procrastination candidates, or non-procrastinators. Several
classification methods were used to classify students and predict student performance by
their assignment submission behavior.

Predicting student performance based on learning behavior data as online learning
ends can help teachers intervene earlier. Figueroa-Cañas et al. [22] proposed a decision-tree-
based model that relies only on average scores on non-mandatory formative assessments
to identify students at risk in terms of dropout and final exam performance. Esteban
et al. [23] found that using only MIL representation of assignment-related information was
more accurate in predicting student academic performance relative to a single-instance
learning-based representation. Aydoğdu [24] used artificial neural networks for final
student grade prediction through student behavior in navigating and tracking courses
in an online learning environment. Mubarak et al. [25] used a long short-term memory
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network (LSTM) to enable course instructors and educational experts to analyze video
clickstream data to allow teachers to develop timely interventions. Song et al. [26] proposed
a sequential-engagement-based academic performance prediction network consisting of
an engagement detector and a sequential predictor to predict students’ academic perfor-
mance from their daily learning activity data, historical performance, and demographic
information, which has better performance than existing methods when it comes to joining
detection mechanism. Hasan et al. [27] used eight different algorithms for data analysis.
They used the random forest to accurately predict student performance at the end of the
course by reducing features through data transformation techniques, data pre-processing
techniques, genetic search, and principal component analysis. Bujang et al. [28] addressed
the problem of unbalanced datasets. They proposed an integrated analysis machine learn-
ing technique, i.e., a model constructed based on the Synthetic Minority Oversampling
Technique (SMOTE) and two feature selection methods, combined with random forest
techniques, to predict students’ final grades in their first-semester course. Keser et al. [29]
provided the predictions obtained from gradient boosting, extreme gradient boosting,
light gradient boosting machines, and different combinations of these algorithms as input
to a super learner algorithm and used a stochastic search algorithm that optimizes the
hyperparameters of the base classifier. Then, a new hybrid integrated learning algorithm
(HELA) was built, which achieves the effect of good prediction performance. Qiu et al. [30]
proposed the BCEP model to predict learners’ learning performance. The method considers
the correlation between learning behaviors, but their feature fusion strategy is manually
designed rather than automated and lacks a fine-grained feature selection mechanism.

In summary, in studies related to learning performance prediction based on learning
behaviors, researchers usually analyze online learning behaviors from independent online
learning behaviors or local features of behaviors. Even if online learning behaviors are
classified, and features are selected, the essence is still to use independent online learning
behaviors for online learning performance prediction. Few research studies have examined
how to properly integrate online learning behaviors based on behavioral categories, as well
as the inherent correlations and contrasts among them. Moreover, although the selection or
improved utilization of learning performance prediction methods has shown good results
and high efficiency for the studied problems, the methods generally have the shortcomings
of low generality, complicated operation, low efficiency, and lack of intelligence. In order
to achieve more accurate learning performance prediction, it is necessary to focus on the
intrinsic connection between online learning behaviors and to use optimized methods
for feature selection and fusion from the perspective of the EBC model to address the
shortcomings of existing studies.

3. Method

This section describes the process of obtaining sets of learning behaviors based on an
EBC model and illustrates how we can implement feature engineering. Five key compo-
nents of the primary procedure of this paper’s work are shown in Figure 1: (1) Feature
selection refers to screening the learning behaviors with high relevance and reducing data
redundancy and the dimensionality of the features. (2) Learning behavior classification is
the process of categorizing unprocessed learning behaviors using the EBC model. (3) Fea-
ture fusion refers to adaptively selecting the feature fusion method using the findings
from learning behavior categorization. (4) Model training refers to anticipating learners’
e-learning performance and creating a model for predicting learning performance based on
different machine learning algorithms.

3.1. Problem Description

By measuring, collecting, and analyzing learning behavior data to predict learning
performance, it is possible to provide some instructional interventions to students once the
course has begun, as well as to monitor and remind students and reduce the probability of
course failure. From the standpoint of behavioral categorization, this study studies whether
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combinations of learning behavior sets are better predictors of academic achievement and
investigates the ideal behavioral feature space. Assume there are K students and the e-
learning behaviors generated by each student are represented by the set K{S 1, S2, . . . , SK},
where the kth student is represented by Sk{s1, s2, . . . . . . , sn}; sn stands for the nth learning
behavior, and its eigenvalue is the interaction frequency of this behavior; and n = 1, 2, . . . , N
is the number of e-learning behaviors (same below). Set standard e-learning behavior
set S′k{s

′
1, s′2, . . . , s′n

}
corresponding to set Sk{s1, s2, . . . . . . , sn}. For the feature selection

stage, using the wrapper method, which takes the differential evolution algorithm as the
evaluation function, conduct the initial screening of features. Next, using an e-learning
classification model (EBC model), each student’s set of learning behaviors is divided into
different subsets of learning behaviors. Different learning behavior subsets contain several
different learning behaviors (which may also be empty sets). In this paper, we adopt the
feature fusion strategy to improve the performance of the prediction model, define Dci

as the feature values of the subset ci after feature fusion, and construct the set of feature
values Dc{D c1

, Dc2 , . . . , Dci

}
of the subset of learning behaviors.

Figure 1. The process of self-adaptive e-learning performance prediction model.

3.2. E-Learning Behavior Classification Model (EBC Model)

The e-learning behavior classification model is one of the most important components
of the self-adaptive e-learning performance prediction model (SA-FEM) and has a direct
impact on the learning performance prediction model’s ability to anticipate outcomes.
The e-learning process consists of a learning onset phase, a knowledge acquisition phase,
an interactive reflection phase, and a learning consolidation phase [31]. The process that



Sensors 2022, 22, 8838 7 of 24

prepares learners for the formal start of e-learning is called the learning onset stage; the
primary e-learning process is called the knowledge acquisition stage, which is the initial
acquisition of knowledge by learners; the process of interaction and reflection between
learners and teachers and peers is called the interactive reflection stage; and the learning
consolidation stage refers to the procedure through which students integrate and internalize
knowledge. The model focuses on the online learner and divides learning behavior into
learning preparation behavior (LPB), knowledge acquisition behavior (KAB), interactive
learning behavior (ILB), learning consolidation behavior (LCB), and learning consolidation
behavior (LCB) based on the e-learning process:

1. Learning preparation behavior (LPB): The most fundamental learning behavior, which
takes place throughout the learning preparation stage. This involves signing in to the
learning platform, visiting the course page, examining the interface for the course
activities, etc.;

2. Knowledge acquisition behavior (KAB): The behavior of online learners in acquiring
knowledge directly, which occurs in the knowledge acquisition stage. It mainly in-
cludes participating in course activities, browsing course content resources, watching
course videos, and visiting resource links;

3. Interactive learning behavior (ILB): It occurs during the interactive reflection stage
and is one of the key learning behaviors in e-learning, which has been proven to have
a positive effect on the continuity and effectiveness of e-learning [32]. It is manifested
by participating in seminars, posting on forums, replying to forums, asking the teacher
questions, etc.;

4. Learning consolidation behavior (LCB): Occurs during the learning consolidation
stage and refers to the behavior of learners to reinforce their knowledge, mainly
through post-lecture reflections and completion of post-lecture tests.

3.3. Self-Adaptive E-Learning Performance Prediction Model (SA-FEM)

Researchers frequently create prediction models of e-learning success nowadays by
treating each e-learning activity as a separate predictor. However, in fact, different e-
learning behaviors are potentially related to each other and can be classified into different
behavioral categories based on different rules. This paper develops a model for predicting
learning performance from the viewpoint of learning behavioral categories and suggests
a framework based on the differential evolution algorithm [33] for predicting learning
performance in online courses. The differential evolution (DE) algorithm is a simple and
efficient method with the advantage of high convergence speed and good robustness, and
it usually contains two phases: initialization and evolution.

The SA-FEM, as depicted in Figure 1, illustrates the whole procedure for building a
learning performance prediction model using e-learning behavioral categories. The three
main elements of the prediction framework are: (1) Feature selection of learner-generated
learning behaviors, using a differential evolution algorithm as the evaluation function
for each learning behavior to remove behaviors that contribute little to the prediction of
student pass rates and obtain the core learning behaviors. (2) Fusion of features: Using the
e-learning behavior categorization paradigm, the key learning behaviors are categorized,
multiple subsets of learning behaviors are constructed, and then features are fused. Unlike
simply fusing all the features in each subset into one feature, this paper adopts a more fine-
grained fusion approach, using the differential evolution method to adaptively select which
features in each subset of learning behaviors are fused and which features are discarded.
The differential evolution algorithm is also applied to select which subsets of learning
behaviors are enabled. The aim of this is to further use less learning behavior data to obtain
better predictions of student pass rates. (3) Learner performance prediction: Seven machine
learning algorithms were constructed to predict learner performance.

In the process of feature selection and feature fusion, the differential evolution algo-
rithm is used to screen the optimal learning behavior and the optimal learning behavior
fusion way. The reason why the DE algorithm is selected for feature selection and fusion is
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that the core of the algorithm we proposed is to explore a more fine-grained feature set,
which is time-consuming work. The DE algorithm is used to search the optimal solution
space of feature fusion. Compared with other genetic algorithms, the DE algorithm is
not only simple, but also the convergence speed is fast and the robustness is strong. The
detailed algorithm flow is shown in Algorithm 1.

In the fine-grained differential evolution model (FGDEM), the algorithm starts by setting
the population size P, the dimension D of each solution, and the number of iterations of the
population T. Then, the population is initialized. Each individual’s component is restricted to
be generated randomly in the upper and lower bounds (rows 1 to 8); next, each individual is
mutated in each iteration t: the original solution is added to a difference vector with weights.
The mutated population is then randomly crossed with the original population (rows 10 to
15). The fitness of each newly generated individual is calculated. The current individual is
replaced if its fitness value is higher than the original one, and the current individual is set as
the optimal one if its fitness value is better than that (rows 16 to 21). Finally, the algorithm is
terminated after several iterations or when it reaches the condition.

Algorithm 1: FGDEM: Fine-grained differential evolution Model

Input: Population P; Dimension D; Generation T
Output: the best vector solutions of feature fusion ∆

1. // Initial Population.
2. for i = 1 to P do
3. for j = 1 to D do
4. // Decide which learning behaviours to be selected.

5. xj
i,t= Lj

min+rand(0, 1)×
(

U j
max−Lj

min

)
6. Fitness Calculation.
7. end
8. end
9. t = 1
10. while t < T do
11. for i = 1 to P do
12. for j = 1 to D do

13. vj
i,t= Mutation

(
xj

i,t

)
14. uj

i,t= Crossover
(

xj
i,t, vj

i,t

)
15. end
16. if f

(
ui,t
)
< f

(
xi,t
)

then
17. xi,t= ui,t
18. if f

(
xi,t
)
< f (∆) then

19. ∆ = xi,t
20. end
21. end
22. end
23. t = t + 1
24. end
25. return the best solutions ∆

Similarly, the detailed algorithm flow of SA-FEM is shown in Algorithm 2, we set
up two populations, initialized in the same way as the FGDEM (rows 1 to 10). We tried
different mutation ways and finally compared them and found that the DE/best/1 mutation
strategy is the most suitable for this prediction task. Then, the two populations are crossed
separately (rows 14 to 18); since there are two populations, an optimal solution is set for
each population separately, and the rest of the algorithm is consistent with the FGDEM
(rows 19 to 24).
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Algorithm 2: Self Adptive Fine-grained Feature Enginnering Model

Input: Population P; Dimension D; Generation T
Output: the best vector solutions of feature fusion ∆1, ∆2

1. // Initial Population.
2. for i = 1 to P do
3. for j = 1 to D do
4. // Decide which learning behaviours to be fused.

5. xaj
i,t= xaj

min+random int in
[

xaj
min, xaj

max

]
6. // Decide which learning behaviour categories to be chosed.

7. xbj
i,t= xbj

min+rand(0, 1)×
(

xbj
max−xbj

min

)
8. Fitness Calculation.
9. end
10. end
11. t = 1
12. while t < T do
13. for i = 1 to P do
14. for j = 1 to D do
15. // Use DE/best/1 Mutation

16. vaj
i,t, vbj

(i,t)= Mutation
(

xaj
i,t, xbj

i,t

)
17. uaj

i,t= Crossover
(

xaj
i,t, vaj

i,t

)
18. end
19. if f

(
uai,t, ubi,t

)
< f

(
xai,t, xbi,t

)
then

20. xai,t, xbi,t= uai,t, ubi,t
21. if f

(
xai,t, xbi,t

)
< f (∆1, ∆2) then

22. ∆1, ∆2= xai,t, xbi,t.
23. end
24. end
25. end
26. t = t + 1
27. end
28. return the best solutions ∆1, ∆2

3.3.1. Data Pre-Processing

The prediction impact is closely proportional to the caliber of the e-learning behavior
data. The data cleaning procedure on the collected learning behavior data is therefore the
first stage. Since there is no standardized procedure for cleaning data, the approach to use
must be chosen based on the data’s own property. The missing values, duplicate values,
and anomalous values are processed. However, the e-learning behaviors that e-learning
platforms capture are frequently not one-dimensional. Additionally, the values of distinct
e-learning behavior data dimensions are frequently not similar; thus, this article decides to
utilize Z-score normalization to converge the scale.

For the kth student, there is the set of original e-learning behaviors X′k{x
′
1, x′2, . . . , x′n

}
and the set of standardized e-learning behaviors Xk{x 1, x2, . . . , xn}. x′n denotes the nth
e-learning behavior recorded by the e-learning platform, and xn denotes the nth e-learning
behavior after standardization. Equation (1) shows the calculation of xn.

xn =
x′n−µn

σn
(1)

where µn represents the mean of the nth e-learning behavior data, and σn represents the
nth e-learning behavior data variance.
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3.3.2. Feature Selection

In order to decrease the dimensionality of the features and increase the generalizability,
operational effectiveness, and interpretability of the model, feature selection chooses the
pertinent features that contribute relatively highly to the model’s training. This paper uses a
differential evolution algorithm to evaluate the importance of learners’ learning behaviors,
which can obtain a better feature set than filtered feature selection such as variance filtering.

First, the differential evolution algorithm is applied to feature selection, initialized
to generate a population of number M. Each individual Xi consists of a D-dimensional
vector (D represents the number of learned behaviors produced by each learner), denoted
as Equation (2).

Xi = (xi1, xi2, xi3, . . . , xin,), i ∈ [1, M] (2)

Each component xij, (j ∈ [1, D]) is a floating-point value between 0 and 1, which is the
probability value of selecting this feature. When this value is greater than the threshold
value, the feature corresponding to the current component is selected, and the set threshold
value is 0.5 in this paper. Each component xij takes the values as shown in Equation (3),
where Umax and Lmin are the upper and lower bounds of the solution.

xij= Lmin+rand(0, 1)×(Umax−Lmin) (3)

The solution fitness value is calculated to select the features that contribute most to the
model performance. So, the weighted sum of the F1 score, accuracy, and other metrics used
to evaluate the machine learning model is used as the fitness value of the current solution
and also adds the number of learning behaviors used in the fitness value calculation in
order to minimize the data dimensionality and maintain better performance. The goal is to
maximize the fitness value, and the fitness calculation formula is shown as Equation (4).

f = 0.3× Accuracy + 0.3× F1 score + 0.2× Recall + 0.1× Precsion + 0.1× Kappa + 0.1/n f eatures (4)

Then, crossover and mutation are performed, and the strategy for the gth mutation is
shown as Equation (5).

Vi(g)= XP1(g)+F×
(
XP2(g)−XP3(g)

)
(5)

where XP1 , XP2 , XP3 are three random solutions in the population, and XP2(g)−XP3(g) is
the difference vector. F is the scaling factor, which is usually chosen between [0, 2], and
0.5 is usually chosen.

The strategy for the gth crossover.

U(i,j) =

{
Cross(x ij(g), vij(g)), rand(0, 1)< cr

xij(g), else
(6)

New individuals U(i,j) are generated in Vij(g) and Xij(g). cr is the crossover rate
threshold, and we choose 0.4 here. Suppose the number of randomly generated individuals
is smaller than the crossover rate threshold. In that case, cross the jth component of the ith
individual of the gth crossover with the component of the corresponding variant individual.
In order to prevent the “early maturation” of the early population and maintain the stability
of the later population, we use the adaptive crossover rate with Equation (7).

λ = e(1−T/(T+1−g)) (7)

where T denotes the total number of iterations, and g denotes the number of current iterations.
Finally, subject the new population to fitness calculation, and the selection formula for

individuals in the population is shown as Equation (8).

X(i)(g + 1) =
{

vi(g), f (Vi(g))> f (Xi(g))
Xi(g), else

(8)
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where f (x) is the fitness function; the algorithm is terminated after several iterations or
when it reaches the condition. The optimal solution set for feature selection is derived.
Next, the current optimal set of feature solutions is used as the input for feature fusion.

3.3.3. Feature Fusion

First, classify the core learning behaviors into different sets of e-learning behaviors
according to the EBC model. The classification model EBC consists of learning behaviors
generated by students, i.e., EBC{C1, C2, . . . . . . , Cn}. After dividing the subset of e-learning
behaviors, a set of n e-learning behaviors is generated. Any class of e-learning behavior
subset contains a varying number of e-learning behaviors, such as C1{s1, s2, . . . . . . , sm},
where sm denotes the mth e-learning behavior that meets the C1 criterion.

Then, feature fusion is performed for each subset of e-learning behaviors to obtain the
corresponding feature values. Taking C1{s1, s2, . . . . . . , sm} as an example, we propose a
new adaptive fusion for each learning behavior subset by combining a differential evolution
algorithm to decide which learning behaviors to use in that set as fused features. On the
training set, the fusion strategy is determined according to the scores of each learner. We
select the maximum value of each learning behavior set for passing learners and calculate
the mean value for each subset of learned behaviors for failing learners. Define Dci as the
feature values after the feature fusion of the learning behavior subset ci, which can be used
to construct the learning behavior subset’s feature value set Dc{D c1

, Dc2 , . . . , Dci }. Based
on the distribution of learners in the feature space, the fusion strategy is employed for the
test set. Equation (9) shows the fusion strategy for the training and test sets.

Dci = λ max{s1, s2, . . . , sm}+ (1− λ)·∑
m
i=1 si

m
, λ = (0, 1) (9)

where si is the feature value of the ith learning behavior, and DCi denotes the feature value
of a subset of e-learning behaviors of class Ci. The value of λ determines the fusion method
of this student behavior class. λ = 1 represents the fusion method taking the maximum
strategy; λ = 0 represents the fusion method taking the average strategy. For the test
set, the selection of λ is derived by clustering similarity comparison, which is determined
according to the neighboring training set samples of the samples.

Finally, we visualize and analyze learning behavior data using the principal component
analysis (PCA) method. As can be seen from Figure 2, it is found that students in the red
category have little difference among features. To achieve a better fusion effect, the average
value of features in each category should be adopted, which means λ = 1. The variability
of student features in the green category is large, and if a better integration effect should be,
the maximum value of features in each category should be taken, which means λ = 0.

3.3.4. Model Training

Traditional machine learning techniques including SVC, Naive Bayes, KNN, and
Softmax are chosen for the model training session. Then, the e-learning behavior set
K{S 1, S2, . . . , SK} is used as input data to train e-learning performance prediction models.
The efficiency of our suggested feature engineering techniques is evaluated after numerous
iterations. To forecast the learning outcomes of online learners, the best performing e-
learning performance prediction model is used.



Sensors 2022, 22, 8838 12 of 24

Figure 2. Visualizing clustering results.

4. Experimental Design

This experiment proposes a two-stage data pre-processing method: an e-learning
performance prediction model based on a differential evolution algorithm for feature
selection and fusion. We demonstrate the importance of data pre-processing in data
analysis by analyzing experimental results. The seven machine learning methods SVC (R),
SVC (L), Naive Bayes, KNN (U), KNN (D), Decision Tree, and Softmax included in the
model validate the effectiveness of the feature engineering method proposed in this paper.
In this paper, precision, recall, accuracy, F1 score, Kappa coefficient, and other metrics are
selected as quantitative metrics to evaluate the prediction performance. The weighted sum
of the above metrics is used as the fitness value of the differential evolution algorithm to
fully validate the SA-FEM performance prediction model.

The hardware devices used for the experiments in this paper are an Intel Core i5-10600KF
processor, 16 GB RAM, and 1 TB hard disk. The software is based on the Windows 10 operating
system, and the experiments are conducted in collaboration with the Jupyter lab and PyCharm
integrated working environment, where the Python interpreter version is 3.8.10.

4.1. Data Sources

The Open University Learning Analytics Dataset (OULAD) [34] is considered one of the
most comprehensive international public datasets in terms of the diversity of e-learning data.
Student demographics and student interaction data with the virtual learning environment
(VLE) are included. This dataset developed by the Open University can support research in
learning analytics, and analysis of this dataset can provide learners with personalized services for
instructional programs. Data on e-learning behavior and academic achievement are included in
the dataset for seven course modules (AAA to GGG), 22 courses, and 32,593 students. The whole
dataset’s collecting process consists of three steps: collection, selection, and anonymization. A
data warehouse was created with SAS technology, data that contained student information from
2013–2014 were chosen, and then an anonymization process was performed on the data. The
types of design were time-series design, data integration objective, and observation design. The
type of measurement was learning behavior, the type of technique was digital curation, and the
type of factor was time interval. This paper selects the FFF course module with richer sample
data for this experiment. The training and validation of the e-learning performance prediction
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model utilized the e-learning data of 5110 participants in the FFF course as the data source.
While studying, learners exhibited a total of 18 e-learning behaviors, and the learning behaviors
were classified according to the e-learning behavior classification model. Finally, four sets of
e-learning behaviors were obtained, as shown in Table 1.

Table 1. E-learning behavior and coding of FFF courses.

Behavior Sets Behavior Codes E-Learning Behavior Behavior Interpretation

1
LPB

HP homepage Access the homepage
2 PG page Enter the course interface
3 SP subpage Enter the course subinterface
4

KAB

DA dataplus Supplementary materials
5 FD folder Open the folder
6 HA htmlactivity Web activity
7 CT oucontent Download platform resources
8 WK ouwiki Search on Wikipedia
9 RS resource Search platform resources
10 UR url Access the link
11 DU dualpane Access to double Windows
12 GS glossary Access to the glossary
13

ILB
FU forumng BBS discussion

14 CA oucollaborate Collaborative communication
15 EM ouelluminate Simulation Seminar

16
LCB

QN questionnaire Participate in questionnaire
feedback

17 QZ quiz Quiz
18 RP repeatactivity Repeat activities

4.2. Experimental Design for Validation of SA-FEM

1. Experimental scheme

Four experimental groups were set up in this study to evaluate and assess the merits of
feature selection and model fusion for predicting e-learning performance using a differential
evolution algorithm. As input data, experimental group one employs pre-processed e-
behavior data that are based on the e-learning behavior classification model. The data used
in experimental group one are also used in experimental group two. It uses the differential
evolution algorithm to select the effective set of learning behaviors. The final results should
be consistent with experiment group one to verify the feasibility of the wrapping method
using the differential evolution algorithm as the evaluation function. Experimental group
three uses pre-processed data and the differential evolution algorithm to select effective
learning behaviors. The fourth experimental group uses the data selected by the third
experimental group and then applies the e-learning behavior classification model to fuse
the behaviors further. The above experimental protocols were cross-validated using a
five-fold crossover.

2. Feature selection

Experimental group one manually combined the four sets of learning behaviors
according to the set of learning behaviors classified by the e-behavior classification model
to obtain 15 results. The adopted method we call the e-learning performance prediction
model based on manual pre-processing, referred to as the MM.

The learning behavior combination codes are shown in Table 2.
Experimental group two uses an e-learning performance prediction model based on

the differential evolution algorithm referred to as the DEM. The model uses a weighted
sum of predictive performance metrics as the fitness value to select the combination of the
best set of learning behaviors.

The third experimental group continues to follow the idea of the differential evolution
algorithm to find the optimal solution space, which is not only limited to the set of learning
behaviors but also explores a more optimal feature selection strategy based on each learning
behavior in a more fine-grained perspective. The adopted method is a fine-grained e-
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learning performance prediction model based on the differential evolution algorithm,
hereafter referred to as the FGDEM.

Next, we apply the EBC model and fine-grained strategies to feature fusion, striving
for a better solution space.

Table 2. Combination of online learning behavior sets.

Input Indicator Number Behavior Set Number

F0 LPB
F1 KAB
F2 ILB
F3 LCB
F4 LPB, KAB
F5 LPB, ILB
F6 LPB, LCB
F7 KAB, ILB
F8 KAB, LCB
F9 ILB, LCB

F10 LPB, KAB, ILB
F11 LPB, KAB, LCB
F12 LPB, ILB, LCB
F13 KAB, ILB, LCB
F14 LPB, KAB, ILB, LCB

3. Feature fusion

Experimental group four constructs a self-adaptive feature-fusion-based e-learning
performance prediction model called SA-FEM. Fine-grained feature fusion of behaviors
is performed to obtain feature values for each subset of learning behaviors. Finally, the
learner’s performance is predicted by the feature values of the subset of learning behaviors.
Figure 3 shows the schematic diagram of the learning behavior classification obtained
according to the EBC model with the feature selection method.

Figure 3. Schematic diagram of e-learning behavior classification in feature fusion.

4. Mutation Strategy

We used five different mutation strategies [35] in both feature selection and feature
fusion algorithms to explore which strategy has better prediction performance.
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The mutation strategies are as follows:
DE/rand/1:

vi(g)= Xp1(g)+F×
(
Xp2(g)−Xp3(g)

)
(10)

DE/rand/2:

vi(g)= Xp1(g)+F×
(
Xp2(g)−Xp3(g)

)
+F×

(
Xp4(g)−Xp5(g)

)
(11)

DE/current to best/1:

vi(g)= Xi(g)+F×(Xbest(g)−Xi(g))+F×
(
Xp1(g)−Xp2(g)

)
(12)

DE/best/1:
vi(g)= Xbest(g)+F×

(
Xp1(g)−Xp2(g)

)
(13)

DE/best/2:

vi(g)= Xbest(g)+F×
(
Xp1(g)−Xp2(g)

)
+F×

(
Xp3(g)−Xp4(g)

)
(14)

When applying the above five strategies for model training, we record the convergence
speed and overall prediction performance of each strategy and combine these two indicators
to select the optimal mutation strategy.

5. Experimental Results and Analysis

This section gives the results of the above experiments, including the accuracy, F1
score, Kappa, recall, precision, the overall time required for feature engineering, and the op-
timal feature space filtered from the adaptive feature-fusion-based e-learning performance
prediction model for each experimental group under the seven machine learning methods.
The above data were analyzed to verify the effectiveness and feasibility of the SA-FEM and
compared with existing benchmark methods.

5.1. Validation of SA-FEM

In this paper, four control groups (with different feature data) are designed, and seven
common machine learning algorithms are used to discuss the effectiveness of the SA-FEM
based on the prediction results of the prediction models.

First, for the MM, the prediction metric F1 score values for each combination of
data input to the algorithm are shown in Figure 4. The optimal solution is F14 which
contains learning behaviors of LPB, KAB, ILB, and LCB, and the mean accuracy of the
seven algorithms is 89.1%.

Figure 4. The F1 score of combination of e-learning behavior sets.

F2 is an interactive learning behavior category containing learning behaviors such as
FU, CA, and EM. Interaction is a key behavior among many learning behaviors that affect
learning outcomes in e-learning environments. The form and process of online interaction
can affect motivation to some extent. E-learning interactions can also affect learners’ e-
learning satisfaction and, consequently, the extent of sustained use. It can be said that
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e-learning interaction is the quality assurance of e-learning. Therefore, it is reasonable to
use F2 interactive learning behavior for e-learning performance prediction with certain
accuracy. What is recorded in the interactive learning behavior of F2 is the surface data
related to FU, CA, and EM, i.e., the most basic number of interactions recorded. The
quality of interaction in the FU, CA, and EM processes was not focused on and reflected
in the data records. However, the mode of e-learning interaction, the depth of interaction,
and the effectiveness of interaction can affect the quality of interaction, which further
affects e-learning performance. The quality of the interaction cannot be determined by the
superficial quantitative records alone. Such as whether the students who participated in
posting or replying spoke on the relevant topics, whether the students who conducted CA
shared their learning knowledge and experiences, and whether the students only shared
their knowledge during the EM or went further into the knowledge-building process.
The interactive learning behavior through F2 can only reflect the interactive participation,
whether it is active in completing tasks or participating in group activities, and to some
extent, the dynamic nature of learning. Overall, it has limitations in predicting students’
e-learning performance.

We applied the DEM in experimental group two to assess the feasibility of the wrap-
ping method with the differential evolution algorithm as the evaluation function. The DEM
automatically searches for the optimal solution in the set of learned behavior feature space,
and its computational complexity is 0(n2). The prediction metric of the optimal solution
and its corresponding feature space is shown in Table 3. The optimal solution results are
consistent with the MM, and the overall convergence time of the DEM is around 9 min.
While the MM exhausts the entire solution space based on manual combinatorial learning
behavior, which is more labor-intensive and costs time, the DEM is superior to the MM in
terms of time consumption.

Table 3. DEM’s optimal solution and optimal feature space.

Method Precision Recall Accuracy F1 Score Kappa Feature
Space

Behavior
Classes

SVC_rbf 0.886 0.989 0.904 0.935 0.753
HP, PG, SP,

DA, FD, HA,
CT, WK, RS,
UR, DU, GS,
FU, CA, EM,
QN, QZ, RP

LPB,
KAB,
ILB,
LCB

SVC linear 0.895 0.974 0.903 0.933 0.755
Bayes 0.858 0.983 0.875 0.916 0.674
Knn 0.890 0.958 0.888 0.922 0.721

Knn_dis 0.890 0.958 0.888 0.922 0.721
Decision Tree 0.858 0.976 0.870 0.913 0.661

Softmax 0.906 0.946 0.895 0.926 0.743

The experimental results of the third experimental group are shown in Table 4, and
the computational complexity of the FGDEM is 0(n2). Compared with the second experi-
mental group, the prediction accuracy improved by 1%, 0.8%, 1.2%, 0.6%, 0.6%, 2.4%, and
0.7%, respectively. The improved performance of each machine learning algorithm fully
demonstrates the effectiveness of the fine-grained strategy. It reduces the solution space to
be searched for the subsequent feature fusion, which is meaningful.

The experimental results of the fourth experimental group are shown in Table 5. The
computational complexity of the SA-FEM is also 0(n2). Moreover, all of its metrics have
a greater improvement than those of the FGDEM. Among the seven machine learning
algorithms, accuracy improved by 3.8%, 4.5%, 5.2%, 6.1%, 6%, 8.2%, and 6.5%, respectively.
Although the solution space of this experimental group is not as large as that of the FGDEM,
it takes a little time to execute the feature fusion strategy, so the overall convergence time
of the algorithm is a little longer than that of the FGDEM. However, the FGDEM effectively
reduces the feature space to be searched, implying a contribution to the reduction in time
spent in the SA-FEM. The optimal solution uses only three features (after feature fusion) to
achieve a 6.42% improvement in accuracy compared to the MM average.
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Table 4. FGDEM’s optimal solution and optimal feature space.

Method Precision Recall Accuracy F1 Score Kappa Feature
Space

Behavior
Classes

SVC_rbf 0.902 0.986 0.914 0.942 0.774
CT, SP, HP,
QZ, RS, PG,

QN, EM, DU,
DA, HA, FD,

RP

LPB(part),
KAB(part),
ILB(part),

LCB

SVC linear 0.909 0.973 0.911 0.940 0.771
Bayes 0.875 0.982 0.887 0.926 0.698
Knn 0.904 0.953 0.894 0.928 0.731

Knn_dis 0.904 0.953 0.894 0.928 0.731
Decision Tree 0.877 0.970 0.882 0.921 0.687

Softmax 0.921 0.944 0.902 0.932 0.757

Table 5. SA-FEM’s optimal solution and optimal feature space.

Method Precision Recall Accuracy F1 Score Kappa Feature
Space

Behavior
Classes

SVC_rbf 0.960 1.000 0.962 0.964 0.951

DA, FD, GS,
FU, CA,

QN, QZ, RP

KAB(part)
ILB(part)

LCB

SVC linear 0.956 1.000 0.958 0.960 0.945
Bayes 0.974 1.000 0.975 0.977 0.969
Knn 0.970 0.998 0.970 0.971 0.964

Knn_dis 0.960 0.996 0.958 0.959 0.950
Decision Tree 0.953 1.000 0.956 0.960 0.937

Softmax 0.963 1.000 0.964 0.965 0.959

The FFF course chosen for the experiment is a course in the STEM field. It records
mostly data generated from learning activities conducted in the course, which can also
be classified into the four learning behavior categories mentioned above according to the
learning behavior classification framework. However, it is not reasonable and accurate
to use HP, PG, and SP, the most basic online platform login operations in the learning
readiness behavior category, for learning performance prediction. HP, PG, and SP are
the only necessary steps to access subsequent operations, such as browsing content and
accessing resources. In a certain sense, they are homogeneous and do not reflect the state of
student learning or achievement. Thus the data were subjected to an experimental adaptive
feature fusion operation to derive an optimal solution feature space that excels in various
performance aspects, such as accuracy, Kappa, F1 score, and other metrics. This feature
space was selected for learning performance prediction only for three behavioral categories
that mainly reflect the e-learning process: knowledge acquisition behavior, interactive
learning behavior, and learning consolidation behavior.

Compared with the MM, DEM, and FGDEM, this feature space can achieve higher
prediction accuracy by only three learned behavioral features (after feature fusion). The
three behavioral features, DA, FD, and GS, all belong to the category of knowledge acqui-
sition behaviors. They are specifically interpreted as supplemental data, opening folders,
and accessing glossaries of terms. DA and GS are the basic operations students perform
when learning on the platform. FD is a prerequisite for subsequent resource access and
acquisition. The combination of these three can reflect some extent, whether students
browse the platform’s resources, and their propensity to perform knowledge learning and
has the advantage of a large amount of accessible data.

FU and CA were chosen over EM in the interactive learning behavior category because
although EM enhances the facial emotional communication experience through technology,
communication in video form may expose students to a more uncontrollable environment.
According to the spiral of silence theory, people are often influenced by a “fear of isolation”
when expressing their ideas and opinions. When they find that no one or very few people
pay attention to a certain point of view (and sometimes they are attacked by a group), they
remain silent even if they agree with it. Students’ real thoughts are more difficult to capture
during this interactive exchange, and prediction of learning performance in this way can be
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ineffective. In contrast, the number of posts and replies and textual information in forum
discussions have some value, so predictions can be made by obtaining data and mining and
analyzing textual values [36]. Collaborative communication is an important channel for
internalizing learning content into self-cognitive structures and developing higher-order
thinking. Through teacher–student and student–student communication and interaction, it
is beneficial for both parties to interact with information and maintain emotional needs.
The content and level of collaborative communication indicate students’ understanding
and engagement in learning. These two data reflect the mastery of students’ knowledge
and their participation, making it more accurate to predict learning performance with this
interactive communication status data.

Learning consolidation behavior is a step students take to consolidate and reinforce
their knowledge after learning something new. QN refers to participation in questionnaire
feedback, which helps us understand students’ emotional states and further analyze the
strength of their motivation for deeper learning. QZ refers to the stage tests that learners
take. The test results not only help us see the effectiveness of students’ stage learning
but also provide a basis for students to reflect on their stage learning results. RP refers to
repetitive activities. The data of repeat activity can, to a certain extent, reflect the continuity
and frequency of learning, i.e., the continuity of students’ review of knowledge. These
three data quantify the student learning consolidation process in different directions and
help make a more comprehensive prediction of learning performance.

The above three types of learning behaviors describe the three stages of learning
new knowledge, interacting and collaborating, and reviewing and consolidating that
students go through when they engage in e-learning. The relevant behavioral features from
different perspectives are used to deeply and comprehensively shape the learning portrait
of students, which is conducive to more accurate learning performance prediction.

As shown in Figure 5, a longitudinal comparison of the prediction performance results
of the four models for the FFF dataset shows that the results of the MM and DEM are
consistent. The FGDEM implements a fine-grained feature selection strategy to make all
four prediction performance metrics of the seven machine learning algorithms have a better
level. The box plot can intuitively observe that the scattering range of the FGDEM is lower
than the MM and DEM, which shows that the FGDEM algorithm performs better from the
side. The prediction performance metrics of the SA-FEM algorithm are even higher than
the MM, DEM, and FGDEM algorithms. It can be seen from the figure that the SA-FEM has
a smaller scattering range and lower bias compared with the MM, DEM, and FGDEM. The
above comparison fully demonstrates the superiority of our proposed SA-FEM.

5.2. Overall Evaluation of Wrapper Method with Differential Evolution Algorithm as an
Evaluation Function

The results of ten runs of the FGDEM are shown in Table 6. It can be seen that the degree of
fluctuation of each metric is very small. The variance of precision, recall, accuracy, F1 score, and
Kappa in the results of ten runs is 1.818×10−6, 2.491× 10−6, 5.03× 10−7, 2.06× 10−7, 4.15× 10−6,
respectively. The results of multiple experimental runs show that our proposed algorithm has
good stability.

The distribution of the solution space derived from ten runs of the SA-FEM with
the distribution based on the set of learning behaviors is shown in Figure 6. It can be
visually observed that HA, CT, WK, RS, UR, and EM are less frequently selected as learning
performance predictors in the feature space. When establishing the optimal solution space,
it is even more necessary to select suitable and reasonable behavioral features from multiple
perspectives. HA, CT, WK, RS, and UR are knowledge acquisition behaviors that are largely
repetitive in a behavioral sense and are more influenced by other factors, so they have a
lower chance of being selected or selected simultaneously. Compared to FU and CA, the
effect of EM on students is more unpredictable, so it is less likely to be used as a factor
in constituting the feature space. In addition, it can be seen from the histogram that the
distribution of the solution space from the ten runs of the SA-FEM has a commonality with
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the optimal solution space in that none of them contains the learning readiness behavior
category. In the optimal solution, DA, FD, GS, FU, CA, QN, QZ, and RP belong to behavioral
features that occur with high frequency in the results of the ten-run distribution. The two
can corroborate each other and improve persuasiveness.

Figure 5. Ablation experiments.

Table 6. Metrics result of ten FGDEM runs.

Precision Recall Accuracy F1_Score Kappa

1 0.891 0.969 0.896 0.928 0.738
2 0.888 0.975 0.896 0.929 0.737
3 0.891 0.972 0.897 0.929 0.742
4 0.888 0.973 0.896 0.929 0.737
5 0.892 0.971 0.897 0.929 0.743
6 0.891 0.970 0.896 0.929 0.740
7 0.890 0.972 0.897 0.929 0.740
8 0.889 0.971 0.895 0.928 0.736
9 0.890 0.971 0.896 0.929 0.739

10 0.890 0.971 0.896 0.929 0.739
Var 1.818× 10−6 2.491× 10−6 5.03× 10−7 2.06× 10−7 4.15× 10−6

The distribution of the solution space derived from ten runs of the SA-FEM with
the distribution based on the set of learning behaviors is shown in Figure 7. It can be
visually observed that HA, CT, WK, RS, UR, and EM are less frequently selected as learning
performance predictors in the feature space. When establishing the optimal solution space,
it is even more necessary to select suitable and reasonable behavioral features from multiple
perspectives. HA, CT, WK, RS, and UR are knowledge acquisition behaviors that are largely
repetitive in a behavioral sense and are more influenced by other factors, so they have a
lower chance of being selected or selected simultaneously. Compared to FU and CA, the
effect of EM on students is more unpredictable, so it is less likely to be used as a factor
in constituting the feature space. In addition, it can be seen from the histogram that the
distribution of the solution space from the ten runs of the SA-FEM has a commonality with
the optimal solution space in that none of them contains the learning readiness behavior
category. In the optimal solution, DA, FD, GS, FU, CA, QN, QZ, and RP belong to behavioral
features that occur with high frequency in the results of the ten-run distribution. The two
can corroborate each other and improve persuasiveness.
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Figure 6. Diagram of feature space of ten FGDEM runs.

The metric results of ten SA-FEM runs are shown in Table 7, and the average accuracy
of the optimal solution is 96.11%. Compared with the FGDEM, adding the feature fusion
strategy can improve the model’s prediction performance to a larger extent. Moreover, the
variance of each indicator after ten runs shows that the dispersion is very small, which
fully proves the high stability of the proposed algorithm.

Table 7. Metrics result of ten SA-FEM runs.

Precision Recall Accuracy F1_Score Kappa

1 0.9599 0.9990 0.9603 0.9618 0.9524
2 0.9666 0.9992 0.9671 0.9685 0.9599
3 0.9714 0.9992 0.9723 0.9742 0.9626
4 0.9595 0.9983 0.9598 0.9622 0.9478
5 0.9590 0.9750 0.9423 0.9510 0.8985
6 0.9657 0.9986 0.9677 0.9717 0.9469
7 0.9568 0.9992 0.9576 0.9593 0.9491

8 0.9577 0.9781 0.9547 0.9519 0.9028
9 0.9596 0.9994 0.9609 0.9629 0.9508
10 0.9686 0.9975 0.9681 0.9704 0.9563

avg 0.9625 0.9944 0.9611 0.9634 0.9427
Var 0.000008 0.000089 0.000068 0.00003 0.000484

The comparison between the predictive performance metrics of the results of ten runs and
the analysis of the frequently selected learning behaviors fully demonstrate the effectiveness
of our proposed feature engineering approach using a differential evolution algorithm as an
evaluator and a weighted value of the predictive performance metrics as the fitness value. It
also provides a new perspective for the evaluation of e-learning behaviors.

We compared e-learning performance prediction methods using FFF course data from
the OULAD dataset, as shown in Table 8. Our proposed method is an improvement over
existing benchmark methods, using machine learning algorithms and evolution algorithms
that are less resource-intensive than the more resource-intensive deep learning methods
employed by most methods. Deep learning methods are not interpretable, whereas our
approach allows for an educational theoretical analysis of learner behavior. Furthermore,
without loss of generality, our main work focuses on feature engineering, where the
upper limit of machine learning is determined by feature engineering, not by machine
learning itself. So our proposed method is more portable than other methods. Although
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the improvement of accuracy of our proposed method is not much compared with Qiu’s
method, we use a fine-grained feature selection method with an adaptive feature fusion
method, which is more efficient compared with the manual search of the optimal solution
space; and we have to reduce one more dimension in the feature dimensionality reduction.

Figure 7. Diagram of accumulative feature space of SA-FEM 10-time running results.

Table 8. Comparison of accuracy with existing benchmark methods.

Accuracy

He 80.00%
Zheng 87%
Aurora 90.37% (avg)
Naif 95.23%
Qiu 95.4% (avg)
Ours 95.80%

5.3. Comprehensive Analysis of Different Mutation Strategies

We compare the performance of different mutation strategies and explore the conver-
gence speed of different mutation strategies. After comprehensive comparison, it is found
that the DE/best/1 strategy has a good effect on this task and the convergence speed of the
algorithm is also fast.

Figure 8 shows the iteration number required for the convergence of the five mutation
strategies after the unified dimension. It can be seen that the DE/best/1 strategy has the
fastest convergence speed. Next is DE/best/2, and the DE/rand/2 strategy has the slowest
convergence speed.



Sensors 2022, 22, 8838 22 of 24

Figure 8. Convergence rate of five mutation strategies after unified dimension.

At the same time, we compare the performance of five mutation strategies on student
performance prediction. As shown in Figure 9, we can see that the best mutation strategy is
DE/rand/2, with a prediction accuracy of 95.9%. However, in combination with the convergence
rate of Figure 8, we find that DE/best/1 converges much faster than DE/rand/2 when the
accuracy decreases by only 0.001%, so our final choice of mutation strategy is DE/best/1.

Figure 9. The prediction accuracy of the model using five different mutation strategies.

6. Conclusions

One efficient method for guaranteeing the caliber of e-learning is the learning perfor-
mance prediction model. A popular area of research in the world of e-learning is how to
construct learning performance prediction models with high generality and high accuracy.
This work, from the viewpoint of learner learning behavior categorization, offers a novel
adaptive feature-fusion-based e-learning performance prediction model. To the conven-
tional approach, it adds a learning behavior feature fusion mechanism. Experimental
results on the OULAD dataset show that the model proposed in this paper significantly
outperforms traditional learning performance prediction models. This framework pro-
duces a precise and reliable learning performance prediction model. A novel workable way
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to quantitatively assess the benefits and drawbacks of e-learning behavior classification
techniques is offered by the follow-up tests, which show that the SA-FEM introduced in
this study is efficient and superior to existing e-learning behavior classification methods.
The model proposed in this paper is more interpretable than those based on deep learning
methods. The model can still effectively predict students’ learning performance due to its
adaptive nature in the future when e-learning platforms can collect more detailed learning
behavior data. However, there are still some limitations. The whole process of our method
is a little time consuming, and the weights of the fitness function need manual tuning.

In our upcoming study, we will create learning performance prediction models using
the methodology presented in this research for different e-learning platforms and further
optimize the prediction models in this paper by recording and analyzing the performance
of these prediction models in the process of actual use. At the same time, we believe
that the e-learning prediction aim should be more varied. Comparable methods will also
be employed to forecast e-learning sentiment in addition to the e-learning performance
prediction discussed in this work to improve online supervision and early warning through
the prediction findings from several perspectives, as well as to ensure the effectiveness of
the e-learning system and to guarantee the learning quality of online students.
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