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Abstract: Density peak clustering is the latest classic density-based clustering algorithm, which
can directly find the cluster center without iteration. The algorithm needs to determine a unique
parameter, so the selection of parameters is particularly important. However, for multi-density data,
when one parameter cannot satisfy all data, clustering often cannot achieve good results. Moreover,
the subjective selection of cluster centers through decision diagrams is often not very convincing, and
there are also certain errors. In view of the above problems, in order to achieve better clustering of
multi-density data, this paper improves the density peak clustering algorithm. Aiming at the selection
of parameter dc, the K-nearest neighbor idea is used to sort the neighbor distance of each data, draw
a line graph of the K-nearest neighbor distance, and find the global bifurcation point to divide the
data with different densities. Aiming at the selection of cluster centers, the local density and distance
of each data point in each data division is found, a γ map is drawn, the average value of the γ

height difference is calculated, and through two screenings the largest discontinuity point is found to
automatically determine the cluster center and the number of cluster centers. The divided datasets are
clustered by the DPC algorithm, and then the clustering results are perfected and integrated by using
the cluster fusion rules. Finally, a variety of experiments are designed from various perspectives on
various artificial simulated datasets and UCI real datasets, which demonstrate the superiority of the
F-DPC algorithm in terms of clustering effect, clustering quality, and number of samples.

Keywords: density peak; cluster; local density

1. Introduction

Cluster analysis [1] is a method of classifying similar samples of a dataset into several
classes. The set of clusters produced by clustering analysis is called a cluster, and in this
context, different clustering methods may produce different clusters on the same dataset.
The division is not performed by people, but by a clustering algorithm. Therefore, how to
measure the similarity between samples is the key problem of a clustering algorithm. Clus-
tering [2], as an unsupervised learning process, has also been applied in various fields [3–6],
such as image recognition, document search, intrusion detection, and sentiment analy-
sis. At present, the most classic and commonly used clustering algorithms [7,8] include
density-based clustering algorithms, hierarchical clustering algorithms, grid-based cluster-
ing algorithms, graph-theory-based clustering algorithms, and some other optimization
algorithms [9–15].

The hierarchical clustering algorithm, also known as the tree clustering algorithm, has
the advantage of being able to clearly express the hierarchical relationship between clusters.
The grid-based clustering method is suitable for any attribute dataset, and the algorithm
running time depends on the grid cell size, which can greatly improve the computational
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efficiency. The clustering method based on graph theory can transform the clustering
problem into a graph partitioning problem, which is more suitable for discovering clusters
with irregular shapes in the dataset. The density-based clustering algorithm clusters
according to the distance between objects and replaces the similarity of data with density;
the advantage is that it can filter noise or outliers and can find clusters of any shape.

The density peak clustering algorithm [16] (denoted as DPC) is an emerging density-
based clustering algorithm, proposed by Rodriguez et al. in 2014, and the algorithm
calculates the local density of data points and the distance of data points by setting the
value of the parameter truncation distance dc, and then draws a decision diagram to
observe and determine the cluster center and the number of cluster centers. However,
this clustering method has certain defects. First, the subjective selection of cluster centers
by the naked eye will lead to inaccurate selection of cluster centers, which will lead to
weaker robustness of the clustering algorithm. Secondly, the parameter truncation distance
dc only selects a unique value, which is neither objective nor scientific for multi-density
datasets, and the selection of dc also directly affects the final result of clustering. The
selection of dc depends on the distance between samples. When the distance difference
within each cluster is obvious, the selection of the neighborhood truncation distance dc
is seriously affected. In this case, the DPC algorithm cannot obtain a good clustering
effect. Aiming at the problem of the selection of the parameter dc of the DPC algorithm,
reference [17] optimized the parameter dc by using the maximum difference method of
adjacent elements. However, under the condition of multi-density data, the parameters
optimized according to the local distance of data points cannot obtain stable clustering
effect. Reference [18] combined the DPC algorithm with K-means to optimize the initial
clustering center point, so as to better achieve the local optimal clustering effect and
greatly reduce the number of clustering iterations. However, under the condition of
multi-density data, the data center of gravity will be affected and the clustering results
will be affected. Reference [19] proposed a DPC algorithm based on weighted K-nearest
neighbors and geodesic distance (DPC-WKNN-GD), using the idea of weighting to improve
the parameter dc to improve the clustering performance of manifold and non-manifold
datasets. Reference [20] also proposed an adaptive density peak algorithm combined
with the whale optimization algorithm to obtain the best cut-off distance dc, which also
strengthened the accuracy of the original parameter calculation. These two algorithms also
optimize the clustering parameters so that the uniqueness of the parameters cannot be
applied to multi-density datasets. For datasets with multi-density, reference [21] proposed
a heuristic filter based on density peak clustering (ADPCHFO) for adaptive weighted
oversampling of unbalanced datasets, which can solve both the inter-class and intra-
class imbalances question. Reference [22] proposed an improved hierarchical clustering
algorithm to solve data with multi-density, first using fuzzy pre-clustering division and
then using the Jaccard similarity coefficient for fusion. Reference [23] uses the idea of
region division grid to solve the multi-density problem. However, the above methods need
to use many parameters or the computational complexity is large, so that the accuracy
of the clustering model will be affected by multiple parameters. When encountering a
large number of datasets, the accuracy of the clustering model will be affected by multiple
parameters. Faced with the high computational complexity of density peak clustering
in large datasets, reference [24] proposed a density peak clustering algorithm based on
sparse search and K-d tree, the algorithm proposes a sparse search strategy to speed
up the calculation of relative separation and greatly reduce the time complexity of the
algorithm; Faced with the problem that it is difficult to accurately find the cluster centers
in large datasets, reference [25] proposed a method based on the Gini coefficient and K-
nearest neighbors to calculate the cut-off distance to automatically determine the cluster
centers. Reference [26] automatically determined the number of inflection points in the
decision diagram according to the characteristics of different datasets and can further
determine the number of cluster centers without manual intervention. Reference [27] uses a
continuous function to distinguish different data point densities to automatically determine
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the clustering center. The above four methods solve the problem of cluster center selection
and time consumption of the DPC algorithm for large datasets. However, in the face of a
large number of multi-density data, the above methods are difficult to accurately select
the cluster centers, and there are few domestic and foreign scholars on this aspect. In the
face of high-dimensional complex data, references [28,29] use the method of calculating the
feedback value combined with the support vector machine and the method of calculating
the order similarity between samples to process the high-dimensional data, respectively.
However, for complex data with multiple densities, a large number of calculations are also
a test of time consumption. In addition, some other methods were also proposed in recent
years [30–38]

For the above problems and defects, this paper improves the DPC algorithm for multi-
density data and records it as F-DPC. The algorithm solves the uniqueness and sensitivity
of the original algorithm parameters under the condition of multi-density data, and also
solves the problem of poor clustering effect caused by subjective selection of cluster centers.
The main work is as follows:

(1) In order to solve the problem of unsatisfactory clustering effect caused by the unique-
ness of data parameters of multi-density, the distance matrix is obtained by the
distance between any two points of each data point, and the K-nearest neighbor
matrix is obtained by row in ascending order. Draw a line graph of the K-nearest
neighbor distance according to the parameter k, find the global bifurcation point
for division, and obtain D = {D1, D2, ..., Dm}, where m is the number of divisions.
Calculate the corresponding parameter truncation distance dci for each dci, where
i ∈ [1,m].

(2) In order to solve the problem of subjective selection of cluster centers, for each Di,
calculate the local density ρj and data point distance δj of each data point, calculate the
product of the two γj, and sort them in ascending order. Finally, draw the scatter plot
of each data γj, calculate the height difference between two adjacent points, calculate
the average height difference, and select the point higher than the average height
difference as the center point of the preliminary cluster. Screen again according to the
preparatory cluster center points to determine the cluster center and the number of
clusters of each Di.

(3) Each Di performs the DPC algorithm according to the obtained cluster center and dci
to obtain a new cluster. Finally, the clusters are merged through the fusion rule to
obtain the final cluster.

(4) Comparative experiments are carried out from various perspectives on various ar-
tificial simulated datasets and UCI real datasets. From the perspective of various
measurement indicators of clustering, the clustering quality of the F-DPC algorithm is
the best; however, from the perspective of time consumption, the time consumption
of the F-DPC algorithm increases with the increase in the amount of data, but the
increase level is in the middle.

The rest of this paper is organized as follows: Section 2 briefly introduces the relevant
knowledge of the density peak clustering algorithm; Section 3 introduces the idea of
the F-DPC algorithm, the selection of parameters, the selection of cluster centers, and
the corresponding pseudocode and time complexity; Section 4 introduces the clustering
performance of each algorithm on various numbers of artificially simulated datasets and
UCI real datasets, and conducts experimental analysis from multiple perspectives; finally,
Section 5 contains the conclusions of the work.

2. DPC Algorithm

The DPC algorithm [39] considers local density and relative distance to draw a decision
graph, quickly identify cluster centers, and complete clustering. This section mainly
introduces the idea of the DPC algorithm [40], the formula for local density calculation [41],
the selection of cluster centers [42], the selection of DPC algorithm parameters dc, and the
DPC algorithm process.
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2.1. DPC Algorithm Idea

The basic idea of the DPC algorithm is to find high-density areas separated by low-
density areas and draw a decision diagram by calculating the local density of all data
points and the distances of all data points, finding the cluster center, and then performing
clustering according to the truncation distance parameter dc.

2.2. DPC Algorithm Formula

The main work of the DPC algorithm is to calculate the local density, which can be
calculated by Formula (1).

ρi = ∑
j 6=i

χ(dij − dc) (1)

χ(x) =
{

1, i f x < 0
0, i f x ≥ 0

Among the equation components, dij represents the Euclidean distance between data
point i and data point j; the parameter dc represents the cut-off distance (the calculation
method of dc is given in subsection C); and ρi is the local density of data point I; that is,
draw a circle with data point i as the center and dc as the radius, and the number of objects
whose Euclidean distance between data point i and the rest of the objects is less than the
cut-off distance radius dc.

The distance δi of each data point i is the cut-off distance between the data point
whose density is greater than that of I, and the cut-off distance from i is the smallest and is
calculated according to Formula (2).

δi = min
j:ρj>ρi

(dij) (2)

If the local density of the current data point i is the largest, then the distance calculation
formula is calculated using Formula (3).

δi = max
j

(dij) (3)

2.3. Selection of Cluster Centers

Calculate the ρi and δj of each data point and draw a scatter plot with ρi as the abscissa
and δi as the ordinate, which are collectively referred to as the decision map. Only when
the local density ρ of the data points and the distance δ of the data points are relatively
large, it is suitable as the cluster center point; lower ρ and higher δ act as noise points or
outliers. After finding the cluster center point, the remaining points are assigned to the
cluster where the data point closest to the current point and with a density greater than
it is located. In the decision diagram example shown in Figure 1, data point 1 and data
point 10 are suitable as cluster center points, and the remaining points are assigned clusters
according to the above principles, the circles with numbers in the same color represent the
same class, and the numbers in the black circles represent outliers.
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Figure 1. Decision Diagram Example.

2.4. Selection of DPC Algorithm Parameters

The DPC algorithm [16] has only one truncation distance parameter dc, and the
selection size is particularly important. If the setting is too large, it is easy to divide the
original multiple clusters into one cluster. If the setting is too small, it is possible to divide
the classes that should be in one cluster into two categories. The DPC algorithm summarizes
experience and concludes that the value of dc is the best value when the number of data
points with an average surrounding distance of each data point less than dc accounts for
1% to 2% of the total number of data points.

2.5. Steps of DPC Algorithm

The steps of the DPC algorithm are as follows:

(1) Calculate the distance between any two points.
(2) Estimate the global parameter dc value.
(3) Calculate the local density ρi of each point.
(4) Calculate the data point distance δi for each point.
(5) Draw a decision diagram according to (3) and (4).
(6) Estimate the cluster center and the number of clusters.
(7) The remaining points are assigned to the cluster of data points that are closest to the

current point and whose local density is greater than that.

3. F-DPC Algorithm

For the multi-density data, the DPC algorithm parameter dc is unique, and the cluster
center selection is subjective. This section improves the DPC algorithm and proposes the
F-DPC algorithm.

3.1. The Basic Idea of F-DPC Algorithm

This section describes the specific operation of the F-DPC algorithm.
First, the F-DPC algorithm uses the idea of the K-nearest neighbor algorithm [43] to

obtain the Euclidean distance of the k-th nearest neighbor data of each data point, arranges
the data points in ascending order according to the obtained distance from small to large,
and draws a distance line graph. The data points with the same density tend to be flat
in the distance line chart, while the data with different densities will obviously have a
bifurcation point in the graph. Find the data bifurcation points in the graph to divide the
data of different densities. This method avoids the problem of affecting the clustering effect
because there is only one parameter globally under the condition of multi-density data.

Secondly, the truncation distance parameter dc of the F-DPC algorithm is obtained
by calculation, and its calculation rule is the following: First, count the number of points
whose surrounding distance is less than dc, then sum and average, and satisfy that the
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average accounts for 2% of the sum of all points. The parameter dc value at this time is
the cut-off distance we need. The dc calculated by this method gets rid of the defect of
manually setting the parameters empirically.

Again, calculate the local density ρi of each data point and the data point distance δi (i
∈ [1,n], n represents the number of data points); after normalizing ρi and δi, take the product
to obtain γi, arrange all γi in ascending order, and then draw a γ scatter plot, calculate the
height difference in adjacent data points in the γ scatter plot and the average value of the
height difference hv, and select the data points higher than hv as the pre-selected cluster
center. Calculate the height difference between adjacent points from the preselected cluster
centers and find the point with the largest height difference, that is, the largest discontinuity
point, so as to determine the cluster center and the number.

Finally, according to the obtained cluster centers and cut-off distances, the divided
data are clustered, respectively, the clustering results are fused according to the cluster
fusion rules, and the obtained result is the final cluster.

The flow chart of the F-DPC algorithm is shown in Figure 2.
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Figure 2. The flow of F-DPC algorithm.

3.2. F-DPC Algorithm Design
3.2.1. K-Nearest Neighbor Algorithm to Divide Dataset

This section proposes the idea of using the K-Nearest Neighbors algorithm to divide
the known dataset in preparation for clustering. First, the Euclidean distance between each
data point and the rest of the points is calculated, and a distance matrix is obtained. Set a
parameter k, record the Euclidean distance from each point to the k-th nearest neighbor data
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point, arrange them in ascending order, and draw a line graph of the K-nearest neighbor
distance to divide the dataset.

Step 1: Calculate the Euclidean distance from each point in the dataset to the rest of
the points, where n represents the number of datasets, dist(i,j) represents the Euclidean
distance from the i-th data to the j-th data, and the K-nearest neighbor distance matrix is
obtained according to Formula (4), which is a real symmetric matrix.

DISTn×n = {dist(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ n} (4)

Step 2: Sort each row of data in the distance matrix DISTn×n in ascending order
to obtain a new matrix KDISTn×n. As shown in Formula (5), through this matrix, it is
convenient to find the k-th nearest neighbor distance from each data point to the rest of the
points at the same time, and it is convenient to draw a K-nearest neighbor line graph.

KDISTn×n = {kdist(i, k)|1 ≤ i ≤ n, 1 ≤ k ≤ n} (5)

Step 3: For the sorted matrix, select the k-th nearest neighbor distance of each point
at the same time, where the k value is generally selected within 10% of the total number
of datasets.

Step 4: Arrange the k-th nearest neighbor distance of each data point in ascending
order, and then obtain the new index number of the data point at the same time. Taking
the new index number of the data point as the abscissa value, and the k-th column value
in KDISTn×n corresponding to this data point as the ordinate value, draw a K-distance
line graph.

Step 5: Find the bifurcation points (that is, the points with obvious height difference),
bind the left and right parts of each bifurcation point by index and divide the dataset, and
plan the data with the same density together to complete the dataset division.

The pseudocode related to the Algorithm 1 is as follows.

Algorithm 1 Divide_Datasets.

Input: Multi-density Dataset D

Output: Dataset summary after dividing the dataset DD

1 X = read(D) // read data into X
2 disMat = squareform(X) // Calculate the distance between any two points.
3 for I in disMat
4 i.sort() // Sort each row of data

5
array.append(i[k]) // The kth nearest neighbor distance of each point is stored in
an array.

6 Use plt.plot to draw a distance line chart on the array;

7
Calculate array[i + 1]-array[i] successively from the figure to find the point with obvious
height difference, and mark array[i + 1] as the bifurcation point;

8 Use index binding to divide the dataset into two parts left and right of the bifurcation point;
9 return DD

3.2.2. Selection of Parameter Cut-Off Distance dc

The F-DPC algorithm borrows the method of selecting the parameter dc from the DPC
algorithm (mentioned in the previous Section 2.4), and then calculates the superior dc from
the divided datasets with different densities. The specific parameter calculation process is
as follows.

Assuming a total of n data, first calculate the Euclidean distance between any two
points of the data point to obtain a real symmetric distance matrix, and count the total
amount of data distance (note: the distance of the data point itself is not the total distance),
that is, n × (n − 1); after the total distance is obtained, calculate 2% of the total distance
position p, that is, p = n × (n − 1) × 0.02, arrange the distance matrix in ascending order
and turn it into an ascending table t of length 1× n2, and according to the previous position
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p, find the data point whose number of corresponding points accounting for 2% of the
number of all points is dc, dc = t [p + n] (in the ascending distance list, the distance of the
first n items is the distance of the data point itself, so n needs to be added).

The pseudocode related to the Algorithm 2 is as follows.

Algorithm 2 Parameter_Selection.

Input: Currently partitioned dataset dd

Output: Parameter dc

1 disMat = squareform(dd) // Statistical data distance total to get distance matrix

2
position = int(n * (n − 1) * per/100) //per = 2%, N represents the number of currently
divided datasets, and records the selected truncation distance dc position

3 dc = sort(t)[position + N]
4 return dc / / return parameter

3.2.3. The Selection of Cluster Centers and the Number of Centers

This paper proposes to use γi, that is, the product of ρi and δj, to comprehensively
consider the cluster centers [44], and use Formula (6) to calculate. Normalization [45,46] is
the process of adjusting measurements in different scales to the same scale and can be even
more complex to make the probability distribution of the adjusted values consistent. In
order to eliminate the dimensional influence between the feature data, it is necessary to
normalize the features ρi and δj. This paper adopts the Min-Max Normalization method
shown in Formula (7) to solve the comparability between feature indicators, where x
represents the current data, min represents the smallest value in the current data, max
represents the largest value in the current data, and x* represents the normalized data value
size. After the original data are normalized, each index is in the same order of magnitude
for comprehensive comparative evaluation.

γi = ρiδi (6)

x∗ =
x−min

max−min
(7)

Taking the data index number corresponding to the result of the ascending order
of the γi data as the abscissa, and the γi data as the ordinate, draw the corresponding γ
scatter diagram. The first step is to calculate the height difference hvi+1 before and after
γi+1 and γi according to Formula (8), calculate the average height difference hv according
to Formula (9), and filter out the points greater than the average height difference to obtain
a new set {r1,r2,...rm−1,rm}, where m is the number of data points greater than the average
height difference, the data in the set is sorted in ascending order, and this set is used as the
preliminary clustering center. The second step is to determine the cluster center according
to the preparatory cluster center. The dataset after the default division of this algorithm
is divided into at least two categories. Therefore, rm must be the cluster center, and the
remaining cluster centers are selected from the set {r1,r2,...rm−1}. Continue to calculate the
height difference between two adjacent points in this set. If the object i + 1 is selected, the
maximum height difference is obtained at this time, that is, γi+1 − γi = max (hv). Then,
the cluster center selects all points after γi+1 in the set {r1,r2,...rm−1} as the cluster center.
Through the screening of the two cluster centers, the cluster centers can be selected more
advantageously.

hvi+1 = γi+1 − γi(i = 0, 1, . . . , n− 2) (8)

−
hv = avg(

n−1

∑
i=1

hvi) (9)

The pseudocode related to the Algorithm 3 is as follows.
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Algorithm 3 Select_Cluster_Center.

Input: Currently partitioned dataset dd

Output: cc

1 Statistical local density is sorted and calculated and stored in normal_den;
2 for i in dd
3 Statistical local density is sorted and calculated and stored in normal_dis;

4
gama = normal_den*normal_dis // Preparing the product of the two parts for drawing
the γ graph;

5 Use plt.plot to draw a gama graph for γ;
6 for j in range(len(gama))

7
R.append(gama[i]-gama[i + 1]) //The height difference
between front and rear is stored in R.

8
Calculate height difference mean in R, filter out the
pre-cluster center is stored in K;

9 Compare the height difference in K, find the maximum
height difference, and select the larger data point as the
maximum discontinuity point;

10
Screen out the points greater than or equal to the maximum
discontinuity point as the final cluster center and store it in
cc, and update the labels of the dataset dd;

11 end for
12 end for
13 return cc

3.2.4. Cluster Fusion

Clustering each partition of the dataset, the clustering results appear as follows. Too
many clusters on the divided dataset will generate redundant clusters; when selecting
cluster centers, the algorithm defaults to at least two cluster centers, but it cannot be ruled
out that the divided dataset has only one class or that there are more predicted classes than
the original dataset. In view of the above clustering results, this paper uses the idea of
boundary sample optimization [47] to fuse the two types of clusters. The fusion of clusters
needs to meet two conditions, first to determine whether the category is an adjacent cluster,
and then to determine whether the fusion rules are satisfied. The judgment conditions
of adjacent clusters are the following: assuming that p and q are data points, C1 and C2
are clusters, and satisfy ∃p ∈ C1, q ∈ C2, dis(p, q) � dc holds, then C1 and C2 belong to
adjacent clusters, and p and q belong to adjacent samples. The judgment condition of the
fusion rule is that the proportion of the number of statistical adjacent samples to the total
number of samples in the two adjacent clusters is more than 2%.

After completing the clustering of each division of the dataset, for the clustering results
of each division, the two clusters that satisfy the fusion rules are fused. The cluster center
of the fused cluster is the cluster center with a larger γ value, and then re-clustering is
performed until there are no clusters that meet the fusion rules, and the fusion process
of this dataset division ends. Integrate the fused results of each division of the dataset,
and then perform the fusion rule detection again. If the fusion rules are met, merge the
two clusters until they cannot be fused. The final result is the clustering result of the
entire dataset.

The pseudocode related to the Algorithm 4 is as follows.
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Algorithm 4 Cluster_Fusion.

Input: Dataset pp that needs fusion detection

Output: Fusion clustering results

1 for I in pp // Count any two clusters in the current dataset.
2 for j in pp
3 if there are two points with distance < dc and from two different labels

4
marked as adjacent samples
and adjacent clusters;

5 end if
6 end for

7
if meet the fusion rules(The number of adjacent samples accounts for more than 2% of the
total number of two adjacent clusters)

8
Update the cluster center cc to re-cluster, and perform fusion detection again
after re-labeling;

9 Update dataset labels;
10 end if
11 return cluster // Return clustering results.

3.3. Time Complexity Analysis of F-DPC Algorithm

The F-DPC algorithm includes five parts, dataset division, parameter selection, cluster
center selection, DPC rule clustering, and cluster fusion, where m represents the number of
data points in the overall dataset, n represents the number of data points that are currently
divided into the dataset, k represents the number of divided datasets, and r represents the
number of preselected cluster centers: m >= n, n >= k, n >= r.

(1) Dataset division needs to traverse all data, count the distances of all data points to
obtain a distance matrix and sort, where m is the total amount of data, so the time
complexity is O(m2).

(2) In the selection of parameters, the parameters are obtained by traversing the data
distance of the current dataset, where n is the number of the current dataset, so the
time complexity is O(n2).

(3) In the selection of cluster centers, it is necessary to traverse all data points of the
current divided dataset to calculate the γ value, and then traverse and draw the
γ graph again to filter the cluster centers. The time complexity is O(n2), and then
the final cluster centers are selected from the preselected cluster centers, where r
represents the number of preselected cluster centers, r <= n, so the algorithm time
complexity of the whole process is O(n2 * r).

(4) DPC rule clustering needs to traverse the local density and data point distance of each
data point. The traversal length is also the total number of data points in the current
dataset n, and the algorithm time complexity is O(n).

(5) In the process of cluster fusion, the process of finding adjacent clusters, traversing the
distance of any current dataset data points to judge adjacent clusters and adjacent
samples, the algorithm time complexity is O(n2).

This algorithm is executed sequentially. For the F-DPC algorithm, (3)–(5) also need to
perform the same operation on each divided dataset, and the time complexity should be
multiplied by the number of divided datasets k, where r and k of this algorithm are at least
2 by default, and the time complexity of this algorithm is O(n2 * r * k).

3.4. Algorithm Example Analysis

This section uses the artificial simulation dataset to illustrate the working process
of the F-DPC algorithm. The dataset data have a total of 100 two-dimensional data, four
categories, and each category accounts for 25 samples. Among them, the density of class A
and class B are close, the intra-group distance is small, the density of class C and D is close,
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and the intra-group distance is large. The density of this artificial simulation dataset is not
uniform, and the corresponding scatter plot is shown in Figure 3.
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Figure 3. Scatter plots of artificially simulated datasets.

Taking the dataset in Figure 3 as an example, the K-distance line chart obtained from
steps 1 to 4 in the first subsection of Section B is shown in Figure 4. The abscissa in the
figure is the index number of the sorted data points, and the ordinate is the 10th nearest
neighbor distance. It can be clearly seen from the figure that the sorted data points have
an obvious bifurcation point at position 50. This bifurcation point is the transition from
the data of one density to the data of another density, with the boundary of number 50,
dividing the dataset into two parts: data1 and data2.
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Calculate the local density ρi and data point distance δj of each data point, and then
draw the decision diagrams of data1 and data2 with ρi as the abscissa and δj as the ordinate,
respectively, as shown in Figure 5a,b.
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There is a certain error in the cluster center points seen by the naked eye in the figure.
According to the method of selecting the parameter dc in this paper, F-DPC calculates
the product of ρi and δj and draws the scatter plots of the γ values of data1 and data2 in
ascending order, as shown in Figure 6a,b.
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Figure 6. γ scatter plot (n = 50). (a) γ scatter plot of data1; (b) γ scatter plot of data2.

The F-DPC algorithm uses the DPC algorithm to cluster data1 and data2 according to
the found cluster centers and numbers, and then fuses them according to the fusion rules.
The final clustering result of the F-DPC algorithm is shown in Figure 7. It can be seen from
the figure that the initial cluster center is basically in the center of each cluster, and the
clustering effect is very good.
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This example analysis shows that F-DPC has a good clustering effect.

4. Discussion

This section introduces the evaluation indicators to measure the quality of the cluster-
ing algorithm, conducts experiments on artificial simulated datasets and UCI real datasets,
designs a variety of experimental methods, and analyzes the experimental results from
multiple perspectives to illustrate the superiority of the F-DPC algorithm.

4.1. Algorithm Evaluation Metrics

The evaluation index of the algorithm [48–52] selects the precision rate (precision), the
recall rate (recall), the accuracy rate (ACC), the harmonic mean (F1) of the precision rate
and the recall rate, the adjusted Rand coefficient (ARI), the adjusted mutual information
(AMI), Fowlkes–Mallows Index (FMI), and Normalized Mutual Information (NMI). What
they represent is as follows.

Precision refers to the proportion of the samples that are actually positive among all
the samples that are judged to be positive and reflects the error rate of the prediction results.
The calculation is shown in Formula (10).

P = TP/(TP + FP) (10)

Recall refers to the proportion of positive samples among all the actual positive
samples, which reflects the missed detection rate of the prediction results. The calculation
formula is shown in (11).

R = TP/(TP + FN) (11)

Accuracy refers to the proportion of all samples that are correctly classified. The
calculation formula is shown in (12).

ACC = (TN + TP)/(TP + FP + TN + FN) (12)

F1 is the harmonic mean of precision and recall, and the calculation formula is shown
in (13). Its value is between 0 and 1, and the closer to 1, the better the clustering effect.

F1 = (2× P× R)/(P + R) (13)

Among the equation components, TP is the number of true positives, FP is the
number of false positives, TN is the number of true negatives, and FN is the number
of false negatives.

ARI is used to measure the degree of agreement between two distributions. The value
range is [−1,1]. The closer the value is to 1, the better.
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AMI is used to measure the degree of agreement between two distributions. The value
range is [−1,1]. The larger the value, the more consistent the clustering effect is with the
real situation.

FMI is the result of the geometric mean of the recall rate and precision rate calculated
from the clustering result and the real value. The value range is [0,1], and the closer to 1,
the better.

NMI is used to measure the similarity of two clustering results. The value range is
[0,1]. The higher the value, the more accurate the division.

4.2. Analysis of Experimental Results on Artificial Synthetic Datasets

In this section, experiments are carried out on the F-DPC algorithm, the clustering
algorithm DPC [17] with improved parameter dc, the algorithm combining DPC and K-
means [18], the DPC algorithm and the K-means algorithm.

4.2.1. Experimental Analysis from the Perspective of Clustering Effect

The experiments in this section use the multi-density dataset shown in Figure 8, the
data size is 1000, the feature is 2, and the category is 5. Experiments were carried out on
five algorithms, the clustering results were visualized, and letters were marked on each
category position. The position markers of all visualization graphs are consistent with
the position markers in Figure 8, and each algorithm is analyzed from the perspective of
clustering effect.
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Figure 8. Multi-density dataset (n = 1000, C = 5).

First, the DPC is tested, and the default parameters are selected. Due to the influence
of the multi-density data, the data will be automatically divided into eight categories, as
shown in Figure 9a. According to the eight cluster centers, it can be seen that the clustering
effect is very poor. For better comparison with other algorithms, manually set the number
of DPC cluster centers equal to 5, and the clustering results are shown in Figure 9b. It can
be seen from the figure that most of the data are clustered correctly, and especially the
clustering result of class C is the best, because the distribution of class C is far from other
classes. The boundary data of class A and class B of the original data intersect with the
boundary data of class D and E, so that this kind of multi-density data cannot accurately
divide the category intersection area for a global parameter. Similarly, this problem also
exists in the intersection area of the upper and lower data of D and E, and the clustering
effect is not stable due to the empirical setting of parameters. If the parameter setting is too
large, it should be mistakenly classified into two types, otherwise, the two types will be
mistakenly classified into one type.
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Experiments were carried out on reference [17], the default dataset of this algorithm
is 5 categories, as shown in Figure 9c. It is obvious from the figure that when there are
intersections between clusters of different densities, the clustering effect is significantly
improved, and most of the data categories are basically clustered correctly. However, at
the intersection of the boundaries of D and E, there are still some data that cannot identify
clusters of different densities due to sensitive parameters.

In experiments on the K-means algorithm, manually set the K-means parameter to 5,
and continuously calculate the mean for iteration to finally reach the local optimal solution,
as shown in Figure 9d. As can be seen from the figure, the classes marked B and C in the
original dataset are divided into one class, and the classes C and D in the original dataset
are divided into three classes; this is because the selection of the initial centroid is random,
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and the constant iterative update causes the centroid to shift, so the clustering result is also
random, and it is difficult to achieve a good clustering effect.

Experiments were performed on reference [18], and the clustering results are shown in
Figure 9e. As can be seen from the figure, the clustering effect of this method is better. The
combination of DPC and K-means can better obtain the initial cluster center point, which
greatly improves the local optimal clustering result, and the effect is also very stable. The
disadvantage is the same as that of K-means. Although the selection of the initial cluster
center is optimized, it is affected by the multi-density of samples, resulting in the deviation
of the cluster center, which will also affect the clustering effect.

Experiments on the F-DPC algorithm are carried out, and the clustering results are
shown in Figure 9f. It can be seen from the figure that the five categories are basically
clustered correctly, and the clustering effect of the data at the boundary is also significantly
better than the above algorithm. The reason is that the F-DPC algorithm firstly divides
the data of different densities well, and then uses different DPC parameters for different
divisions to re-cluster, which overcomes the limitation of subjectively determining the
cluster center that leads to poor clustering effect.

4.2.2. Experimental Analysis from the Perspective of Clustering Quality

This section uses three shapes of multi-density synthetic datasets to conduct experi-
mental analysis from the perspective of clustering quality, and compares four clustering
evaluation metrics from ARI, AMI, FMI, and NMI.

Experiment 1 uses the crescent-shaped Jain dataset for comparison, in which the Jain
dataset has 373 samples and two cluster centers. The visualization results of each algorithm
clustering are shown in Figure 10.
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Figure 10. Visual analysis of Jain dataset. (a) Original. (b) F-DPC. (c) DPC. (d) Reference [17].
(e) Reference [18]. (f) K-means.

Experiment 2 uses the Unbalance dataset with a large number of samples for com-
parison, in which the Unbalance dataset has 6500 samples and eight cluster centers. The
visualization results of each algorithm clustering are shown in Figure 11.
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Experiment 3 uses a complex Compound dataset for comparison, where the Com-
pound dataset has 399 samples and six cluster centers. The visualization results of each
algorithm clustering are shown in Figure 12.
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As can be seen from Figures 10–12, the overall effect of F-DPC is relatively superior,
and only a few samples are classified incorrectly. However, for DPC and reference [10], for
some complex annular data, it is difficult to use a parameter to correctly cluster the samples
without partitioning. The method of the initial centroid optimized by the DPC algorithm
and the random selection of the initial centroid of the K-means algorithm in reference [18]
will be affected by the sample centroid due to continuous iteration, reducing the clustering
evaluation index. According to the above experimental calculations, the evaluation index
values of various datasets are drawn and charts are drawn, as shown in Table 1.

Table 1. Evaluation of clustering indicators for each dataset.

Algorithm Jain Unbalance Compound

ARI AMI FMI NMI ARI AMI FMI NMI ARI AMI FMI NMI
F-DPC 0.768 0.684 0.918 0.685 0.994 0.982 0.995 0.981 0.703 0.791 0.774 0.797
DPC 0.643 0.595 0.729 0.595 0.731 0.787 0.804 0.783 0.612 0.769 0.705 0.744

Reference [17] 0.052 0.164 0.591 0.166 0.650 0.774 0.743 0.775 0.527 0.767 0.637 0.772
Reference [18] 0.265 0.260 0.674 0.262 0.993 0.981 0.995 0.980 0.409 0.594 0.548 0.602

K-means 0.265 0.260 0.674 0.262 0.816 0.837 0.866 0.838 0.490 0.671 0.605 0.677

According to Table 1, the evaluation index bar chart is drawn to compare the clustering
results of various algorithms for datasets with different shapes, as shown in Figure 13a–c.
After comparison, it is found that the evaluation index of the F-DPC algorithm is the best
among the three synthetic datasets with different shapes.
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4.2.3. Experimental Analysis from the Perspective of Sample Size

In this section, the five algorithms are tested on the multi-density datasets with 500,
1000, 2000, 5000, 10,000, and 20,000 datasets respectively, and various evaluation index
values and time of the clustering results are obtained. The results are shown in Table 2.

Table 2. Evaluation metric values and times on different numbers of datasets.

Algorithm 500 1000 2000

ACC F1 ARI AMI Time(s) ACC F1 ARI AMI Time(s) ACC F1 ARI AMI Time(s)
F-DPC 0.964 0.963 0.909 0.898 0.52 0.942 0.941 0.871 0.866 0.73 0.931 0.932 0.839 0.851 1.12
DPC 0.831 0.831 0.682 0.729 0.34 0.911 0.902 0.865 0.860 0.79 0.910 0.910 0.905 0.903 0.53

Reference [17] 0.702 0.643 0.607 0.725 0.68 0.921 0.911 0.811 0.837 0.83 0.811 0.804 0.662 0.751 2.59
Reference [18] 0.921 0.921 0.823 0.843 0.43 0.897 0.891 0.769 0.809 0.44 0.881 0.881 0.739 0.785 0.72

K-means 0.628 0.632 0.584 0.721 0.41 0.571 0.524 0.569 0.703 0.39 0.881 0.881 0.739 0.785 0.49

Algorithm 5000 10,000 20,000

ACC F1 ARI AMI Time(s) ACC F1 ARI AMI Time(s) ACC F1 ARI AMI Time(s)
F-DPC 0.904 0.904 0.792 0.808 2.62 0.910 0.909 0.798 0.807 14.71 0.892 0.883 0.752 0.761 29.24
DPC 0.870 0.873 0.723 0.751 3.34 0.900 0.901 0.782 0.807 14.82 0.823 0.824 0.732 0.746 26.12

Reference [17] 0.782 0.767 0.603 0.712 16.51 0.631 0.542 0.523 0.667 14.81 0.835 0.712 0.588 0.623 47.62
Reference [18] 0.841 0.830 0.669 0.723 3.86 0.851 0.836 0.683 0.729 15.61 0.732 0.802 0.675 0.702 37.33

K-means 0.280 0.211 0.344 0.488 0.96 0.851 0.836 0.683 0.729 1.32 0.623 0.622 0.705 0.637 3.62

In order to observe the advantages and disadvantages of the clustering quality of
each algorithm more clearly, a line graph of each indicator is generated according to each
indicator data in Table 2, as shown in Figures 14–17, respectively. It can be seen from
Figure 14 that the accuracy rate ACC index of the F-DPC algorithm is the highest in each
data amount. It can be seen from Figure 15 that at the data volume of 5000, the F1 index of
the DPC algorithm is slightly higher than the F1 index of the F-DPC algorithm, and the F1
index of the F-DPC algorithm is optimal at the remaining data volume. It can be seen from
Figure 16 that at the data volume of 2000, the ARI index of the DPC algorithm is higher
than that of the F-DPC algorithm, and the ARI index of the F-DPC algorithm is optimal at
all remaining data volumes. It can be seen from Figure 17 that at the data volume of 2000,
the AMI index of the DPC algorithm is higher than that of the F-DPC algorithm, and the
AMI index of the F-DPC algorithm is optimal at all remaining data volumes.
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In general, the K-means algorithm and references [17,18] have poor clustering quality,
while F-DPC has the best clustering quality. The clustering quality of DPC is slightly lower
than that of F-DPC. In the F1 index at the data volume of 5000, and the ARI and AMI
indicators at the data volume of 2000, the DPC algorithm is slightly better than the F-DPC
algorithm. The reason is that the DPC algorithm selects parameters manually by default
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globally, while F-DPC selects parameters by calculation. For multi-density, the manual
default parameter clustering index of DPC is contingent and unstable. On the contrary,
F-DPC clusters the algorithm by calculating different parameters for different densities
of datasets, which greatly improves the accuracy of the algorithm. Therefore, the overall
quality of the F-DPC algorithm is the best.

4.2.4. Experimental Analysis from the Perspective of Time Consumption

According to the time consumption data in Table 2, it is converted into a bar chart as
shown in Figure 18.
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As can be seen from Figure 18, the K-means algorithm always consumes the least time
as the amount of data increases. The algorithm in [17] increases the time consumption the
most with the increase in the amount of data, and it wastes time to improve the parameters
of this algorithm. Reference [18] combines DPC with K-means. With the increase in the
amount of data, the time consumption of the algorithm also increases rapidly. The time
consumption of the DPC algorithm and the F-DPC algorithm is relatively in the middle;
however, it also shows a continuous growth trend with the increase in the number of
datasets, but the growth is slow.

4.3. Analysis of Experimental Results on UCI Real Datasets

This section selects five kinds of UCI real datasets to test and compare the clustering
effect of F-DPC in real-world datasets, and finally draws a chart for the clustering result
indicators of each algorithm. Table 3 shows the relevant information of the five UCI datasets
selected in this experiment, which are different in terms of quantity, dimension, and number
of classes. Finally, ACC, ARI, AMI, and FMI are used as algorithm evaluation indicators.
The experimental results are shown in Table 4.

Table 3. Information about the UCI dataset.

Datasets Number Feature Class

Iris 150 4 3
Wine 178 13 3
Seed 210 7 3

Vowel 871 3 6
WDBC 569 30 2
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Table 4. UCI real datasets clustering evaluation.

Algorithm Iris Wine Seed

ACC ARI AMI FMI ACC ARI AMI FMI ACC ARI AMI FMI
F-DPC 0.898 0.722 0.720 0.824 0.552 0.355 0.378 0.560 0.788 0.962 0.971 0.985
DPC 0.876 0.702 0.719 0.801 0.491 0.154 0.150 0.467 0.611 0.332 0.467 0.641

Reference [17] 0.891 0.731 0.767 0.822 0.501 0.143 0.176 0.438 0.623 0.443 0.578 0.667
Reference [18] 0.888 0.716 0.738 0.811 0.542 0.133 0.175 0.437 0.982 0.972 0.960 0.981

K-means 0.890 0.716 0.739 0.811 0.540 0.132 0.175 0.438 0.981 0.929 0.898 0.953

Algorithm Vowel WDBC

ACC ARI AMI FMI ACC ARI AMI FMI
F-DPC 0.356 0.372 0.502 0.499 0.690 0.688 0.624 0.723
DPC 0.241 0.352 0.469 0.497 0.689 0.663 0.605 0.625

Reference [17] 0.242 0.313 0.465 0.459 0.628 0.613 0.589 0.622
Reference [18] 0.143 0.314 0.438 0.441 0.519 0.466 0.483 0.469

K-means 0.233 0.290 0.446 0.422 0.501 0.422 0.428 0.482

It can be seen from Table 4 that F-DPC performs relatively best among the five UCI
datasets. In addition, the algorithm uses the K-nearest neighbor idea to divide the dataset
and adaptively selects the advantages of cluster centers, which makes it significantly higher
than other algorithms among many indicators.

5. Conclusions

Aiming at the limitation that the DPC algorithm has only one parameter globally, this
paper proposes an F-DPC clustering algorithm for processing multi-density data. Firstly,
according to the idea of K-nearest neighbors, the bifurcation point is found to divide the
dataset, and the dc parameter corresponding to each division is recalculated, which solves
the defect caused by one global parameter. The cluster center is determined by the largest
discontinuity point in the divided area, and the original classical DPC relies on subjective
factors to find the cluster center point. After performing DPC clustering on each division,
the cluster center points of each division are optimized according to the fusion rules, and
the optimized cluster centers are used for clustering. The clustering results of each division
are integrated and then the clusters are fused to prevent redundant clusters generated by
too many K-nearest neighbors. Experiments show that the F-DPC algorithm has the best
clustering effect and the best clustering quality.

This paper proposes that when the F-DPC algorithm uses K-nearest neighbors to divide
data, manually setting the bifurcation point may lead to too many divisions. However,
the final algorithm can use the fusion of clusters to improve the redundantly divided
dataset. If a clear calculation method can be used to determine the number of divisions,
the calculation amount of the algorithm can be greatly reduced, and the accuracy of the
algorithm can be improved. In the future research, for the algorithm, the divided data will
use a clear calculation method for the division times of the multi-density data, reducing
the division times and finally replacing the fusion technology of the algorithm, which
can reduce the computational complexity of the algorithm. After the dataset is divided,
the parameter calculation can be processed in blocks by using big data technology, which
can also reduce the running time of the algorithm. Therefore, optimizing the number of
times of dividing the dataset and adopting the distributed execution algorithm are the next
research priorities. In terms of application, many scholars have used the improved density
peak clustering algorithm to achieve good clustering effect and application performance in
many engineering fields, such as traffic congestion prediction, vehicle distance detection,
user privacy protection, personalized recommendation, etc. [53–61]. The next step of this
algorithm will be combined with real-life application cases to solve real-life and other
related problems.
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