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Abstract: Eye tracking is a technology aimed at understanding the direction of the human gaze.
Event detection is a process of detecting and classifying eye movements that are divided into several
types. Nowadays, event detection is almost exclusively done by applying a detection algorithm to the
raw recorded eye-tracking data. However, due to the lack of a standard procedure for how to perform
evaluations, evaluating and comparing various detection algorithms in eye-tracking signals is very
challenging. In this paper, we used data from a high-speed eye-tracker SMI HiSpeed 1250 system
and compared event detection performance. The evaluation focused on fixations, saccades and post-
saccadic oscillation classification. It used sample-by-sample comparisons to compare the algorithms
and inter-agreement between algorithms and human coders. The impact of varying threshold values
on threshold-based algorithms was examined and the optimum threshold values were determined.
This evaluation differed from previous evaluations by using the same dataset to evaluate the event
detection algorithms and human coders. We evaluated and compared the different algorithms
from threshold-based, machine learning-based and deep learning event detection algorithms. The
evaluation results show that all methods perform well for fixation and saccade detection; however,
there are substantial differences in classification results. Generally, CNN (Convolutional Neural
Network) and RF (Random Forest) algorithms outperform threshold-based methods.

Keywords: eye tracking; eye movement events; fixations; saccades; event detection algorithms

1. Introduction

Eye tracking is the process of tracking the movement of the eyes to know exactly where
and for how long a person is looking [1]. The primary purpose of eye movement is to direct
the eyes towards the targeted object and keep it at the center of the fovea to provide a clear
vision of the object. Eye tracking is used in various research fields such as cognitive science,
psychology, neurology, engineering, medicine and marketing, to mention some [2]. Human–
computer interaction is another example of applications—it is beneficial for disabled people
to interact with a computer through gaze [3]. Eye tracking can also be used to monitor and
control automobile drivers [4]. It is thus highly interdisciplinary and used in various fields,
which is also reflected in how eye-tracking hardware and software have been developed
over the years [5]. To extract useful information, the raw eye movements are typically
converted into so-called events. This process is named event detection.

The goal of eye movement event detection in eye-tracking research is to extract events,
such as fixations, saccades, post-saccadic oscillations, smooth pursuits from the stream of
raw eye movement data on a set of basic criteria and rules which are appropriate for the
recorded data. This classification of recorded raw eye-tracking data into events is based on
some assumptions about fixation durations, saccadic amplitudes and saccadic velocities [6].
Classifying raw eye-tracker data into eye movement events reduces the complexity of eye
movement analysis [7]. The classification may be done by algorithms that are considered
more objective, faster and more reproducible than manual human coding.
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The event detection procedure in eye tracking is associated with many challenges.
One of these is that many different types of disturbances and noises may occur in the
recorded signal, which originates from the individual differences among the users and eye
trackers. This variability between individuals and signal qualities may create signals that
are difficult for analysis. Therefore, the challenge is to develop robust algorithms that are
flexible enough to be used for signals with different types of events and disturbances and
that can handle different types of eye trackers and different individuals. Another challenge
of eye movement event detection in eye tracking signals is evaluating and comparing
various detection algorithms. In various signal processing applications, the algorithm
evaluation is performed by calculating the performance of simulated signals. However, the
challenge is constructing simulated eye-tracking signals that can capture the disturbances
and variations in raw signals to such an extent that they are helpful and authentic for
performance evaluation. Moreover, due to the lack of a standard procedure for evaluating
different event detection algorithms, it is not easy to compare the detection performances
of various algorithms from different researchers [5].

In the past, researchers conducted a manual, time-consuming event detection. For
example, ref. [8] devised a method to analyze eye movements at a rate of 10,000 s (almost
three hours) of analysis time for 1 s of recorded data. Monty in [9] remarks that it is
common to spend days processing data collected only in minutes. However, nowadays,
event detection is almost exclusively done by applying a detection algorithm to the raw
recorded eye-tracking data. For a long time, two broad classes of algorithms were used for
eye movement event detection: The first class is the dispersion-based algorithms that detect
fixations and assume the rest to be saccades [10]. The most well-known dispersion-based
algorithm is the I-DT algorithm by Salvucci and Goldberg [11]. These algorithms detect
the event by defining a spatial box that the raw recorded data must fit for a particular
minimum time. The second class is the velocity-based algorithms that detect saccades and
assume the rest to be fixations. The most well-known velocity-based algorithm is the I-VT
algorithm [6,8]. These algorithms classify eye movements by calculating their velocity and
comparing it to a predefined threshold.

The main contribution of this study is a comparison of different event detection al-
gorithms on the same reference dataset. The study also summarizes the state-of-the-art
in this field and compares the strengths and weaknesses of different algorithms. Various
algorithms were compared from threshold-based, machine learning and deep learning
domains. We used our own implementations of all the algorithms described in the liter-
ature with various parameters. Additionally, we developed and tested our own Convo-
lutional Neural Network that can be used for event detection. All these implementations
are available online in the form of Jupyter Notebooks (https://github.com/mebirtukan/
EyeMovementEventDetectionAlgorithms, accessed on 1 June 2022). The paper’s outcome
shows that correct eye movement event detection depends on many factors and thresh-
olds that should always be considered when reporting popular eye movement recording
parameters such as “average fixation duration” or “average saccade length”.

2. Eye Movement Events

As was already mentioned, raw eye movements are typically divided into events.
In this section, we discuss different types of eye movement events. Eye-tracking signals
do not only consist of different types of events of eye movement but also noise from
different sources and blinks. Therefore, an event detection algorithm needs to consider
such problems. The most often used event types are discussed further in the following
subsections. An example is also shown in Figure 1.

Figure 1 shows an example of fixations, saccade and PSO in terms of position over
time on the horizontal axis.

https://github.com/mebirtukan/EyeMovementEventDetectionAlgorithms
https://github.com/mebirtukan/EyeMovementEventDetectionAlgorithms


Sensors 2022, 22, 8810 3 of 18

Figure 1. Graphical presentation of eye movement events for the horizontal axis.

2.1. Fixations

A fixation is a movement when the eye is more or less still and focuses on an object.
The purpose of the fixation movement is to stabilize the object on the fovea for clear vision.
Fixation events may include three different types of distinct small movements: tremor,
slow drift and microsaccades [7]. Tremor movement is a small wave-like eye motion with a
frequency below 150 Hz and an amplitude around 0.01◦. The exact function of tremors still
needs to be determined. Drift is a slow motion of the eye that co-occurs with tremor and it
takes the eye away from the center of the fixation. A microsaccade is the fastest movement
of the fixational eye movements, with a duration of about 25 ms. The role of a microsaccade
movement is to quickly bring the eye back to its original position [7].

2.2. Saccades

A saccade is a rapid eye movement from one fixation point to another. A typical
saccade has a duration between 30 and 80 ms and velocity between 30 ◦/s and 500 ◦/s [12].
There is a relationship between a saccade’s duration, amplitude and velocity. This re-
lationship suggests that the larger saccades have larger velocities and last longer than
the shorter ones [13]. The time from the onset of the stimulus to the initiation of the eye
movement (called saccadic latency) is around 200 ms. It includes the time it takes for the
central nervous system to determine whether a saccade should be initiated or not and, in
this case, calculate the distance that the eye should move and transmit the neural pulses
to the muscles that help to move the eyes [12]. Correct detection of saccades is essential
because it is believed that a human brain does not “see” the image during the saccade. This
phenomenon is called the saccadic suppression [14,15].

2.3. Smooth Pursuits

A smooth pursuit movement is performed when the eyes track a slowly moving
object. It can only be performed when there is a moving object to follow. The latency of
the smooth pursuit is around 100 ms and it is slightly shorter than the latency of saccadic
movements [12]. It refers to the time it takes for the eye to start moving from the onset of
the target object’s location. A smooth pursuit eye movement event can generally be divided
into two stages: open-loop and closed-loop stages [16]. The initiation stage of the smooth
pursuit is the pre-programmed open-loop stage, where the eye accelerates to catch up with
the moving target. The closed-loop stage starts when the eye has caught up with the target
and follows it with a velocity similar to that of the target object. In order to be able to follow
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the moving object in the closed-loop stage, the velocity of the moving object is estimated
and compared to the velocity of the eye. If the velocity of the moving object and eye are
different, for example, the eye lags behind the moving object, a catch-up saccade movement
is performed to catch up with the object again. If the stimulus only consists of one moving
target object that moves predictably, the eye will be able to follow it more accurately and
with fewer catch-up saccades [16].

2.4. Post-Saccadic Oscillations

Rapid oscillatory movements that may occur immediately after the saccade are called
post-saccadic oscillations (PSO). They can be described as oscillatory movements or insta-
bilities that occur at the end of a saccade [16]. Post-saccadic oscillations are characterized
by a slight wobbling movement that leads to fixation after a saccade. The cause of the
PSO still needs to be clarified. Some researchers believe that it is caused by the recording
device [17] and others believe the eye itself naturally wobbles after a saccade [12]. The
PSOs are the type of eye movement for which there is typically the most substantial dis-
agreement between manual raters. However, they are events that occur during recording
eye movements and can influence the characteristics of fixations and saccades events [18].
PSOs are typically very short events with a duration of about 10–40 ms with an amplitude
of 0.5–2◦ and velocities of 20–140 ◦/s [18].

2.5. Glissades

Another largely unexplored reason behind the variation in event detection results is
the behavior of the eye at the end of many saccades, which indicates that the eye sometimes
does not fix directly on the object but undershoots or overshoots it and then needs to do an
additional corrective short saccade. Such an event is called a glissade. According to [19],
glissades happen after about 50% of saccades, so they have a significant impact on the
accurate measurement of saccade offset and onset of the subsequent fixation. Therefore,
frequently the glissade is treated as a separate class of eye movement [20]. This movement
is also known as a dynamic overshoot (rapid postsaccadic movement [21]) or a glissadic
overshoot (slower postsaccadic movement [22]). Researchers have observed that glissades
rarely occur simultaneously in both eyes [21]. Although frequently reported in the literature,
it is only sometimes explicitly taken into account by event detection algorithms. Glissades
are therefore treated unsystematically and differently across algorithms and even within
the same algorithm; one glissade may be assigned to the saccade, whereas the next one is
merged with the fixation [20].

3. Dataset

To test the performance of algorithms that we implemented and evaluated in this
review paper, we used the publicly available dataset recorded with a Hi-Speed 1250 eye
tracker from SensoMotoric Instruments (Teltow, Germany) at 500 Hz [23]. It is available on-
line: https://github.com/richardandersson/EyeMovementDetectorEvaluation (accessed
on 1 June 2022) . The subjects were presented with static images, texts, video clips and
simple moving dot stimuli. The data were manually labeled by two raters, Marcus Nyström
(MN) and Richard Andersson (RA). It was annotated into fixation, saccades, PSOs, smooth
pursuit, blinks and undefined. This study used image-viewing data labeled with fixations,
saccades and post-saccadic oscillations. We tested and evaluated all the algorithms with
the same dataset. One of the image-viewing sessions from the dataset in a raw format and
divided into fixations is presented in Figure 2.

https://github.com/richardandersson/EyeMovementDetectorEvaluation
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Figure 2. Example from one data file from the dataset. The (left) chart shows the raw gaze data,
while the (right) one shows a sequence of fixations as annotated by one of the manual coders.

4. Classic Event Detection Methods

This section presents different eye movement event detection algorithms. Their per-
formance was tested using a dataset discussed in Section 3.

There have been many works that have been done on developing eye movement event
detection algorithms. The performance and adaptability of event detection algorithms
depend on different factors, including the type of stimulus (i.e., static or dynamic), data
quality (the data may be noisy), eye-tracking device (i.e., sampling frequency, binocular
or monocular, fixed or mobile with rigid or flexible eye cameras). These differences make
direct comparisons across methods and studies difficult. There are already several publi-
cations concerning eye movement event detection algorithm comparison. One of them is
Andersson et al. [24]. In this paper, the authors evaluated and compared eye movement
event detection algorithms and recommended the best method for future researchers. How-
ever, all the evaluated methods are threshold-based. Different methods detect different
event types. For example, some methods identify fixation and saccade only, some identify
fixation only and some identify fixation, saccade and PSO. Due to the difference in the
event types that the algorithms identify, comparing an algorithm that detects single-class,
binary-class and multi-class event classifiers is still unclear, because some methods can
perform well for fixation and saccade classification and may perform poorly for other
events. Another review of event detection algorithms was conducted by Gonca et al. [25].
They evaluated ten open-source threshold-based event detection algorithms.

This paper’s contribution over the above-mentioned publications is that we evaluated
algorithms from threshold-based, machine learning and deep learning domains. We used
different parameters and the same dataset to evaluate all the methods. The implemented
event detection algorithms and their advantages and drawbacks are discussed below.

4.1. Manual Human Classification

In manual event classification, one or more human coders classify raw eye movement
data into different event types based on subjective threshold values. Manual classification
is still a common method for evaluating event detection algorithms and is treated as
a “golden standard”. Manually classified data are frequently used as training data for
machine learning algorithms. However, manual event classification is not an effective way
to classify events. Firstly, it is time-consuming and secondly, different coders may use
different subjective selection rules that give different results. For example, the authors
of [26] used twelve experienced but untrained human coders to classify events in six
minutes of eye-tracking data and found substantial differences between the classifications
when average fixation duration and number of fixations were compared.

In this paper, we used the dataset annotated manually by two human coders, MN and
RA, as discussed in Section 3 and we evaluated to what extent the two coders agreed to
classify the same input data into events. We used the eye tracking data recorded during
image viewing with the 4988 samples (UH21_img_Rome_labelled). Coder MN classified
4282 samples as fixations, 503 as saccades and 203 as PSOs. Coder RA labeled 4173 as
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fixations, 466 as saccades, 164 as PSOs, 177 as smooth pursuits and eight as undefined.
The value of Cohen’s kappa was 90% and the confusion matrix between both coders is
presented in Table 1. It shows that the classifications of the two agreed moderately. The
most significant differences could be found in the PSO events with an F1-score as low
as 85%. It seems that it is only a minor difference when only some samples between
the end of the saccade and the onset of fixation are classified differently. However, such
misclassification influences important parameters of eye movement data, like average
fixation duration or average saccade length. Such parameters are frequently used in eye
movement data analysis [27–29].

Table 1. Confusion matrix between two manual coders.

RA\MN Fixation Saccade PSO

fixation 4111 4 54
saccade 28 444 10

PSO 26 14 297

4.2. Dispersion Threshold-Based Event Detection Methods

Threshold-based methods are historically the first automated eye movement event
classification algorithms and are still frequently used nowadays. The I-DT is the most
straightforward and obvious eye movement event detection algorithm that classifies fixa-
tion points and saccade points based on the dispersion or spread distance of subsequent
sample coordinates. The algorithm identifies gaze data as belonging to fixation when the
samples are located within a spatially limited area (for example, 0.5◦) for minimum allowed
fixation duration [30]. It follows that fixation points generally occur near one another.
Saccades are then detected implicitly as everything else [11].

The algorithm requires two parameters to identify the events. These are
dispersion threshold and duration threshold. The dispersion threshold can be set to 0.5 to 1◦ of
visual angle if the distance from the eye to the screen is known. Otherwise, the dispersion
threshold can be estimated from the exploratory analysis of data. The duration threshold is
typically set to a value between 100 and 200 ms depending on task processing demands [31].
The algorithm calculates the dispersion of points in a window by simply summing the
differences between the points’ maximum and minimum X and Y values, as shown in
Equation (1).

D = [max(x)− min(x)] + [max(y)− min(y)] (1)

However, there are other methods of dispersion estimation methods discussed in [32].
The first method is distance dispersion, an algorithm that classifies every point as fixation
if the distance between every point is no further than some threshold Dmax. It is the most
intuitive but less popular measure. Another method is the centroid-distance method, which
requires the M of N points to be no further than some threshold Cmax from the centroid
of N points. This algorithm has two versions, a consistent version that recomputes the
distance of all points in the fixation to the centroid whenever the fixation is considered and
a simpler (and faster) version that only checks the distance of the new point to be added.

The dispersion threshold methods exhibit poor performance detecting fixations and
saccades when the signal is noisy [33]. Therefore, choosing the optimum threshold values
is the most challenging step in the I-DT event detection algorithms. The impact of varying
dispersion threshold values on the classification performance leads to biased results and
misclassifications. For example, if the threshold value is set too high, false fixations might
be identified and if it is set too low, actual fixations might be missed [34]. Due to this,
parameter setting in the I-DT algorithms is crucial and may cause substantial differences in
classification performance [34].

In this section, we evaluated the I-DT algorithm and the impact of threshold value
on the classification performance was examined in a simple experiment. We used the
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dispersion threshold as a parameter. All input samples were converted into sequences
containing the point and four points surrounding the classified point. The algorithm
calculated dispersion for each sequence of points using Equation (1). We used the data
collected from participants viewing images (see Section 3) and compared the results of the
I-DT algorithm with different threshold values with the manual classification.

The results are presented in Figure 3, which illustrates the impact of varying dispersion
threshold value on the classification performance in the I-DT algorithm. The accuracy for
each class is measured by recall, precision and F1-score from a confusion matrix. As shown
from the results, the increase of the dispersion threshold value increases the fixation recall
but, at the same time, decreases the saccade recall. On the other hand, increasing the
threshold decreases fixation precision and increases saccade precision. The F1-score may
be considered a good indicator of the correct threshold as it reaches the maximum value
for both fixations and saccades for a similar threshold value.

Figure 3. The accuracy for fixations and saccades of the I-DT algorithm for different dispersion thresholds.

For example, I-DT gives a maximum fixation recall of 99% and a minimum saccade
recall of 82% at a dispersion threshold value of 7 px and a maximum saccade accuracy of
99% and a minimum fixation accuracy of 39% at the threshold value of 1 px. The optimum
dispersion threshold value for the given example is 3.5 px. At this threshold value the I-DT
gives 95% fixation recall value, 93% saccade recall, 98% fixation precision, 51% saccade
precision, 96% fixation F1-score, saccade F1-score 66% and 0.6 Cohen’s kappa.

4.3. Velocity Threshold-Based Methods

The velocity threshold algorithm is another algorithm and the foundation for an
automated/objective standard event detection algorithm. Many studies have adopted
this approach [35,36]. It utilizes the fact that saccadic eye movements are characterized by
higher velocity values than fixational movements. The velocity profiles of eye movements
show essentially two velocity distributions: low velocities for fixations and high velocities
for saccades. The I-VT method identifies events by calculating the point-to-point velocity
and then classifies the event as fixation or saccade based on the value of this velocity [11].
The classic I-VT method is designed to classify all eye-tracking input data into fixations and
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saccades only. The other event types, such as smooth pursuits, post-saccadic oscillations
and noises, are not considered.

Figure 4 presents the impact of varying velocity thresholds on the classification per-
formance of the I-VT algorithm. The classification accuracy of each class is measured by
the recall, precision and F1-score calculated from the confusion matrix. Similarly to the
I-DT algorithm, the increase in the velocity threshold increases the fixation classification
recall and saccade precision while, at the same time, it decreases fixation precision and
saccade recall.

Figure 4. The accuracy for fixations and saccades of the I-VT algorithm for different velocity thresholds.

In the given example, I-VT yields a maximum of 99% fixation recall at a threshold
velocity of 3.5 px/ms and the saccade recall slightly decreases with the increase in velocity
threshold value. The saccade recall reaches 98% and the fixation recall is 25% at the lowest
velocity threshold value of 0.1 px/ms because, at this threshold value, most points are
classified as saccades. Due to the impact of the threshold value on the classification accuracy
of the I-VT algorithm, it is essential to find the optimum threshold value for both fixation
and saccade accuracy. Therefore, in this case, the optimum velocity threshold value for
I-VT is 0.5 px/ms. At this point, the fixation recall value is 92%, the saccade recall is 87%,
the fixation precision is 96%, the saccade precision is 46%, the fixation F1-score is 94% and
the saccade F1-score is 60%. The value of Cohen’s kappa at the optimum threshold value of
0.6 px/ms is only 0.5, which shows a moderate agreement between the human coders and
I-VT classification algorithm.

The main drawback of the algorithm is that it uses only the velocity of the gaze
without considering other possibilities like acceleration of the signal, direction of the gaze
movement, the distance between the eye and camera, etc. It may result in misclassifica-
tions of events because the velocity ranges of the quickest slow eye movements and the
slowest parts of saccades may overlap. Therefore, it seems that using other eye movement
parameters such as acceleration, amplitude and position of eye movement could improve
the results.

There is no standard optimum threshold velocity value and varying the threshold
values affects the performance of the event detection algorithms. Due to these reasons,
different researchers use different threshold values to develop and evaluate the performance
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of I-VT algorithms. Due to this variation, it is difficult to compare different studies of
threshold-based event detection algorithms [11].

4.4. Fixation and Saccade Detection with the Presence of Smooth Pursuit

One of the main problems with the aforementioned I-DT and I-VT algorithms is that
they do not take into consideration smooth pursuit events. In contrast, the automated
classification methods proposed in [37] classify the eye movement data into fixations,
saccades and smooth pursuits. The methods improve the existing event detection methods,
I-VT and I-DT, by integrating both and adding one more threshold velocity. Reference [37]
presents three possible algorithms, namely: IVVT, IVDT and IVMT algorithms.

The IVVT algorithm identifies fixations, saccades and smooth pursuits (SPs). First, it
classifies fixations and saccades using the existing I-VT algorithm and then identifies SPs
from fixations by adding one more threshold velocity.

The IVMP, first proposed by Javier San Agustin Lopez [38] and implemented by Oleg
V. Komogortsev and Alex Karpov [37] classifies fixations and saccades by applying the
I-VT algorithm and then distinguishes smooth pursuits from fixations using the movement
pattern. As discussed in the I-VT-based classification method, the measured velocity can
be used to classify gaze samples as fixations or saccades. However, as smooth pursuit
movements can have similar velocities to fixations, the simple velocity method cannot be
used to differentiate smooth pursuits from fixations. In order to determine whether the eye
is performing a fixation or a smooth pursuit movement, the direction of movement is ana-
lyzed in a temporal window with a size of Tw. In that window, the magnitude of movement
is computed by analyzing angles created by every pair of adjacent positional points and
the horizontal coordinate axis. Then, the magnitude of the movement is compared with
threshold movement (Tm). If the magnitude of movement is above the threshold value, it is
marked as smooth pursuit and if it is below the threshold value, it is marked as a fixation.

The IVDT algorithm uses both I-VT and I-DT to classify fixations, saccades and
smooth pursuits. As in IVVT, it first applies the velocity threshold VT to classify saccades
and fixations and classifies the point as a saccade if the velocity is above the VT . Then
the dispersion threshold DT is applied to identify the rest of the data into fixations and
smooth pursuits.

The working principle of the IVMP algorithm is the same as discussed above. It uses
VT and movement pattern to classify events as fixation, saccade or smooth pursuit. At first,
it applies the VT to classify all data into fixations and saccades and then movement pattern
Tm to distinguish smooth pursuits from fixations.

It is possible to introduce qualitative and quantitative behavior scores to calculate
optimal threshold values for each algorithm. However, these scores are data driven and
may differ for data obtained from different eye trackers. Therefore, finding the optimum
threshold values still needs to be solved.

4.5. Automated Velocity Threshold Data Driven Event Classification Method

The main problem in the previously discussed approaches was finding the correct
threshold—which is especially difficult in a noisy signal. Therefore, an automated velocity
threshold data driven event classification method was proposed [20]. The algorithm is able
to adaptively find the threshold and avoid the influence of noise. Additionally, it identifies
the glissades as separate event types. It is designed to overcome the noise sensitivity that
occurs in previous algorithms by designing adaptive VT values considering different levels
of noise occurrence. It removes noises and unwanted variations by calculating velocity and
acceleration profiles that the previous works calculated using simple sample-to-sample
subtraction. However, the outcome of this calculation is noisy. Therefore, the automated
data driven method eliminates noise by calculating velocity and acceleration based on
Duchowski et al. [39] who calculate velocity and acceleration based on finite impulse
response (FIR) by using filters.
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The drawback of this method is that the glissade is detected based on duration only.
This means that it occurs in half the saccade duration [20]. So, the saccade with a short
duration may be classified as a glissade and the glissade with a long duration may be
classified as a saccade, since there is no other parameter to distinguish glissades from
saccades. The algorithm is designed to detect glissades with the presence of fixation and
saccade only and it does not consider other events like SP and PSO. It also cannot deal with
glissade-like movements preceding a saccade.

5. Machine Learning-Based Event Detection Methods

The major drawback of all threshold-based event detection algorithms is that the user
is left with a number of parameters that have to be adjusted based on eye movement data
quality and finding the optimum threshold values is challenging. Another drawback is
that the threshold-based algorithms are designed to solve a specific problem in one-step
classification (like fixation and saccade). Eye movement event classification using machine
learning addresses these problems [40]. Machine learning algorithms classify raw eye-
tracking data into event types without manually setting any parameters and calculating and
finding threshold values. They learn the correct classification based on some training data.

Typically, for most machine learning algorithms, it is assumed that the classification of
one specific gaze point to the event depends on the point’s neighborhood. Therefore, the
standard input to the model is a set of properties from some number of gaze points before
and (for off-line classification) some number of gaze points after the point is classified.
These properties may be just raw coordinates, but frequently properties such as velocity,
acceleration, movement direction or jerk are also used. The window size is one of the basic
parameters for every model.

We have evaluated and discussed some event detection methods using machine
learning algorithms. Two models utilizing Random Forest classifier and Convolutional
Neural Networks are implemented and evaluated with the same dataset.

5.1. Event Classification Using Random Forest Classifier

Fully automated eye movement event classification using a Random Forest classifier
was first proposed in [41] to classify fixations, saccades and post-saccadic oscillations.
Classification performance was compared with the current state-of-the-art algorithms and
manual human coders. The paper stated that the machine learning algorithm outperforms
the current state-of-the-art algorithms and almost reaches the performance of manual
human experts. However, this performance was only achieved for high-quality data (with
low noise levels). In this section, we describe our own implementation of the algorithm
that utilizes the Random Forest classification model for event classification.

We implemented the Random Forest classification algorithm to classify eye-tracking
data into fixations, saccades and PSOs. We evaluated the classification performance re-
garding fixation classification accuracy, saccade accuracy and PSO classification accuracy.
This algorithm can detect eye movements in the continuous gaze stream and assign labels
for all three eye movement types simultaneously. We, therefore, further evaluated the
algorithm’s classification performance separately for the three-class detection problem by
evaluating sample-by-sample predictions, confusion matrices and finally, by evaluating the
classification performance of each class.

To build the model, we used velocity as a parameter: we converted eye tracker
data coordinate points into the velocity domain and created sequences of samples with
a sequence length of 40. We also tested shorter and longer sequences, but this did not
significantly impact the result. Therefore, the input to the model was a sequence of gaze
samples of size 40 × 2.

Figure 5 shows the confusion matrix for the sample-by-sample evaluation. Fixations
are labeled correctly in 97% of cases, while for PSO and saccades there are tendencies to be
labeled as fixations. Saccade and PSO are correctly identified in 91% and 76% of frames,
respectively. About 7% of the PSOs are falsely classified as fixation and 17% of PSOs are
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classified as a saccade. This happens because most of the training events were fixations
and the model naturally tends to classify all ambiguous samples as fixations.

Figure 5. The RF confusion matrix.

Table 2 summarizes the performance of the RF classifier in terms of accuracy, precision,
recall and F1 score for each class. The results show that the classification of PSO events is
the most challenging.

Table 2. Each class classification performance with RF classifier.

Classes Accuracy Precision Recall F1-Score

Fixation 97% 99% 97% 98%

Saccade 92% 87% 91% 89%

PSO 76% 64% 76% 69%

5.2. Using Convolutional Neural Networks

Convolutional Neural Networks are good at finding patterns in data, so it is possible
to use them in eye movement event detection. One example of such an application is the
method proposed in [42], which is based on the deep Convolutional Neural Network that,
for each sample, predicts a sequence of probabilities of belonging to a fixation, saccade, or
smooth pursuit from a sequence of gaze samples. The method tries to address the drawback
of previous methods, which use signal shape and amplitude to determine or to classify the
eye movement events, which may be problematic, for instance, for smooth pursuits. The
proposed method uses the signal’s frequency to classify the data into event types. That
means it first converts the raw gaze data into the frequency domain of the raw signal using
Fast Fourier Transform (FFT) and then passes the frequency representation of the signal to
the CNN network, which in turn gives the output of a three-dimensional activation signal.
Each signal represents the probability of each eye movement type (fixation, saccade and SP).
Finally, the label with a high probability is assigned to the central sample in the window.

The method is not end-to-end, as the input to the network is the FFT output. It
uses hand-crafted features—input data that need to be transformed into the frequency
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domain. The proposed method classifies fixations, saccades and smooth pursuits without
considering other events like PSO. The method outperforms the old algorithms based on
simple dispersion and velocity thresholding.

To test the ability of the CNN network to classify eye movement events, we created
a simple network presented in Figure 6. The network takes a continuous stream of two-
dimensional gaze samples as input. To obtain a prediction for each gaze sample, the
window moves over the sequence one by one. We first convert the x and y coordinate data
into horizontal and vertical velocity components by calculating sample-to-sample velocity.
To obtain relevant eye movement characteristics, the stream of gaze samples is analyzed in
windows of 100 samples which gives the best results in our experiments.

Figure 6. The architecture of the CNN used in the experiment.

The network is composed of different layers, precisely three convolutional layers with
a gradually increasing number of filters (32, 64 and 128) with a kernel size of 3, a batch
normalization operation before activation and an output layer. Input to the network is a
sequence of gaze samples of shape 100 × 2. The network architecture is shown in Figure 6.

Figure 7 shows the confusion matrix for the CNN classification. Fixations are correctly
classified in 99% of the cases; saccades are correctly classified in 88% and PSOs are correctly
classified in 76% of the cases. A total of 4% of the saccades are falsely classified as fixations
and 16% of PSOs are falsely classified as fixations. Additionally, 8% of saccades are classified
as PSOs. The classification results shows that CNN performs well for fixation and saccade
classification. However, the classification performance for the PSOs is far from perfect.

Table 3 summarizes the performance of the CNN classifier in terms of accuracy for
each class, precision, recall and F1 score. The results show that—similarly to the RF-based
algorithm—the best scores are reached for fixations and the worst for PSOs.

Table 3. Each class classification performance with CNN classifier.

Classes Accuracy Precison Recall F1-Score

Fixation 99% 98% 99% 99%

Saccade 89% 93% 89% 91%

PSO 75% 83% 75% 79%

5.3. Using Recurrent Neural Networks

Eye movement recordings form a time series, so it is natural that algorithms proven to
operate well on time series could be used for event classification. One of the possibilities is
to use Recurrent Neural Networks.

The paper [43] presents an excellent example of such an application. It presents the
network that classifies the raw eye movement data into fixations, saccades and smooth
pursuits. The network is a combination of the 1D-convolutional network and the BLSTM
layer (a classic recurrent layer that preserves information about previous samples). It
is built of a one-dimensional temporal convolutional network with one time-distributed
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dense layer both before and after the BLSTM. Individual feature sets for the model are
raw XY coordinates, speed, direction and acceleration. However, the method exhibits
poor performance when it takes a combination of parameters. Researchers used a publicly
available manually annotated eye-tracking dataset with over four hours of 250 Hz low-
frequency recordings done with SR Research EyeLink II and 500 Hz recordings done with
SensoMotoric Instruments Hi-Speed 1250 eye tracker. The algorithm is evaluated only by
a clean and manually labeled dataset. Validating the algorithm with raw eye movement
data is recommended to evaluate the actual algorithm’s performance. The combination
of direction and speed showed a noticeable improvement over using them separately.
Acceleration as an additional feature did not improve average detection performance,
probably due to its inability to distinguish smooth pursuits from fixations.

Figure 7. Confusion matrix for the CNN Classifier.

6. Comparison

The purpose of this paper was to compare different eye movement event detection
algorithms. This was done by evaluating the performance of four different event classifi-
cation algorithms from the domain of threshold-based, machine learning-based and deep
learning algorithms as well as the mutual performance of two human evaluators.

Each row in Table 4 shows the performance evaluation metrics for each event class and
the columns show the classification algorithms. The results show that I-DT performs better
than I-VT in all performance-measuring metrics. However, both RF and CNN algorithms
outperform the threshold-based algorithms (I-VT and I-DT) in terms of all performance-
measuring metrics except saccade recall. In the case of RF and CNN classification models,
there is no significant difference for fixation and saccade classification. However, CNN
outperforms RF in PSO precision, F1-score and Cohen’s kappa. Table 5 summarizes
strengths and weaknesses of all implemented algorithms.
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Table 4. Comparison of the classification performance of the algorithms.

Performance Metrics IVT [11] IDT [11] RF CNN Coder
MN [26]

Coder
RA [26]

Fixation Accuracy 92% 95% 97% 99% 99% 99%

Saccade Accuracy 87% 93% 92% 89% 92% 96%

PSO Accuracy - - 76% 75% 88% 82%

Fixation F1-score 94% 96% 99% 99% 99% 99%

Saccade F1-score 60% 66% 87% 91% 94% 94%

PSO F1-Score - - 64% 79% 85% 85%

Fixation Recall 92% 95% 97% 99% 99% 99%

Saccade Recall 87% 93% 92% 89% 92% 96%

PSO Recall - - 76% 75% 88% 82%

Fixation Precision 96% 98% 99% 98% 99% 99%

Saccade Precision 46% 51% 87% 93% 96% 92%

PSO precision - - 64% 83% 82% 88%

Cochen’s Kappa 0.5 0.6 0.83 0.88 1 0.90

Table 5. Strengths and weaknesses of event detection algorithms.

Algorithms Strengths Weaknesses

Human
Coders [26]

Manual coding is still a common method for
evaluating event detection algorithms and manually
classified data are used as training data for machine

learning algorithms.

Time consuming, different coders may use different
subjective selection rules that give different results
because parameters and threshold values are set

manually by the coder.

I-VT [11]

Simple to implement and understand. Uses one
threshold value which is velocity to identify events

from raw input data. Performs very well for fixation
and saccade identification in single identification step.

Low computational resources.

Although it is simple, I-VT is rarely used in real
implementations. It is sensitive to noisy signals with
many outliers. Finding optimum threshold value is

challenging as there is no standard optimum threshold
value. Identifies fixations and saccades only.

I-DT [11]

The first automated event detection algorithm.
Performs fixation and saccade identification with
human level identification performance. I-DT is

frequently available in commercial software.

Performance is affected by choice of threshold values.
Choosing a dispersion calculation method is

challenging as different dispersion calculation methods
affect the dispersion value. Designed for fixation and

saccade identification only.

RF

No threshold value is needed. Performs multi-class
classifications so may be used for various events. It is a
fully automated event classification method. Performs
fixation and saccade identification with human level

performance.

Requires a significant amount of correctly annotated
data for training. In our implementation only velocity

features were used to identify events as fixation,
saccade and PSO. The classification result for PSO was
because of misclassification between saccade and PSO

due to the similarity of saccade and PSO in terms of
velocity.

CNN

Like RF, CNN also addresses threshold-based detection
method problems. Performs single step end-to-end
detection without human intervention. Performs at

human level detection for fixation identification.

Requires for training even more correctly annotated
data than the RF algorithm. We used only velocity

parameters to identify events from input data. Smooth
pursuit was not considered because the velocity

parameter that we used is not sufficient to identify
smooth pursuit from fixation as both of them are low
velocity movement types. Other parameters such as
direction or movement patterns should be used to

identify smooth pursuit. CNN performed worse than
RF and I-DT for saccade detection.
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It should be emphasized that the presented result takes into account only point-to-
point comparisons, so each gaze point is classified as a part of the specific event. In
fact, the event itself always takes some time. For instance, the average fixation duration
should be about 250 ms [44]. Therefore, the following typical step in event detection is
converting a sequence of subsequent points classified as fixations into one fixation with
the location calculated as the median of these points’ locations. If there is a gap between
fixation sequences (several points classified differently), two sequences are classified as
two separate fixations. Obviously, this significantly impacts specific measures like the
overall number of fixations and average fixation duration. Therefore, we compared the
obtained results after merging subsequent points. The results for I-VT and RF are presented
in Figures 8 and 9, respectively. It occurred that the I-VT algorithm found 189 fixations
with an average duration of 121 ms while the RF algorithm found only 64 fixations with an
average duration of 264 ms. Considering that the manual coder found 91 fixations with
average duration 222 ms, it may be concluded that threshold-based algorithms require the
additional step of merging subsequent fixations that are located nearby (hence: additional
threshold parameters). In contrast, machine learning algorithms deal with this problem
internally. It is clearly visible in Figures 8 and 9.

Figure 8. Eye fixations obtained from the I-VT algorithm at optimum threshold value of 3.5 px/ms.
It is visible that many fixations occur nearby and could probably be combined together.

Figure 9. Eye fixations obtained from the RF algorithm. Compared to Figure 8, there are far
fewer fixations.
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7. Conclusions

In this study, we evaluated event detection algorithms from different domains: the
I-VT and I-DT from the threshold-based domain, the Random Forest model from machine
learning and the CNN model from deep learning domains. We compared their classification
performance by using the same dataset for all methods. The agreement between human
coders and algorithms was also evaluated. The impact of varying threshold values on
the classification performance of threshold-based algorithms was discussed. The results
revealed that threshold values critically affect the classification results of the I-VT and I-DT
algorithms. Due to this, finding the optimum threshold is challenging in threshold-based
algorithms. The RF and CNN algorithms outperform threshold-based algorithms in all
performance-measuring metrics and can perform multi-class classification.

This work evaluated event detection algorithms to classify event data into fixations,
saccades and PSOs. We did not consider smooth pursuit (SP) events. We used only
these three event types because we used only velocity parameters in the algorithms to
classify events. More than a velocity value is needed to differentiate the SP from fixations
due to their similar behavior in terms of velocity. Therefore, during our future research,
we plan to extend the classification by incorporating smooth pursuits and other event
types. Additionally, we would like to analyze the usability of other eye movement signal
parameters like acceleration, jerk and frequency domains.

The code in Python for data preparation and all performed classifications will be
available upon the acceptance of the paper.
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