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Abstract: Although gait recognition has been greatly improved by efforts from many researchers
in recent years, its performance is still unsatisfactory due to the lack of gait information under the
real scenariowhere only one or two images may be used for recognition. In this paper, a new gait
recognition framework is brought about which can combine the long-short-term attention modules on
silhouette images over the whole sequence and the real human physiological information calculated
by a monocular image. The contributions of this work include the following: (1) Fusing the global
long-term attention (GLTA) and local short-term attention (LSTA) over the whole query sequence
to improve the gait recognition accuracy, where both the short-term gait feature (from two or three
frames) and long-term feature (from the whole sequence) are extracted; (2) presenting a method to
calculate the real personal static and dynamic physiological features through a single monocular
image; (3) by efficiently applying the human physiological information, a new physiological feature
extraction (PFE) network is proposed to concatenate the physiological information with silhouette
for gait recognition. Through the experiments between the CASIA-B and Multi-state Gait datasets,
the effectiveness and efficiency of the proposed method are proven. Under three different walking
conditions of the CASIA-B dataset, the mean accuracy of rank-1 in our method is up to 89.6%, and in
the Multi-state Gait dataset, wearing different clothes, the mean accuracy of rank-1 in our method is
2.4% higher than the other works.

Keywords: gait recognition; biometrics; feature extraction; feature fusion; image sequence; deep learning

1. Introduction

Gait recognition has drawn attention from numerous researchers as an important
biometric recognition algorithm. It plays an import role in many tasks, such as surveillance
systems, anti-terrorist operations, clinic diagnosis, etc. Unlike some biometric features that
need to be extracted at close range (such as face or iris) or by touch-sensor (fingerprint), gait
features can be effectively collected even if the target person is at a distance of 20 m from
the camera. The extraction of gait features does not need the intentional cooperation of the
target person, and can be widely applied in surveillance videos, biometric measurement,
dialog, etc. Meanwhile, gait features, as habitual human movement features, will not be
easily changed. However, there are still many challenges among the conventional gait
recognition algorithms; this is because the extraction of gait features can be affected by dif-
ferent factors, such as the variation of camera view angles and different walking directions
of pedestrians. Some works [1–3] have shown that in real scenes, the changes in clothing,
object occlusion, and pedestrian walking speed can also affect the feature extraction.
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In recent years, some methods have been proven to be very effective in extracting gait
features, which could be categorized in two ways: the discriminative model-based algo-
rithms [4–11] and the generative model-based ones [12,13]. Regarding the discriminative
model-based algorithms, the identity discrimination is mainly performed by extracting
features in gait templates or gait sequences. The gait energy image [14] is a gait template
generated from the gait silhouette, which is obtained by time-averagedpooling. In [4],
Shiraga et al. used gait energy images for feature representation to obtain the perspective
invariant features through fully connected layers. Wu et al. [8] selected deep convolu-
tional neural networks to learn the similarity between gait energy images for identity
discrimination. Although the gait energy image can reduce the computational cost, it
will lose the frame level features. Therefore, in recent years, researchers have tended to
extract features directly from the frame sequence [5,6]. Since neither a single spatial nor a
temporal feature can provide complete access to the information, neither of them could
provide enough information for gait recognition alone. Chao et al. [5] considered that a
gait sequence is composed of both spatial location and temporal information, and took
the gait sequence as an unordered set for feature extraction. Fan et al. [6] proposed a
focal convolutional layer to refine the feature extraction, and brought out a novel local gait
feature representation to describe the spatiotemporal features of the human body in a short
period of time, where such features have been proven to be superior to other ones. Inspired
by [15] who proposedthat 3D CNN could efficiently extract both the spatial features and
temporal ones, Wolf et al. [9] applied 3D CNN to extract the spatiotemporal information
in gait sequences in order to solve the problems caused by the indefinite length of gait
sequence, where the gait sequences were cut into several short ones. In [10], Thapar et al.
used 3D CNN for feature extraction from different viewpoints. On the other hand, in [11],
Liao used the extracted human key point information for gait recognition, and added three
posture features: joint angle, limb length, and joint motion. Liao et al. [7] used human
pose information as the input of the model, and mentioned that RNN [16] or LSTM [17] are
used to extract time information from a sequence. Regarding the generative model-based
algorithms, the operation of encoding and decoding the gait sequence features is required;
Feng et al. [12] applied the LSTM to process the obtained nodes and reconstruct the gait
sequence features from different viewpoints, while Yu et al. [13] used generative adver-
sarial networks to reduce the effects caused by clothing changes, viewpoint changes, etc.
Although the silhouette image of a person may change greatly (due to the variation of view
angles among the surveillance cameras), it is well known that a person’s real physiological
information (such as his real height, shoulder width, step frequency, and other information)
will not actually change greatly. In [18,19], such physiological information was reported to
be able to improve the accuracy of gait recognition algorithms.

In this paper, a novel gait recognition framework is brought about with the combina-
tion of long-short-term global/local features and real personal physiological information.
Since the movement frequency of persons may change greatly, both the local short-term
attention (LSTA, for three continuous frames) and global long-term attention (GLTA, for the
whole gait cycle) modules are proposed to collect more effective gait features. Based on the
observation that a silhouette image can only provide limited shape or motion features,
a novel human physiological information (HPI) module is also brought about for calculating
the real personal static and dynamic physiological features through the monocular images.
To efficiently apply the HPI features, a new physiological feature extraction (PFE) network
is proposed to concatenate the physiological information with silhouette for gait recogni-
tion. Through the experiments between the CASIA-B [20] and Multi-state Gait (collected
by us) datasets, the effectiveness and efficiency of the proposed method are proved.



Sensors 2022, 22, 8779 3 of 17

2. Methods
2.1. System Overview

The main structure of this paper is shown in Figure 1, which mainly includes two
parts: the gait-silhouette-based attention module and real personal physiological feature
estimation module.
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Figure 1. The overviewof this work, which is mainly composed of two parts: the gait-silhouette-
based global (local) long (short)-term attention module, and the personal physiological feature
estimation module.

In the gait-silhouette-based attention module, the local short-term attention (LSTA)
features and global long-term attention (GLTA) features are extracted by the different
multilayer perceptronand feature aggregation. Then, the feature aggregation is performed
by using multiple features to complement each other. Regarding the global long-term
features, four layers of 2D CNN and two layers of max pooling are used to obtain the
shallow feature information, and then the global long-term features of the whole sequence
are extracted using the global long-term attention module (GLTA). Finally, the features
are aggregated by the adaptive temporal feature aggregation module (ATFA). Regarding
the local short-term features, GaitPart [6] is selected as the backbone network to extract
shallow features, and then the local short-term features are extracted using the local short-
term attention module (LSTA), where the extracted features are also aggregated by the
ATFA module.

During the personal physiological feature estimation module, after the camera cal-
ibration, the personal physiological information (such as shoulder width, step length,
frequency, etc.) is extracted from the skeletal points through the input monocular images
by the human physiological information module (HPI). Then, the physiological feature
extraction module (PFE) is used to extract and aggregate each of the gait physiological
features. The full connectivity (FC) layers are used to map the feature vector into the metric
space, and the features obtained from the two modules are concatenated for reranking.

2.2. Gait-Silhouette-Based Attention Modules

A similar local convolution network to GaitPart [6] is brought about to extract local
features of different receptive fields. As shown in Figure 1, block1 and block2 are applied to
split the input feature map into four and eight parts horizontally by focal convolution lay-
ers [6]. Here, the local feature dimension is represented by F′ local ∈ RN×P×S×C×(H/P)×W ,
where N is the batch, S means the time series, C represents the feature channel, H and
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W are the height and width of the feature map, and P denotes the number of timesthe
feature map is split. The global features are extracted by a four-layer 2D CNN, and rep-
resented as F′global ∈ RN×S×C×H×W . Spatial aggregation (SA) refers to horizontal feature
aggregation on the width W dimension of an image. The SA operations are described
in Equations (1) and (2) to obtain the local features Flocal ∈ RN×P×S×C×(H/P) and global
features Fglobal ∈ RN×S×C×H , respectively. The avgW and maxW mean the average and
maximum value in width W.

Flocal ∈ RN×P×S×C×(H/P) = avgW
(

F′ local
)
+ maxW

(
F′ local

)
, (1)

Fglobal ∈ RN×S×C×H == avgW

(
F′global

)
+ maxW

(
F′global

)
. (2)

2.2.1. Local Short-Term Attention (LSTA)

As shown in Figure 2, a channel attention module is introduced to enhance the feature rep-
resentation of the local features, A channel-based attention feature FAC ∈ RN×P×S×C×(H/P)

is described in Equation (3), where its distribution is obtained by using 1D CNN and
a sigmoid function on the channel C. In Equation (3), a channel attention element-wise
product over local features Flocal is selected to obtain the channel excitation features, FAC.

FAC = Sigmoid(Conv1d C(Flocal)) · Flocal . (3)

S

…

C

H

…
  …

… …

avgpool_5

maxpool_5

avgpool_3

avgpool_3

Figure 2. The overview structure of the LSTA.

After that, a one-dimensional convolution of size 1 is used in the time dimension to
obtain temporal attention features FAS ∈ RN×P×S×C×(H/P) of each row. Then, the average
and max pooling with the sizes of 3 and 5 are used to slide into the time series S so
as to extract the short-term features of different receptive fields, which can be defined
as Equations (4) and (5), to obtain local short-term attention features FLSTA ∈ RN×S×C×H

based on time series.

FLSTA = maxpool_3S(FAS) + avgpool_3S(FAS) + maxpool_5S(FAS) + avgpool_5S(FAS), (4)

FAS = Sigmoid(Conv1d S(FAC))•FAC + FAC. (5)

2.2.2. Global Long-Term Attention (GLTA)

Besides the local features, the global features could also be useful to describe the
holistic information of the target person. As described in Figure 3, after obtaining a gait
silhouette sequence of S frames, the shallow features Fglobal of the whole sequence are
obtained by the SA operation (described in Equations (1) and (2)). In order to extract a more
discriminative feature representation, the importance of each frame in the whole sequence
is calculated by a feedforward network which is represented as FAL ∈ RN×S×C×H along
the time dimension. As defined in Equation (6), through a multilayer perceptron (MLP)
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module consisting of two-layer 2D CNN, FAL (the output of MLP) is the element-wise
product of Fglobal to obtain the temporal excitation features FGLTA ∈ RN×S×C×H .

FAL =
exp

(
Conv2d s

(
Conv2d s

(
Fglobal

)))
n
∑

i=1
exp

(
Conv2d s

(
Conv2d s

(
Fglobal

))) . (6)

avg

MLP

Figure 3. The overview of GLTA.

2.2.3. Adaptive Temporal Feature Aggregation (ATFA)

In this module, as shown in Figure 4, an adaptive temporal feature aggregation is
proposed. First, the max pooling and the average pooling are applied to reduce the dimen-
sion of the input features in the temporal dimension S, and concatenate them. The max
pooling can represent the salient information of the sequence, while the average pooling
can represent the overall information of the sequence. The temporal feature pooling can
be formulated as Equations (7) and (8) to obtain the features Fcat−global∈ RN×K×C×H and
Fcat−local∈ RN×K×C×H from Fglobal , FGLTA and Flocal , FLSTA, where K denotes the number of
features after the temporal feature pooling.

Fcat−global = cat
(

maxs

(
Fglobal

)
, averages

(
Fglobal

)
, maxs(FGLTA), averages(FGLTA)

)
, (7)

Fcat−local = cat(maxs(Flocal), averages(Flocal), maxs(FLSTA), averages(FLSTA)). (8)

co
n
ca
t

( )

Figure 4. The overview of ATFA.

Then, in order to adaptively select the feature representations among them and en-
hance the discriminative power of selected features, multilayer perceptronis introduced to
score the splicing dimension of Fcat and perform a weighted summation over the splicing
dimension K. This process can be represented by Equations (9) and (10) to obtain the output
features Fout−global∈ RN×C×H and Fout−global∈ RN×C×H , respectively.

Fout−global =
k

∑
i=1

(Sigmoid
(

MLP
(

Fcat−global

))
• Fcat−global + Fcat−global

)
, (9)
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Fout−local =
k

∑
i=1

(Sigmoid (MLP(Fcat−local)) • Fcat−local + Fcat−local

)
. (10)

2.3. Personal Physiological Feature Module
2.3.1. Estimating Human Physiological Information (HPI)

As shown in Figure 5, the real height and width of a person and his depth to the
camera could be expressed as (Hp, Wp, Zp); the optical focus length of a monocular camera
is defined as f; its optical center is defined as (Ox, Oy); θcam and φcam mean the tilt and
rotation of the camera; the camera height is expressed as Hcam. In this research, this paper
can estimate the height and width (Himg, Wimg) of a person in the image by YOLOV5 [21].
Then, the real personal feature information could be described by the camera parameters
and image information as follows:

Person(Hp, Wp, Zp) = M(Himg, Wimg, Hcam, f , Ox, Oy, θcam, φimg), (11)

Figure 5. The real height and width of a person can be estimated from his bounding box in the image
as long as the camera viewpoint and setting are known. Detailed illustration and explanation can be
found in [22].

As described in [22], zero rolling (or the fact thatthe image has been rotated to account
for roll) is assumed to calculate (Hp, Wp, Zp) as follows:

Zp =
f ∗ Hcam

f ∗ sin(θimg)− (Oy − Himg) ∗ cos(θimg))
;

Hp =
Himg ∗ Zp

f
;

Wp =
Wimg ∗ Zp

f
.

(12)

The readers are referred to more detailed discussion and description of
Equation (12) in [22].

According to Equation (12), since there is a linear relation between the bounding
(Himg, Wimg) and real human height and width (Hp, Wp), as shown in Figure 6, accord-
ing the skeletal points estimated by OpenPose [23] and the (Himg, Wimg) obtained from
YOLOV5, it is easy to estimate the following seven real pieces of human physiological
information: height, shoulder width, hunchback angle, elbow angle, knee angle, step
length, and step frequency.
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Figure 6. After obtaining the real human height from Equation (12), with the skeleton points extracted
from OpenPose [23], this paper can obtain 7 real human physiological information parameters: height,
shoulder width, hunchback angle, elbow angle, knee angle, step length, and step frequency.

2.3.2. Physiological Feature Extraction (PFE) Module

After obtaining each piece of physiological information, in order to enhance the dis-
criminative ability and correlation among these pieces of information, this paper proposes
a new network, shown in Figure 7, for physiological feature extraction, where a 1D CNN
of size 3 is used to obtain the correlation between each piece of physiological information.
After two such 1D CNN layers, a batch normalization (BN) process is adopted to accelerate
the convergence of the proposed network, and the output of the BN is applied to a full
connection (FC) layer. Then, a dropout layer is selected to avoid the overfitting problem.

1*1, 1D Conv 1*3, 1D Conv BN

FC

IN

OUT FCDropout

Figure 7. Implementation process of the physiological feature extraction module.

Assuming that the feature input is defined as Pin∈ RN×C×L, where N is the batch
number, C denotes the number of channels and L denotes the feature length. This process

can be defined as Equation (13), through which the feature output FPFE∈ RN×L
′

is obtained.
Here, L

′
is the feature length after passing through the full connection layer.

FPFE = FC(Conv1d_3(Pin)). (13)

2.4. Loss Function

As shown in Figure 1, in this work, in order to make the silhouette gait features more
distinguishable, the batch all triple loss [24] and cross-entropy loss functions are selected,
where the triple loss could increase the compactness within a class and the cross-entropy
loss can measure the separability between global classes.

The combined loss function is defined as Equation (14). Within each batch, the triple
loss over all samples is defined as Equation (15), where all_da,p is the average distance



Sensors 2022, 22, 8779 8 of 17

between each anchor and all positive samples, all_da,n is the average distance between each
anchor and all negative samples, and α is the margin value.

Lcombined = Lall + LCross entropy, (14)

Lall = max
(
all_da,p − all_da,n + α , 0

)
, (15)

The triple loss of PFE is also measured by Equation (15). The loss vectors of the
silhouette-based module and the PFE module are concatenated to create a new feature
vector, and the ID reranking process is performed by measuring the length of this new
feature vector.

3. Results

To ensure the effectiveness and efficiency of the proposed algorithm, three experi-
ments were carried out: (1) In Section 3.2, we examined the effectiveness of the human
physiological information estimation module; (2) in Section 3.3.1, we conducted compara-
tive experiments among the conventional gait recognition algorithms [5,6,25,26] and the
proposed method (without HPI and PFE modules) on CASIA-B [20]; (3) we conducted
comparative experiments among the proposed method (with HPI and PFE modules) and
the baseline methods on the Multi-state Gait dataset, where the real human physiological
information could be estimated.

3.1. Datasets and Training Details

CASIA-B [20]: There are a total of 124 persons included in this dataset, where each
person contains 11 views and each view contains 10 sequences under three walking condi-
tions: normal (NM), carrying a bag or backpack (BG), and wearing coats or jackets (CL).
The first six sequences are obtained under NM condition, and the other two sequences are
captured with BG and the last two sequences under CL conditions. This paper follows
the popular protocol carried out in [8]: the first 74 persons are used for training and the
remaining 50 ones for testing. During the test, the first 4 = four sequences of NM (NM#1–4)
are used as gallery, the remaining six sequences (regard as probe) are divided into three
subsets according to the walking conditions: the NM subset contains NM#5–6, the BG
subset contains BG#1–2, and the CL subset contains CL#1–2.

Multi-state Gait dataset (the approved informed consent was obtained from all the
subjects in this dataset. Their personal images were authorized to be used for the academic
research): Since the setting and parameters of cameras are not included in the CASIA-B
dataset, the new Multi-state Gait dataset was created, where the camera parameters and
settings were recorded, through which the HPI module could estimate the real human
physiological information.

As shown in Figure 8, all the data in the Multi-state Gait dataset were captured by
seven Hikvision cameras (the interval between two adjacent cameras is 15 degrees) at 20 fps
with the resolution of 1280 × 720 pixels. There were 60 subject persons included in this
dataset, and each person was instructed to walk in bio-directions (forward and backward).
Therefore, the viewing angles varied from 0–90◦ and 180–270◦, respectively. All the cameras
were set at 2 m height from the ground with their pitch angles fixed as 5◦. With the help
of OpenCV, all the data were collected by a desktop PC with the AMD R9 5950X CPU,
32 GB memory, and NVIDIA RTX3090. During the training and test process, the software
condition is Pytorch1.8 + Cuda10.1 + Pycharm + Ubuntu. Figure 9, shows some collected
samples, and the gait silhouette sequences were extracted by using the Mask R-CNN [26].
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Figure 8. The setup of cameras in collecting data for the Multi-state dataset. There are 7 Hikvision
cameras applied in this scene and the interval between two adjacent cameras is 15 degrees. The subject
person was instructed to walk forward and backward along the same route.

Figure 9. Illustration of the proposed Multi-state Gait dataset. The gait silhouette map was extracted
by using the Mask R-CNN [26].

Similar to [27], this dataset contains 60 persons, where each person contains 14 angles
(0, 15, 30, 45, 60, 75, 90, 180, 195, 210, 225, 240, 255, 270 degrees) and each angle contain 14
sequences: six sequences for NM, four sequences of BG, and four sequences for CL. Here,
the first 34 persons are selected for training and the remaining 26 persons for testing. During
the test, the first four sequences of NM (NM#1–4) are used as gallery, and the remaining
10 sequences (regard as probe) are divided into three subsets: the NM subset contains
NM#5–6, the BG subsets contains BG#1–4, and the CL subset contains CL#1–4.

Training Details in CASIA-B: The gait silhouette map inputted into the network is set
to 64 × 44 pixels, and the images are aligned according to the method of [27]. Each gait
cycle contains 30 frames from each view angle (a total of 11 angles). The margin in the
triple loss Lall is set to 0.2, the Adam optimizer is applied in the training process, and the
learning rate is set to 1 × 10−4. After 120K iterations, the learning rate is adjusted to 1 ×
10−5, and the local optimization for the proposed network was achieved after 5K iterations.

Training Details in the Multi-State Gait Dataset: The resolution of the gait silhouette
map inputted into the network is 64 × 44 pixels, and all the images are aligned according
to the method of [27]. Each gait cycle contains 30 frames from each view angle (a total of
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11 angles). During training, the Adam optimizer is used, the margin in the triple loss Lall
is set to 0.2, and the learning rate is set to 1 × 10−4. Because this dataset is small, a total
of 70Kiterations are performed. Since both GaitSet [5] and GaitPart [6] were selected as
the comparative baseline methods, they were also trained in this dataset. GaitSet [5] and
GaitPart [6] use the same parameter settings to perform 70K iterations, respectively.

Regarding the PFE module in the proposed work, the size of a single piece of infor-
mation inputted to the network is set as 1 × 7, the dropout layer parameter is set to 0.5,
in which the margin in the triple loss Lhard is set to 0.4, the Adam optimizer is also used,
and the learning rate is set to 1 × 10−4 for 30 iterations.

For either dataset, the training process of the proposed model is implemented in
Pytorch1.8 + Cuda10.1 by using one NVIDIA RTX3090 GPU under the Ubuntu conditions.

3.2. Efficiency Evaluation of Physiological Information Computing

In order to verify the effectiveness of the HPI module in the proposed work, this
paper selected four persons under three angles from the Multi-state Gait dataset. Here, two
different experiments were performed: the static measurement for angle evaluation (elbow,
knee, and hunchback angles) from static images, and the dynamic measurement for length
evaluation (height, shoulder width, step length, and step frequency) from video sequences.

Table 1 shows the detailed experimental results of the static estimation error evaluation
of the HPI module, under the three angles. The error rate is the ratio between AEST − AGT‖
and ‖AGT‖. Here, AEST means the estimated angle by the HPI module and AGT represents
the ground truth angle. In total, the estimation error of the HPI module for elbow and knee
angles is around 6% and the hunchback angle has more estimation error (up 9.4%). This is
because of the unstable skeleton point 0 (shown in Figure 6) due to the variation of view
angles. Another important element lies in the experimental error that was caused by the
displacement between the skeleton points estimated by OpenPose [23] and the position in
which the real medical instrument was placed.

Table 1. Static measurement error of HPI with 4 persons under 3 different angles.

Person

Estimation Error

30◦ 45◦ 60◦ 30◦ 45◦ 60◦ 30◦ 45◦ 60◦

Elbow Angle Knee Angle Hunchback Angle

ID1 6.6% 4.6% 4.7% 5.8% 5.4% 6.1% 10.5% 9.7% 11.2%

ID2 8.6% 4.8% 10.7% 8.4% 6.5% 9.3% 7.7% 6.7% 9.6%

ID3 5.6% 5.9% 5.9% 6.3% 3.8% 3.3% 12.7% 8.2% 8.7%

ID4 4.4% 6.7% 6.4% 4.5% 6.5% 5.5% 8.6% 9.8% 8.9%

Mean 6.2% 6.0% 9.4%

Table 2 shows the detailed information in the dynamic measurement experiment. Here,
the target persons were required to walk from different angles. Regarding the step length
measurement, the ground truth value was collected by measuring the distance between
two footprints of a person, where his/her shoe’s bottom was painted with ink. The ground
truth (step length) was the mean value of all manually measured step lengths during a
walking sequence. As shown in the right image of Figure 10, a Kalman filter is applied to
the estimated HPI features (such as height, shoulder width, etc.) to eliminate the effect of
random noise. The estimation error of each HPI varies from 1.2% to 8.1%; this is because
the real person’s height is estimated from the detection result of YOLOV5 [21], where
the bounding box of the target person is quite accurate. While the shoulder width, step
length, and step frequency were estimated from the skeleton points from OpenPose [23],
the positions of skeleton points become unstable due to the motion blur in the test images;
the estimation error of such information is higher than that of the person’s real height.
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Table 2. Dynamic measurement error of physiological information.

Person

Estimation Error

30◦ 45◦ 60◦ 30◦ 45◦ 60◦ 30◦ 45◦ 60◦ 30◦ 45◦ 60◦

Height Shoulder Width Step Length Step Frequency

ID1 1.1% 0.9% 1.0% 5.1% 2.5% 7.6% 9.4% 8.8% 8.2% 6.5% 2.3% 5.8%

ID2 2.1% 1.1% 0.5% 1.1% 12.1% 7.4% 7.5% 8.2% 7.7% 4.3% 6.6% 6.6%

ID3 0.9% 2.8% 2.2% 0.8% 2.8% 5.7% 10.2% 5.5% 7.5% 6.3% 6.7% 5.9%

ID4 0.7% 0.9% 0.3% 2.3% 3.3% 5.5% 7.7% 7.9% 8.4% 2.2% 5.2% 4.3%

Mean 1.2% 4.7% 8.1% 5.2%

Figure 10. HPI evaluation. Left image: the ground truth value of AGT is obtained through the medical
instrument that is fixed on the test part of the human. Right image: Kalman filter is applied during
the dynamic measurement experiment to compress the effect of random noise data.

3.3. Comparison with State-of-the-Art Methods
3.3.1. Comparative Experiments on CASIA-B Dataset

To confirm the effectiveness of the proposed method, the comparative experiment
was performed on the CASIA-B dataset among the proposed method and the other four
methods: GaitSet [5], GaitPart [6], CNN-LB [8], and GaitNet [25]. Here, as shown in
Table 3, 50 persons were selected as the target persons and the detailed training information
could be found in the aforementioned section. All the target persons contained 11 view
angles under three conditions: normal walking (NM), carrying a bag or backpack (BG),
and wearing coats or jackets (CL). It is obvious that the proposed method achieved superior
performance to the other methods over most view angles under all conditions (rank-1
under NM, BG, and CL conditions). The mean value of the recognition accuracy in the
proposed method was 96.5% under NM, 92.6% under BG, and 79.8% under CL. Such stable
ranking over all 11 view angles under three conditions could prove the effectiveness of
the proposed methods. The superior performance of the proposed method lies in the fact
that, compared with the other works such as GaitPart (extracting features from three or
a fixed number of frames), more effective gait features are extracted by the LSTA and
GLTA modules, where both the local three continuous frames and the whole gait cycle
are processed. This is because the movement frequency of different people may change
greatly, and extracting the gait feature at a fixed image interval may not produce enough
information for recognition, while the proposed method can obtain more useful feature
from the whole gait cycle. Therefore, it is natural that the more powerful gait features
(obtained by LSTA and GLTA) could help to improve the gait recognition accuracy.
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Table 3. Comparative experimental results in the CASIA-B [20] dataset among the proposed method
and other methods, excluding identical-view cases. The bolds indicate the best accuracy in this state.

Gallery NM#1–4 0–180◦ Mean

Probe 0 18 36 54 72 90 108 126 144 162 180

NM #5–6

CNN-LB [8] 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9

GaitSet [5] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

GaitNet [25] 91.2 92.0 90.5 95.6 86.9 92.6 93.5 96.0 90.9 88.8 89.0 91.6

GaitPart [6] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2

ours 93.4 98.4 99.3 98.4 95.1 93.2 96.4 98.3 99.4 97.9 92.2 96.5

BG #1–2

CNN-LB [8] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4

GaitSet [5] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitNet [25] 83.0 87.8 88.3 93.3 82.6 74.8 89.5 91.0 86.1 81.2 85.6 85.7

GaitPart [6] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5

ours 90.1 96.1 97.0 95.0 90.6 85.4 90.7 94.8 97.5 94.3 87.1 92.6

CL #1–2

CNN-LB [8] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0

GaitSet [5] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

GaitNet [25] 42.1 58.2 65.1 70.7 68.0 70.6 65.3 69.4 51.5 50.1 36.6 58.9

GaitPart [6] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

ours 71.2 84.4 86.7 83.3 79.6 76.6 79.3 83.8 85.0 80.9 67.2 79.8

3.3.2. Comparative Experiment on the Multi-State Gait Dataset

Since the CASIA-B [20] dataset does not contain the necessary information such as
camera setting and internal parameters, which is required by the HPI module, this paper
performed another comparative experiment on the Multi-state Gait dataset to confirm the
effectiveness of the proposed method. Here, GaitSet [5] and GaitPart [6] are selected as the
compared baseline methods due to their good performance on the CASIA-B dataset (shown
in Table 3). Here, 26 persons are selected as the tested targets from 14 view angles under
three conditions (NM, BG, and CL). In Table 4, “ours_1” means the LSTA+GLTA+ATFA
in the proposed work, while “ours_2” represents the method containing all the proposed
modules (LSTA+GLTA+ATFA+HPI+PFE). Among all the 14 view angles, “ours_2” ranked
number 1 for nine angles under NM and BG conditions and ranked number 1 for 10
angles under the CL condition. From all 14 angles under three conditions, the average
recognition accuracy of “ours_2” is superior to all the compared methods, which implies
that introducing the HPI information with the PFE module could efficiently improve the
performance in gait recognition tasks. This is because, compared with the silhouette images
which may become completely different due to the variation of camera viewing angles,
a person’s real physiological information could hardly change (despite different viewing
angles). Therefore, it is not strange that introducing such stable personal gait features
will improve the performance of a gait recognition method. Experiments in the following
section prove that such an idea is also suitable for the other compared methods.
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Table 4. Comparison results in the Multi-state Gait dataset, excluding identical-view cases. Here,
our_1 does not include real personal physiological feature, and ours_2 includes gait silhouette features
and real personal physiological features. The bolds indicate the best accuracy in this state.

Gallery
NM #1–4 0–270◦

Probe Model 0 15 30 45 60 75 90 180 195 210 225 240 255 270 MEAN

NM
#5–6

GaitSet [5] 79.7 87.4 91.8 96.2 91.8 76.9 77.5 79.7 87.9 94.0 92.9 91.2 81.3 76.9 86.1

GaitPart [6] 76.4 89.0 96.7 96.7 95.1 87.9 86.8 76.9 91.8 97.8 99.5 99.5 90.7 87.9 90.9

ours_1 81.9 91.2 96.7 96.2 95.6 87.9 87.4 75.8 92.9 95.1 97.8 97.3 90.7 84.6 90.7

ours_2 81.9 91.2 96.7 96.7 95.6 88.5 87.9 75.8 92.9 95.1 97.8 97.3 90.7 85.7 91.0

BG
#1–4

GaitSet [5] 73.9 81.2 89.3 91.5 87.1 71.4 75.8 78.3 83.2 90.1 90.7 85.7 75.8 80.0 82.4

GaitPart [6] 69.5 84.3 91.8 94.8 86.8 78.0 78.9 66.2 81.2 92.6 93.1 89.6 86.8 79.4 83.8

ours_1 70.6 85.5 92.6 93.1 91.2 81.0 81.6 72.8 88.0 92.3 92.3 87.1 83.5 81.9 85.3

ours_2 70.6 86.3 93.7 93.7 91.2 82.1 81.6 73.0 88.9 93.4 92.6 88.3 84.9 82.1 85.9

CL
#1–4

GaitSet [5] 67.6 76.9 76.4 75.8 72.5 67.6 60.4 62.1 70.9 74.2 74.2 74.7 55.0 61.0 69.2

GaitPart [6] 73.0 72.4 82.3 84.0 80.1 71.9 74.1 67.5 70.2 81.8 75.7 64.2 58.7 64.7 72.9

ours_1 73.6 78.0 87.9 85.2 75.8 70.9 68.7 63.7 76.9 83.0 80.2 74.7 61.5 63.2 74.5

ours_2 73.7 78.6 87.9 86.3 76.9 72.5 69.2 63.8 78.0 84.1 80.8 75.3 63.2 63.7 75.3

In addition, the FLOPs of the proposed model and compared baseline works are
also calculated to measure their computational complexity. Under the same data input,
the FLOPs of the proposed model (145 M) are in between GaitSet [5] and GaitPart [6], which
is 20% lower than GaitSet (183 M) and 37% higher than GaitPart (106 M). Since GaitSet
contains a more complex network structure (including feature pyramid structure) than
the proposed work, it is reasonable that the computation cost of the proposed method is
less than that of GaitSet. Compared with GaitPart, besides the similar network to extract
features for short-term, the proposed work contains more complex structures, such as
GLTA, ATFA, and PFE, to compute the long-term gait feature and real human physiological
feature. Therefore, the proposed method could achieve better recognition accuracy at the
cost of more computational complexity than GaitPart.

3.4. Ablation Study

Besides the overall performance evaluation, the effectiveness of each module in the
proposed methods were also investigated.

Firstly, the validity of each module of the gait silhouette part on the CASIA-B [20]
dataset was verified. As shown in Table 5, the baseline of the work is that the LSTA module
and the GLTA and ATFA modules are also selected to verify how to combine them to
improve the performance of the method. Through these experiments, directly applying the
LSTA module for gait recognition will lead to a similar result to the well-known GaitPart [6],
while the combination of LSTA and GLTA could improve the performance under all
conditions and the mean recognition accuracy could reach 89.2%, and by combining LSTA
with GLTA and ATFA, the performance of the proposed work is further improved to 89.6%
in the mean value of recognition rate. The improvements caused by introducing LSTA and
ATFA modules are, respectively, 0.8% and 0.4%, which indicates that, compared with the
adaptive adjustment of feature weights (by ATFA), the global gait feature could be more
useful to improve the performance of the proposed method.
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Table 5. Ablation experiments on CASIA-B [20] (50 persons, 11 view angles under 3 conditions),
excluding identical-view cases. The bolds indicate the best accuracy in this state.

Model
Rank-1%

NM BG CL Mean

GaitSet [5] 95.0 87.2 70.4 84.2
GaitPart [6] 96.2 91.5 78.7 88.8

our

Baseline (LSTA) 96.4 91.4 77.4 88.4
Baseline (LSTA) + GLTA 96.7 91.8 79.2 89.2
Baseline (LSTA) + GLTA + ATFA 96.5 92.6 79.8 89.6

Since the effectiveness of HPI and PFE cannot be verified in CASIA-B [20], the Multi
state Gait dataset was applied to examine these two modules. In Table 6, the performance of
HPI and PFE modules in improving the gait recognition accuracy were investigated. Here,
“Baseline” means the LSTA + GLTA + ATFA modules in the proposed method, “Baseline
+ HPI” represents directly applying the obtained real human physiological information
in the silhouette-based network, and “Baseline + HPI + PFE” denotes the combination
of the baseline method with the human physiological features extracted through the PFE
network. The performance of the baseline method is quite similar to that of the well-known
GaitPart [6] work, and it is obvious that directly applying the HPI information can only
slightly improve the gait recognition accuracy. Through this experiment, the real human
physiological features obtained through the HPI+PFE can achieve the best improvement in
gait recognition.

Table 6. For real personal physiological features, we conducted ablation experiments in the Multi-
state Gait dataset, excluding identical-view cases. The bolds indicate the best accuracy in this state.

Model
Rank-1%

NM BG CL Mean

GaitSet [5] 86.07 82.43 69.23 79.24

GaitPart [6] 90.89 83.78 72.90 82.52

our

Baseline 90.74 85.25 74.53 83.51

Baseline + HPI 90.81 85.34 74.64 83.60

Baseline + HPI + PFE 90.97 85.89 75.28 84.05

3.5. Transplantation Study

Besides the proposed method, as shown in Table 7, the authors also investigated
whether the HPI and PFE modules could help to increase the accuracy of other gait recog-
nition methods or not. Here, according to the network structure of GaitPart [6], a weight
parameter γ is introduced to the real personal physiological features, so that the ratio of
the gait silhouette feature length to the real personal physiological feature length is set
to 32:1. It is interesting to see that, with the help of the HPI and PFE module proposed
in this paper, the average recognition accuracies of GaitSet [5] and GaitPart [6] increased
by0.53% and 0.47%, respectively. This can be considered as proof of the idea that the unique
real human physiological information can be helpful to improve the performance of a gait
recognition algorithm.



Sensors 2022, 22, 8779 15 of 17

Table 7. Translating the HPI and PFE modules to other methods in the Multi-state Gait dataset. The
bolds indicate the best accuracy in this state.

Model
Rank-1%

NM BG CL Mean

GaitSet [5] 86.07 82.43 69.23 79.24

GaitSet [5] + HPI + PFE 86.34 82.75 70.21 79.77

GaitPart [6] 90.89 83.78 72.90 82.52

GaitPart [6] + HPI + PFE 91.05 84.38 73.61 83.01

4. Discussion

In the future, several improvements should be considered:

(1) Experiments on the other large public datasets (such as the OUMVLP Dataset) should
be performed. Due to the limitations of hardware, the authors cannot test the proposed
method on such large datasets. It is believed that such experiments could be achieved
with more powerful GPU hardware.

(2) Determining how to extract more accurate HPI features should be investigated. Cur-
rently, since only the monocular images were applied, the skeleton points of a person
may be invisible due to variation of view angles. The 3D skeleton points are considered
be a solution to this problem, and such points could be obtained through the RGB-D
camera, stereo vision, or other 2D–3D neural networks through successive frames.

(3) More clear test images should be applied in future research. As the motion blur has
caused many experimental errors in the work (because the estimation of skeleton
points becomes unstable), the proposed method should be applied to the test images
obtained through high-speed cameras rather than the normal ones (such as the shutter
speed of 20 fps).

5. Conclusions

In this paper, a new gait recognition method was brought about, which is based on
the fusion of gait silhouette features and real personal physiological features. To deal
with the variation of gait frequency among different people, both the short-term (three
frames) and long-term (whole gait cycle) gait features are extracted by the novel LSTA and
GLTA modules for improving the recognition accuracy. As for the appearance variation of
silhouette images under different viewing angles, the real human physiological information
calculated from monocular images is selected so as to provide more robust gait features.
The final gait recognition is achieved by reranking among the feature vectors concatenated
by the features obtained from LSTA, GLTA, and human physiological information. The
effectiveness and efficiency of the proposed method was proved through the massive com-
parative experiments among the proposed methods and the other well-known algorithms
on both the public dataset and the newly brought about Multi-state one. Since the proposed
method is mainly designed for intelligent security monitoring systems, its performance
will depend on several things such as the image resolution, camera capture speed, etc. This
is because low image resolution will lead to more estimation error for the skeleton points
and low capture speed will cause motion blur, which will not only affect the estimation
of skeleton points but also the quality of the silhouette image. One of the future work
directions in our research is to introduce the high-speed camera as well as carry out the
experiment under more real-life scenes.
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