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Abstract: Piezo-actuated flexure-based systems are widely used in applications with high accuracy
requirements, but the intrinsic hysteresis has a detrimental effect on the performance which
should be compensated. Conventional models were presented to model this undesired effect using
additional dead-zone operators. This paper presents a new approach using two sets of operators
with a distributed compensator to model and compensate for the asymmetric system hysteresis
based on inversion calculation with a simplified digitized representation. The experimental results
validate the effectiveness of the proposed model in modeling and compensating the asymmetric
system hysteresis.

Keywords: asymmetric hysteresis; inverse hysteresis compensation; piezoelectric actuators; piezo-
actuated flexure-based system

1. Introduction

Piezoelectric actuators are ideal for micromanipulation due to their fast response with
high repeatability, but they often have a limited stroke. The flexure mechanism are often
used together with the piezoelectric actuators to amplify their stroke with no backlash.
The piezo-actuated flexure-based systems are used in precise fabrication [1–3], autofocus
optical systems [4–6], microsurgical robots [7–9], and other applications [10–12]. One of the
biggest challenges while using a piezo-actuated flexure-based system is to deal with the
undesired system hysteresis.

Hysteresis is a very complex phenomenon with different possible causes. Hysteresis
may arise from material properties [13,14], mechanisms [15–17], and others [18,19]. The
hysteresis behavior of an actuator is compared to that of piezo-actuated different material
built flexure-based systems after normalization, as shown in Figure 1. The figure shows
that the system hysteresis can be a combination of the flexure mechanism hysteresis and
the piezoelectric actuator hysteresis. The hysteresis of the flexure mechanism may add to
the complexity of the system hysteresis.

Various models were proposed to describe the hysteresis. The phenomenology-
based models are classified into roughly three groups [20]: differential-based models,
operator-based models and the intelligent models. The Duhem [21,22] model and the
Bouc-wen [23,24] model are two popular differential-based models that use differential
equations to model the hysteresis behavior. It is convenient to design controllers combined
with dynamic models due to the compact structure of differential-based models, but their
inverse model construction as well as the parameters identification are often difficult. Intel-
ligent models are very popular in recent years and can also be used to model the hysteresis.
Some examples are Support Vector Machine (SVM) [25,26], the neural networks [27,28],
and others. These models have good performance in some cases, but these models are often
difficult to be explained using mathematics and may be not interpretable.
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Figure 1. The hysteresis behavior of a piezoelectric actuator, a piezo-actuated metallic flexure-based
system and a piezo-actuated polymer flexure-based system after normalization.

The construction of the operator-based models are often easier, among the vari-
ous operator-based models the Prandtl–Ishlinskii (PI) [29] model is widely adopted.
The Prandtl–Ishlinskii (PI) model can be easily implemented using an analytical inver-
sion [30]. Ang [31] proposed a linear relationship between the value of the operators
and the actuation rate. Tan [32] modified the classical model for hysteresis behavior
with a negative gradient. The asymmetric hysteresis behavior has also been studied:
Kuhnen [33] introduced dead-zone operators to deal with the memory-free asymmet-
ric hysteresis behavior. Gu [34] proposed to use a polynomial input function instead
of the linear function. Mohammad [29,35] presented a generalized Prandtl–Ishlinskii
(GPI) model to characterize the asymmetric hysteresis behavior, and the inversion of
an extended generalized Prandtl–Ishlinskii (EGPI) Hysteresis model was described by
Zhang [36]. However, the envelope function brings challenges to parameter identifica-
tions. Sun [37] proposed an extended unparallel Prandtl–Ishlinskii (EUPI) model while
only the left descending edge of a CPI operator can freely tilt.

In this paper, a dual-operators-based modified Prandtl–Ishlinskii (DPI) model is
proposed to describe and compensate for the asymmetric system hysteresis, which is an
extension of our previous work [38], where the highly asymmetric hysteresis behavior
of the piezo-actuated flexure-based system is not discussed. In this work, the proposed
framework can capture the details of the asymmetric system hysteresis. The feedforward
compensator can control the piezo-actuated flexure-based system with high accuracy. The
proposed model and its inverse hysteresis compensator are validated with modeling and
control experimental results.

The rest of this paper is organized as follows. Section 2 presents the DPI model and
its analytical inversion. The validation experimental results are described in Section 3.
Sections 4 and 5 cover the discussion and the conclusion, respectively.

2. Hysteresis Mathematical Model

This section describes a digitized representation and the proposed DPI model. The
inverse DPI model and the link between the classical and the digitized representation are
also described.
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2.1. Digitized Representation

Here, we adopt the similar digitized representation of the classical Prandtl–Ishlinskii
model in [38]. The state of the classical PI hysteresis model with N operators is represented
by a binary number B with N digits, as shown in following equation:

B = {b1, . . . , bi, . . . , bN}, (1)

where i = 1, . . . , N and bi = {0, 1}. The system input and output with state B are repre-
sented with X(B) ∈ R and Y(B) ∈ R, respectively.

Each fundamental operator, bi, has a paired properties: (∆Xi, ∆Yi), which stands for
the changes in system input and output, respectively. The values of ∆Xi ∈ R and ∆Yi ∈ R
are fixed for particular system. The fundamental operators are represented with H as:

H =

[
∆X1 . . . ∆Xi . . . ∆XN
∆Y1 . . . ∆Yi . . . ∆YN

]
. (2)

The change of operator bi follows the below proposition:
The binary state of a fundamental operator bi can be changed from 0 to 1 during

expansion, and from 1 to 0 during contraction. The most significant digit is bn while b1
is the least significant digit. The change of the state is always from the least significant
digit. Denote the altered binary state of bi be b+i . When the binary state of a fundamental
operator bi is changed from 0 to 1 during expansion, the change of the system input and
output will then change according to its paired properties using the following equations:

X(Bi+) = X(B) + ∆Xi, (3)

Y(Bi+) = Y(B) + ∆Yi, (4)

where Bi+ , {bN , . . . , b+i , . . . , b1}.
When the binary state of a fundamental operator bi is changed from 1 to 0 during

contraction, the change of the system input and output will then change according to its
paired properties using the following equations:

X(Bi+) = X(B)− ∆Xi, (5)

Y(Bi+) = Y(B)− ∆Yi, (6)

where Bi+ , {bN , . . . , b+i , . . . , b1}.
A simple example with 3 operators can be shown in Figure 2. The above equations can

be further simplified, when the binary state of a fundamental operator bi is changed, the
change of the system input and output will then change according to its paired properties
using the following equations:

X(Bi+) = X(B) + ∆X1−bi
i · (−∆Xi)

bi , (7)

Y(Bi+) = Y(B) + ∆Y1−bi
i · (−∆Yi)

bi , (8)

where Bi+ , {bN , . . . , b+i , . . . , b1}.
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Figure 2. A digitized representation of the classical PI hysteresis model with three operators.

2.2. DPI Model

The classical PI model requires the hysteresis behavior to be symmetric, this limitation
is mainly due to the one-paired property of the play operator for modeling the expansion
curve and the contraction curve. In this section, the DPI model for modeling and compen-
sating the asymmetric system hysteresis is presented. The proposed DPI model applies two
sets of operators for modeling the expansion curve and the contraction curve respectively
with a similar digitized representation.

We used the same representation as (1) to represent the state of the system using the
DPI model with N fundamental operators.

Compared to the previous one, each digit bi in (1) has two paired properties: (∆Xei ,
∆Yei ), and (∆Xci , ∆Yci ). The two paired properties are used for modeling the expansion
curve and contraction curve respectively. The change of system input and output dur-
ing expansion are represented with (∆Xei , ∆Yei ), while the changes of the system during
contraction are represented with (∆Xci , ∆Yci ). The properties of the DPI model with two
fundamental operators are illustrated in Figure 3. The properties He and Hc of the DPI
model with N elementary operators are expressed in the following equations:

He =

[
∆Xe1 . . . ∆Xei . . . ∆XeN

∆Ye1 . . . ∆Yei . . . ∆YeN

]
, (9)

where ∆Xei ≥ 0.

Hc =

[
∆Xc1 . . . ∆Xci . . . ∆XcN

∆Yc1 . . . ∆Yci . . . ∆YcN

]
, (10)

where ∆Xci < 0.
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Figure 3. DPI model with two fundamental operators.

Similarly, the change of the system input and output will change according to its
paired properties using the following equations:

X(Bi+) = X(B) + ∆X1−bi
ei · ∆Xbi

ci . (11)

Y(Bi+) = Y(B) + ∆Y1−bi
ei · ∆Ybi

ci . (12)

The sum of the expansion operators may not equal to the sum of the contraction
operators, and this may lead to drifting of the proposed model in some cases. With a
repetitive input, the drifting will accumulate and the output of the model may reach infinity,
which may lead to the failure of the proposed model. For example, when Y(bN , . . . , b2, b1)
changes to Y(bN , . . . , b+2 , b+1 ), and finally reaches Ȳ(bN , . . . , b2, b1):

Ȳ(B) = Y(B) + ∆Ye1 + ∆Ye2 + ∆Yc1 + ∆Yc2 . (13)

The expansion and contraction properties may not equal:

∆Ye1 + ∆Ye2 + ∆Yc1 + ∆Yc2 6= 0, (14)

and
Ȳ(B) 6= Y(B). (15)
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We denote Ba as the value of state with all elements as a, i.e., bi = a, i = Z[1,N], where
Z[a,b] is the set of integer numbers in range [a, b]. A compensator Tc(B) is proposed using
the following equation when the system contracts after a turning point:

Tc(B) = Y(B)−Y(B0) +
N

∑
i=1

bi · ∆Yci . (16)

The contraction paired properties are then updated at the turning point:

∆Ŷci = ∆Yci + Tc(B) · fc(i), (17)

where fc(i) is a distribution with a sum of 1,

fc(i) =
∆Yci

∑N
i=1 bi · ∆Yci

. (18)

Similarly, a compensator Te(B) is proposed using the following equation when the
system expands after a turning point:

Te(B) = Y(B)−Y(B1) +
N

∑
i=1

(1− bi) · ∆Yei . (19)

The expansion paired properties are then updated at the turning point:

∆Ŷei = ∆Yei + Te(B) · fe(i), (20)

where fe is a distribution with a sum of 1,

fe(i) =
∆Yei

∑N
i=1(1− bi) · ∆Yei

. (21)

At turning points, the value of operators are updated with an addition of a dis-
tributed compensator to avoid drifting. An equal weight distribution is chosen so that
the value of each operator is not modified too much. When the proposed method is
applied to other systems with hysteresis, different distribution strategies can be chosen
subject to the observations of the hysteresis behavior. An assumption is also made that
X(B0) and X(B1) are fixed values. This can be further modified with other systems
by setting alternative stationary values or boundaries to help calculate the value of
the compensator.

2.3. Inverse DPI Model

Similar to the previous work in [38], the inverse compensator of the proposed model
can be constructed by simply exchanging ∆Xei with ∆Yei , and ∆Xci with ∆Yci within the
two paired properties, the properties of the inverse model can be obtained using the
following equations:

H́e =

[
0 1
1 0

]
He. (22)

H́c =

[
0 1
1 0

]
Hc. (23)

The process of calculation in the system identification is simplified with the pro-
posed method. The order of computation complexity can be reduced greatly to O(N) for
our method.
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2.4. Comparison of the Inverse Model Parameters Using the Digitized and the Classical
Representation

The inverse model ∆X
′
i , ∆Y

′
i using the digitized representation can be expressed in the

following equations [38]:

∆X
′
i = 2(ri+1 − ri) ·

i

∑
j=0

wj. (24)

∆Y
′
i = 2(ri+1 − ri). (25)

The inverse model parameters r
′
i with the classical representation can be calculated [32] by:

r
′
0 = 0. (26)

r
′
i =

i

∑
j=0

wj(ri − rj), i = 1, . . . , N. (27)

r
′
i+1 − r

′
i = (ri+1 − ri) ·

i

∑
j=0

wj, i = 1, . . . , N. (28)

From (24), we can get:

∆X
′
i = 2(r

′
i+1 − r

′
i) = 2(ri+1 − ri) ·

i

∑
j=0

wj. (29)

The inverse model parameters w
′
i with the classical representation can be calculated [32] by:

w
′
0 =

1
w0

. (30)

w
′
i =

−wi

(∑i
j=0 wj)(∑i−1

j=0 wj)
, i = 1, . . . , N. (31)

Alternatively, we can calculate the w
′
i using the digitized representation:

w
′
i =

∆Y
′
i

∆X′i
−

∆Y
′
i−1

∆X′i−1

=
−wi

(∑i
j=0 wj)(∑i−1

j=0 wj)
, i = 1, . . . , N. (32)

The equations above show that the inverse model parameters are the same using the
digitized and the classical representation. Moreover, the calculation complexity can be
reduced with the proposed digitized representation.

3. Experimental Results
3.1. Experimental Setup

In this section, the same 16-bit D/A card, actuator, amplifier, sensor, 16-bit A/D card
used in [38] is chosen. The asymmetric system hysteresis behavior of the piezo-actuated
flexure-based mechanism is studied for experimental validation, as shown in Figure 4. The
experiments are performed in an air-conditioned room so that the temperature factor can
be neglected.

In this section, the system hysteresis behavior is modeled using the PI, modified PI
model with dead zone operators (MPI), and the DPI model, respectively. The inverse
model is then identified to compensate for the system hysteresis under fixed amplitude and



Sensors 2022, 22, 8763 8 of 14

changing amplitude using the PI, MPI, and DPI model, respectively. A brief description of
the experimental setup is first given.

Figure 4. Experimental setup.

3.2. Modeling Results

The asymmetric system hysteresis behavior at 1 Hz sinusoidal wave is first modeled
using the PI, MPI, and DPI model, respectively with N = 25 fundamental operators.
Figure 5a shows that using the PI model cannot capture the asymmetric hysteresis behavior
accurately and result in a large modeling error. Figure 5b shows that using the MPI
model for modeling the system hysteresis is better than the PI model, but the error for the
contraction curve is much bigger than that of the expansion curve due to the limitations
of the dead zone operators. Although the MPI model achieves slightly better modeling
accuracy compared to the PI model, the error is still large for a tremor cancellation handheld
surgical instrument such as Itrem [8]. Figure 5c shows that the proposed DPI model
performs the best of the three models while describing the asymmetric system hysteresis.
The modeling results using three models are summarized in Table 1.

Table 1. Modeling experimental results.

RMSE (µm) RMSE / p-p ampl. (%) Max Error (µm)

PI 16.08 5.27 38.56

MPI 3.69 1.21 9.73

DPI 0.56 0.18 4.15
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Figure 5. Modeling results for the system hysteresis using the PI, MPI and the DPI model, respectively.
(a) Modeling results using the PI model. (b) Modeling results using the MPI model. (c) Modeling
results using the DPI model.

3.3. Compensation Results

To test the performance of the feedforward controller deploying the inverse model, a 1
Hz sinusoidal signal with fixed amplitude xd(t) = 140 sin(2π(kTs − 0.25)) + 219.45 is used
as the control input, where Ts is the sampling time with 0.005 s. The response of the system
is measured using the PI, MPI, and the DPI model, respectively. The compensation results
are shown in Figure 6.

To further test the performance of the feedforward controller with different magnitudes
deploying the inverse model, a 1 Hz sinusoidal signal with gradually changing amplitudes
xd(k) = A sin(2πkTs) + 219.45 is used as the control input and the response of the system
is measured using the PI, MPI, and the DPI model, respectively. The value of A can be
obtained using (33). The compensation results are shown in Figure 7.
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A =


14kTs, k ∈ Z[0,2000],
140, k ∈ Z[2001,2200],
14(4200− k)Ts, k ∈ Z[2201,4200].

(33)
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Figure 6. Compensation results at a fixed amplitude using the PI, MPI, and the DPI model, respec-
tively, the dashed line represents the desired position while the solid line represents the measured
actual position. (a) Compensation results at a fixed amplitude using the PI model. (b) Compensation
results at a fixed amplitude using the MPI model. (c) Compensation results at a fixed amplitude
using the DPI model.

The compensation results at fixed and varying amplitudes using the PI, MPI, and DPI
models are summarized in Table 2. The measured position after compensation is compared
to the desired position to calculate the root mean squared error (RMSE). As shown in the
table using the PI model to compensate for the asymmetric hysteresis at a fixed amplitude
the error is 15.19 µm, while using the MPI model the RMSE is 3.77 µm, with a reduction
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of 75 percent. Using the DPI model the error can be further reduced to 1.75 µm, with a
reduction of 53% compared to the RMSE using the MPI model.
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Figure 7. Compensation results at changing amplitudes sinusoidal wave using the PI, MPI and
the DPI model, respectively. (a) Compensation results at changing amplitudes using the PI model.
(b) Compensation results at changing amplitudes using the MPI model. (c) Compensation results at
changing amplitudes using the DPI model.

Table 2. Compensation experimental results.

RMSE (µm) RMSE / p-p ampl.(%) Max Error (µm)

Fixed Changing Fixed Changing Fixed Changing

PI 15.19 7.50 5.42% 2.70% 32.66 19.90

MPI 3.77 2.51 1.35% 0.90% 7.64 9.74

DPI 1.75 1.76 0.62% 0.63% 3.80 6.56
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The DPI model also performs the best of the three for compensation of the asym-
metric system hysteresis at a changing amplitude, using the DPI model the RMSE is
1.75 µm, with a reduction of 30% compared to the RMSE using the MPI model which is
2.51 µm. The MPI model reduces the error by 66% compared to the RMSE using the PI
model which is 7.50 µm. This validates that the proposed DPI model can capture the
details of the asymmetric system hysteresis and performs better than the existing MPI
model during compensation.

4. Discussion

The classical PI model has considerable error for modeling and compensation of
asymmetric hysteresis. The dead zone operators are proposed to extend the classical
PI model, but the MPI model still has the potential to be improved while modeling the
asymmetric system hysteresis. The DPI model is thus proposed to capture the details of
the asymmetric system hysteresis by modeling the expansion and the contraction curve
respectively. Validation experiments show that the DPI model performs better than the
classical PI model and the MPI model, and this proves that the proposed DPI model
is effective in modeling and compensating for the asymmetric system hysteresis. The
proposed DPI model can reduce the RMSE by around 30% compared to the MPI model,
and 76% compared to the PI model.

A similar digitized representation of the MPI model as described in [38] is also applied.
With the digitized representation, the inversion calculation can be greatly reduced which
may be ideal for some real-time applications.

While implementing the DPI model, the error in percentage at changing amplitudes
is slightly bigger than the fixed amplitude, this may be due to the model being sensitive to
the rate-dependent hysteresis behavior. Another possible reason is that the distribution
used in this paper is a weighted average distribution and a better-weighted strategy
may be applied. A training model using the neural networks may also be applied in
the future.

The aim of this paper is to propose a generalized model to describe the asymmetric
system hysteresis behavior. The DPI model can be further modified for different scenarios,
and the backlash can also be included in the model for some applications. The weighted
distribution of the observer for updating the fundamental operators may also be further
modified to fit different hysteresis behavior.

5. Conclusions

A dual-operators based modified Prandtl–Ishlinskii hysteresis model is presented
to model and compensate for the asymmetric hysteresis behavior of the piezo-actuated
flexure-based system. With a similar digitized representation, the inverse calculation can
be greatly simplified. Compared with the MPI model and the PI model, our model yields
significantly better experimental results.
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