Using Inertial and Physiological Sensors to Investigate the Effects of a High-Intensity Interval Training and Plyometric Program on the Performance of Young Judokas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Instruments
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Oliva-Lozano, J.M.; Martín-Fuentes, I.; Muyor, J.M. Validity and reliability of a new inertial device for monitoring range of motion at the pelvis during sexual intercourse. Int. J. Environ. Res. Public Health 2020, 17, 2884. [Google Scholar] [CrossRef]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.S. Validity and reliability of wearable sensors for joint angle estimation: A systematic review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef][Green Version]
- Oliva-Lozano, J.M.; Maraver, E.F.; Fortes, V.; Muyor, J.M. Kinematic analysis of the postural demands in professional soccer match play using inertial measurement units. Sensors 2020, 20, 5971. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Martín-Fuentes, I.; Muyor, J.M. Validity and reliability of an inertial device for measuring dynamic weight-bearing ankle dorsiflexion. Sensors 2020, 20, 399. [Google Scholar] [CrossRef][Green Version]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and dynamic reliability of WIMU PROTM accelerometers according to anatomical placement. J. Sports Eng. Technol. 2018, 233, 238–248. [Google Scholar] [CrossRef]
- Bu, B.; Haijun, H.; Yong, L.; Chaohui, Z.; Xiaoyuan, Y.; Singh, M.F. Effects of martial arts on health status: A systematic review. J. Evid. Based Med. 2010, 3, 205–219. [Google Scholar] [CrossRef]
- Pocecco, E.; Ruedl, G.; Stankovic, N.; Sterkowicz, S.; del Vecchio, F.B.; Gutiérrez-García, C.; Rousseau, R.; Wolf, M.; Kopp, M.; Miarka, B. Injuries in judo: A systematic literature review including suggestions for prevention. Br. J. Sports Med. 2013, 47, 1139–1143. [Google Scholar] [CrossRef][Green Version]
- Soto, D.; Aedo-Muñoz, E.; José Brito, C.; Miarka, B. Comparisons of motor actions and biomechanical assessments of judo techniques between female weight categories. J. Hum. Kinet. 2020, 75, 247–255. [Google Scholar] [CrossRef]
- Franchini, E.; del Vecchio, F.B.; Matsushigue, K.A.; Artioli, G.G. Physiological profiles of elite judo athletes. Sports Med. 2011, 41, 147–166. [Google Scholar] [CrossRef]
- Suetake, V.Y.B.; Franchini, E.; Saraiva, B.T.C.; da Silva, A.K.F.; Bernardo, A.F.B.; Gomes, R.L.; Vanderlei, L.C.M.; Christofaro, D.G.D. Effects of 9 months of martial arts training on cardiac autonomic modulation in healthy children and adolescents. Pediatr. Exerc. Sci. 2018, 30, 487–494. [Google Scholar] [CrossRef]
- Giordano, G.; Gómez-López, M.; Alesi, M. Sports, Executive functions and academic performance: A comparison between martial arts, team sports, and sedentary children. Int. J. Environ. Res. Public Health 2021, 18, 11745. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.R.; McClelland, M.M.; Geldhof, G.J.; Gunter, K.B.; MacDonald, M. Open-skilled sport, sport intensity, executive function, and academic achievement in grade school children. Early Educ. Dev. 2018, 29, 939–955. [Google Scholar] [CrossRef]
- Milligan, K.; Cosme, R.; Wolfe Miscio, M.; Mintz, L.; Hamilton, L.; Cox, M.; Woon, S.; Gage, M.; Phillips, M. Integrating mindfulness into mixed martial arts training to enhance academic, social, and emotional outcomes for at-risk high school students: A qualitative exploration. Contemp. Sch. Psychol. 2017, 21, 335–346. [Google Scholar] [CrossRef]
- Rodríguez, L.; Prieto Saborit, J.A.; González Díez, V. Descripción de diversos test para la valoración de la condición física en judo. Rev. De Artes Marciales Asiáticas 2012, 3, 46–59. [Google Scholar] [CrossRef]
- Sterkowicz, S.; Franchini, E. The special judo fitness test. Antropomotoryka 1995, 12, 29–44. [Google Scholar]
- Rodríguez, C.; Hernández-García, R.; Robles, C.; Torres-Luque, G. Validación del special judo fitness test con la técnica tokui waza. Estudio piloto. SPORT TK Rev. EuroAm. Cienc. Deporte 2016, 5, 9–14. [Google Scholar] [CrossRef][Green Version]
- Castanerlas, J.L.; Planas, A. Study of temporal structure in judo contest. Apunts. Educ. Física Deportes 1997, 47, 32–39. [Google Scholar]
- Van Malderen, K.; Jacobs, C.; Ramon, K.; Zinzen, E.; Deriemaeker, P.; Clarys, P. Time and technique analysis of a judo fight: A comparison between males and females. In Book of Abstracts of the 11th Annual Congress of the European College of Sport Sciences; Vrije University Brussel Press: Stockholm, Sweden, 2009; p. 101. [Google Scholar]
- Sterkowicz-Przybycień, K.; Fukuda, D.H.; Franchini, E. Meta-analysis to determine normative values for the special judo fitness test in male athletes: 20+ years of sport-specific data and the lasting legacy of stanisław sterkowicz. Sports 2019, 7, 194. [Google Scholar] [CrossRef][Green Version]
- Boguszewska, K.; Boguszewski, D.; Buśko, K. Special judo fitness test and biomechanics measurements as a way to control of physical fitness in young judoists. Arch. Budo Sci. Martial Arts. 2010, 6, 205–209. [Google Scholar]
- Katralli, J.; Goudar, S.S. Anthropometric profile and special judo fitness levels of indian judo players. Asian J. Sports Med. 2012, 3, 113. [Google Scholar] [CrossRef][Green Version]
- Imamura, R.T.; Hreljac, A.; Escamilla, R.F.; Edwards, W.B. A three-dimensional analysis of the center of mass for three different judo throwing techniques. J. Sports Sci. Med. 2006, 5, 122–131. [Google Scholar] [PubMed]
- Okoroha, K.R.; Lizzio, V.A.; Meta, F.; Ahmad, C.S.; Moutzouros, V.; Makhni, E.C. Predictors of elbow torque among youth and adolescent baseball pitchers. Am. J. Sports Med. 2018, 46, 2148–2153. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Barbosa, T.M.; Forte, P.; Silva, A.J.; Marinho, D.A. Young swimmers’ anthropometrics, biomechanics, energetics, and efficiency as underlying performance factors: A systematic narrative review. Front. Physiol. 2021, 12, 1485. [Google Scholar] [CrossRef] [PubMed]
- Kons, R.L.; da Silva Athayde, M.S.; da Silva Junior, J.N.; Katcipis, L.F.G.; Detanico, D. Predictors of judo-specific tasks from neuromuscular performance in young athletes aged 11–16 years. Int. J. Sports Phys. Ther. 2020, 15, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Detanico, D.; Dal Pupo, J.; Franchini, E.; Giovana dos Santos, S. Relationship of aerobic and neuromuscular indexes with specific actions in judo. Sci. Sports 2012, 27, 16–22. [Google Scholar] [CrossRef]
- Da Silva, L.; Neto, N.; Lopes-Silva, J.; Leandro, C.; Silva-Cavalcante, M. Training protocols and specific performance in judo athletes: A systematic review. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Panissa, V.L.G.; Julio, U.F.; Franchini, E. Influence of physical fitness on special judo fitness test performance: A multiple linear regression analysis. J. Strength Cond. Res. 2021, 35, 1732–1738. [Google Scholar] [CrossRef]
- Miarka, B.; del Vecchio, F.B.; Franchini, E. Acute effects and postactivation potentiation in the special judo fitness test. J. Strength Cond. Res. 2011, 25, 427–431. [Google Scholar] [CrossRef][Green Version]
- Franchini, E.; Julio, U.F.; Gonçalves Panissa, V.L.; Lira, F.S.; Agostinho, M.F.; Branco, B.H.M. Short-term low-volume high-intensity intermittent training improves judo-specific performance. J. Sci. Med. Sport 2017, 20, 116–128. [Google Scholar] [CrossRef]
- Sole, S.; Ramírez-Campillo, R.; Andrade, D.C.; Sanchez-Sanchez, J. Plyometric jump training effects on the physical fitness of individual-sport athletes: A systematic review with meta-analysis. PeerJ 2021, 9, e11004. [Google Scholar] [CrossRef]
- Versteegh, T.H.; Dickey, J.P.; Emery, C.A.; Fischer, L.K.; Macdermid, J.C.; Walton, D.M. Evaluating the effects of a novel neuromuscular neck training device on multiplanar static and dynamic neck strength: A pilot study. J. Strength Cond. Res. 2020, 34, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Lum, D. Effects of various warm-up protocol on special judo fitness test performance. J. Strength Cond. Res. 2019, 33, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Casals, C.; Huertas, J.R.; Franchini, E.; Sterkowicz-Przybycién, K.; Sterkowicz, S.; Gutiérrez-García, C.; Escobar-Molina, R. Special judo fitness test level and anthropometric profile of elite spanish judo athletes. J. Strength Cond. Res. 2017, 31, 1229–1235. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge, Taylor & Francis eBooks: New York, NY, USA, 2013; pp. 499–500. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the european college of sport science (ECSS) and the american college of sports medicine (ACSM). Eur. J. Sport Sci. 2012, 13, 1–24. [Google Scholar] [CrossRef][Green Version]
- Bridge, C.A.; Ferreira Da Silva Santos, J.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- Aquino, M.; Petrizzo, J.; Otto, R.M.; Wygand, J. The impact of fatigue on performance and biomechanical variables—A narrative review with prospective methodology. Biomechanics 2022, 2, 513–524. [Google Scholar] [CrossRef]
- Ament, W.; Verkerke, G. Exercise and fatigue. Sports Med. 2012, 39, 389–422. [Google Scholar] [CrossRef]
- Li, F.; Rupčić, T.; Knjaz, D. The effect of fatigue on kinematics and kinetics of basketball dribbling with changes of direction. Kinesiology 2021, 53, 296–308. [Google Scholar] [CrossRef]
- Belcic, I.; Rodić, S.; Dukarić, V.; Rupčić, T.; Knjaz, D. Do blood lactate levels affect the kinematic patterns of jump shots in handball? Int. J. Environ. Res. Public Health 2021, 18, 10809. [Google Scholar] [CrossRef]
- Sant’Ana, J.; Franchini, E.; da Silva, V.; Diefenthaeler, F. Effect of fatigue on reaction time, response time, performance time, and kick impact in taekwondo roundhouse kick. Sports Biomech. 2016, 16, 201–209. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Wang, W. 3D human motion editing and synthesis: A survey. Comput. Math. Methods Med. 2014, 2014, 104535. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koshida, S.; Ishii, T.; Matsuda, T.; Hashimoto, T. Kinematics of judo breakfall for osoto-gari: Considerations for head injury prevention. J. Sports Sci. 2017, 35, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Vacca, L.; Rosso, V.; Gastaldi, L. Risk assessment in different judo techniques for children and adolescent athletes. Proc. Inst. Mech. Eng. H. 2020, 234, 686–696. [Google Scholar] [CrossRef]
- Ishii, T.; Ae, M.; Suzuki, Y.; Kobayashi, Y. Kinematic comparison of the seoi-nage judo technique between elite and college athletes. Sports Biomech. 2018, 17, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Sterkowicz-Przybycień, K.L.; Fukuda, D.H. Establishing normative data for the special judo fitness test in female athletes using systematic review and meta-analysis. J. Strength Cond. Res. 2014, 28, 3585–3593. [Google Scholar] [CrossRef] [PubMed]
- Giudicelli, B.B.; Luz, L.G.O.; Sogut, M.; Massart, A.G.; Júnior, A.C.; Figueiredo, A.J. Bio-banding in judo: The mediation role of anthropometric variables on the maturation effect. Int. J. Environ. Res. Public Health 2020, 17, 361. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kato, S.; Yamagiwa, S. Statistical extraction method for revealing key factors from posture before initiating successful throwing technique in judo. Sensors 2021, 21, 5884. [Google Scholar] [CrossRef]
- Kato, S.; Yamagiwa, S. Predicting successful throwing technique in judo from factors of kumite posture based on a machine-learning approach. Computation 2022, 10, 175. [Google Scholar] [CrossRef]
- Breen, M.; Reed, T.; Breen, H.M.; Osborne, C.T.; Breen, M.S. Integrating wearable sensors and video to determine microlocation-specific physiologic and motion biometrics-method development for competitive climbing. Sensors 2022, 22, 6271. [Google Scholar] [CrossRef]
- Blanco Ortega, A.; Isidro Godoy, J.; Szwedowicz Wasik, D.S.; Martínez Rayón, E.; Cortés García, C.; Ramón Azcaray Rivera, H.; Gómez Becerra, F.A. Biomechanics of the upper limbs: A review in the sports combat ambit highlighting wearable sensors. Sensors 2022, 22, 4905. [Google Scholar] [CrossRef]
- Kostrzewa, M.; Laskowski, R.; Wilk, M.; Błach, W.; Ignatjeva, A.; Nitychoruk, M. Significant predictors of sports performance in elite men judo athletes based on multidimensional regression models. Int. J. Environ. Res. Public Health 2020, 17, 8192. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Delleli, S.; Chtourou, H.; Selmi, O.; Bouassida, A.; Bouhlel, E.; Franchini, E. Diurnal Variation of specific tests’ performance and related psychological aspects in young judo athletes. Res. Q. Exerc. Sport 2022, 13, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Ambrozy, T.; Cynarski, W.J.; Czarny, W.; Błach, W.; Cetini´c, M.C.; Dukari´cdukari´c, V.; Segedi, I.; Rupči´c, T.R.; Serti´c, H.S. Defining the influence of fatigue protocol on kinematic parameters of ippon seoi nage. Appl. Sci. 2022, 12, 9269. [Google Scholar] [CrossRef]
- Pucsok, J.M.; Nelson, K.; Ng, E.D. A Kinetic and kinematic analysis of the harai-goshi judo technique. Acta Physiol. Hung. 2001, 88, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Imamura, R.; Johnson, B. A kinematic analysis of a judo leg sweep: Major outer leg reap-osoto-gari. Sports Biomech. 2003, 2, 191–201. [Google Scholar] [CrossRef] [PubMed]
Exercise | Volume |
---|---|
Jogging | 5 min |
Stretching | 5 min |
Break fall drills (Front, back, side, and rolling) | 5 repetitions each |
Uchikomi (throwing drills) | 1 × 10 repetitions |
Rapid Uchikomi Ippon-Seoi-Nage | 1 × 10 repetitions |
Power Uchikomis Ippon-Seoi-Nage | 1 × 5 repetitions |
Nagekomi (practice throw) | 1 × 5 repetitions |
Vertical jump (before individual test) | 2 × 4 repetitions |
Horizontal jump (before individual test) | 1 × 4 repetitions |
Group | Variable | Pre-Test (Mean ± SD) | Post-Test (Mean ± SD) | Mean Differences (Mean ± SD) | p | d by Cohen |
---|---|---|---|---|---|---|
Experimental | SJFT (score) | 22.27 ± 2.73 | 19.65 ± 1.70 | 2.61 ± 2.01 | 0.00 | 0.61 |
Control | 20.66 ± 2.09 | 20.27 ± 2.69 | 0.3878 ± 2.43 | 0.53 | 0.00 |
Group | Variable | Pre-Test (Mean ± SD) | Post-Test (Mean ± SD) | Mean Differences (Mean ± SD) | p | d by Cohen |
---|---|---|---|---|---|---|
Experimental | Angular velocity on the X-axis (o/s) | 320.87 ± 51.15 | 356.50 ± 40.47 | 35.62 ± 31.98 | 0.00 | 0.45 |
Angular velocity on the Y-axis (o/s) | 259.40 ± 41.99 | 288.02 ± 65.12 | 28.62 ± 44.71 | 0.02 | 0.31 | |
Control | Angular velocity on the X-axis (o/s) | 303.26 ± 43.85 | 297.71 ± 38.10 | 5.54 ± 20.28 | 0.29 | 0.00 |
Angular velocity on the Y-axis (o/s) | 241.33 ± 44.69 | 242.56 ± 36.65 | 1.23 ± 49.16 | 0.92 | 0.00 |
Axis | Group | Variable | Pre-Test (Mean ± SD) | Post-Test (Mean ± SD) | Mean Differences (Mean ± SD) | p | d by Cohen |
---|---|---|---|---|---|---|---|
X | Experimental | Angular velocity (o/s): R1 | 333.24 ± 62.33 | 368.66 ± 47.98 | 35.42 ± 11.71 | 0.08 | 0.30 |
Angular velocity (o/s): R2 | 320.83 ± 56.95 | 355.59 ± 43.89 | 34.76 ± 9.22 | 0.01 | 0.40 | ||
Angular velocity (o/s): R3 | 308.54 ± 46.18 | 345.23 ± 48.10 | 36.69 ± 9.59 | 0.01 | 0.31 | ||
Control | Angular velocity (o/s): R1 | 313.55 ± 51.16 | 308.14 ± 51.64 | 5.41 ± 11.71 | 1.00 | 0.00 | |
Angular velocity (o/s): R2 | 300.01 ± 50.53 | 298.06 ± 33.59 | 1.95 ± 9.22 | 1.00 | 0.00 | ||
Angular velocity (o/s): R3 | 296.20 ± 46.48 | 286.95 ± 36.71 | 9.26 ± 9.59 | 1.00 | 0.00 | ||
Y | Experimental | Angular velocity (o/s): R1 | 271.40 ± 53.69 | 303.50 ± 53.69 | 32.09 ± 14.95 | 0.60 | 0.36 |
Angular velocity (o/s): R2 | 262.17 ± 50.83 | 281.19 ± 68.13 | 19.02 ± 12.71 | 1.00 | 0.10 | ||
Angular velocity (o/s): R3 | 244.63 ± 38.39 | 279.39 ± 66.41 | 34.75 ± 14.30 | 0.32 | 0.31 | ||
Control | Angular velocity (o/s): R1 | 234.43 ± 60.22 | 245.37 ± 49.33 | 10.94 ± 14.95 | 1.00 | 0.00 | |
Angular velocity (o/s): R2 | 249.22 ± 46.00 | 240.30 ± 36.83 | 8.93 ± 12.71 | 1.00 | 0.00 | ||
Angular velocity (o/s): R3 | 240.35 ± 41.47 | 260.71 ± 55.97 | 1.68 ± 14.30 | 1.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mañas-Paris, A.; Muyor, J.M.; Oliva-Lozano, J.M. Using Inertial and Physiological Sensors to Investigate the Effects of a High-Intensity Interval Training and Plyometric Program on the Performance of Young Judokas. Sensors 2022, 22, 8759. https://doi.org/10.3390/s22228759
Mañas-Paris A, Muyor JM, Oliva-Lozano JM. Using Inertial and Physiological Sensors to Investigate the Effects of a High-Intensity Interval Training and Plyometric Program on the Performance of Young Judokas. Sensors. 2022; 22(22):8759. https://doi.org/10.3390/s22228759
Chicago/Turabian StyleMañas-Paris, Adrián, José M. Muyor, and José M. Oliva-Lozano. 2022. "Using Inertial and Physiological Sensors to Investigate the Effects of a High-Intensity Interval Training and Plyometric Program on the Performance of Young Judokas" Sensors 22, no. 22: 8759. https://doi.org/10.3390/s22228759