
Citation: Arafin, P.; Issa, A.; Billah,

A.H.M.M. Performance Comparison

of Multiple Convolutional Neural

Networks for Concrete Defects

Classification. Sensors 2022, 22, 8714.

https://doi.org/10.3390/s22228714

Academic Editor: Stefano Mariani

Received: 24 October 2022

Accepted: 9 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Performance Comparison of Multiple Convolutional Neural
Networks for Concrete Defects Classification
Palisa Arafin 1, Anas Issa 2,* and A. H. M. Muntasir Billah 3,*

1 Department of Civil Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
2 Civil and Environmental Engineering Department, United Arab Emirates University,

Al Ain P.O. Box 17551, Abu Dhabi, United Arab Emirates
3 Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
* Correspondence: aissa@uaeu.ac.ae (A.I.); abuhena.billah@ucalgary.ca (A.H.M.M.B.)

Abstract: Periodical vision-based inspection is a principal form of structural health monitoring (SHM)
technique. Over the last decades, vision-based artificial intelligence (AI) has successfully facilitated an
effortless inspection system owing to its exceptional ability of accuracy of defects’ pattern recognition.
However, most deep learning (DL)-based methods detect one specific type of defect, whereas DL
has a high proficiency in multiple object detection. This study developed a dataset of two types of
defects, i.e., concrete crack and spalling, and applied various pre-built convolutional neural network
(CNN) models, i.e., VGG-19, ResNet-50, InceptionV3, Xception, and MobileNetV2 to classify these
concrete defects. The dataset developed for this study has one of the largest collections of original
images of concrete crack and spalling and avoided the augmentation process to replicate a more
real-world condition, which makes the dataset one of a kind. Moreover, a detailed sensitivity analysis
of hyper-parameters (i.e., optimizers, learning rate) was conducted to compare the classification
models’ performance and identify the optimal image classification condition for the best-performed
CNN model. After analyzing all the models, InceptionV3 outperformed all the other models with an
accuracy of 91%, precision of 83%, and recall of 100%. The InceptionV3 model performed best with
optimizer stochastic gradient descent (SGD) and a learning rate of 0.001.

Keywords: structural health monitoring; concrete defects; deep learning; convolutional neural
network; performance comparison; sensitivity analysis

1. Introduction

Structural safety, reliability, and uninterrupted performance are vital concerns for
maintaining the proper serviceability of any infrastructure. In today’s world, concrete is
the most widely used construction material. However, structural health is highly disrupted
due to the extreme environmental effect. Hence it is crucial to develop a systematical
inspection system to maintain the structure’s serviceable condition. Furthermore, with the
increasing number of aging infrastructures, frequent inspections are required to inspect
the inherent damages and infer the potential causes of these damages, which provides
essential guidance on structural assessment. Conventionally the site reconnaissance mostly
depends on manual investigation, which is costly and labor-intensive. Moreover, this
manual detection and identification of defects are time-consuming and subjective [1,2].
More importantly, the performance of the quantitative inspection of defects significantly
depends on the inspector’s technical skill and experience. Therefore, an automatic concrete
defects identification system with pre-built standards is highly recommended for efficient
and objective defects assessment.

1.1. Prior Studies

Considering these shortcomings of the traditional visual inspection system, many
researchers have introduced computer vision-based defects-identifying systems such as
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Image processing techniques (IPTs). Some of the most widely known approaches to
IPTs for defects detection are the thresholding-based approach [3–6], and morphological
methods [7,8]. The thresholding method converts an image into a binary image from color
or grayscale image. Unfortunately, the performance of IPTs is negatively affected by lighting
conditions and background obstructions of the images [9]. Therefore, to further improve the
damage detection methods, some researchers have worked on combining Machine learning
(ML) approaches with IPTs. Some of the previous studies included IPTs, the ML method
(i.e., Support vector machine), and neural networks to categorize the damage features from
other features [10,11]. Ref. [12] studied three unique principal component analysis (PCA)
methods while working on automatic crack extraction in concrete structures.

Recently, the DL-based detection process has become popular for its automatic and
optimized feature extraction potentiality [13]. Moreover, DL can analyze a large amount of
data simultaneously with multiple categorizations, which facilitated damage evaluation in
the SHM system [14]. In the context of SHM, DL techniques are implemented in the damage
detection of infrastructure in three steps: classification, localization, and segmentation. DL
has several techniques, such as deep belief networks (DBNs), recurrent neural networks
(RNNs), encoder–decoder models, and convolutional neural networks (CNNs). CNNs
have shown efficacy for defect detection purposes [15]. A CNN-based DL method was
developed to detect concrete cracks by [16,17] and other defects by [18]. The CNN model
has different algorithms based on the depth and width of the learning layers. Researchers
continuously explore various CNN algorithms to develop an effective damage assessment
model, such as VGGNet [19], ResNet [20], and Inception [21] models are used for damage
pattern recognition and detection process. The authors of [22] compared three neural
networks, AlexNet, VGGNet13, and ResNet18, to identify the concrete cracks and crack-free
surfaces, with images of 227 × 227 pixels. The models were trained with 10,000 cracks and
10,000 crack-free images and obtained an accuracy of 97.6%, 98.3%, and 98.8%, respectively.
This study used the data augmentation to create the 10,000 crack images database from
2000 original images. In the study of [23], AlexNet- and GoogLeNet-based models were
used to identify the brick crack, spalling, and efflorescence. They used 1466, 1830, 865, and
984 original images of intact brick, crack, spalling, and efflorescence, respectively. Both
models had an accuracy of over 90%. In another research, [24] compared five different
types of base algorithms, VGGNet, ResNet, DenseNet, Inception, and MobileNet to identify
the crack images of masonry surfaces. The dataset contained 351 images of cracks and
118 without any cracks and had a resolution of 224 × 224 pixels. The implementation
of transfer learning brought a significant boost in the model’s performance, and with an
accuracy of 95.3%, MobileNet outperformed all the other models. In a recent study of
crack identification, [25] extensively analyzed the performance of transfer learning of pre-
trained CNN models. This study also built a modified Dempster–Shafer (D–S) algorithm to
improve the crack detection accuracy while proving robustness with images that contained
various types of and intensities of noises.

1.2. Reserarch Objective and Contribution

Although DL approaches have proved to be exceedingly successful in image classifica-
tion and automatic feature extraction, the in-depth review of prior studies has shown some
existing limitations, only a few studies have worked with multiple damage detection. In
contrast, multiple detections are essential to comprehend the actual scenario of damage
condition of any structure. Even though some studies have worked with different types
of damages [26,27], the image dataset is minimal for some cases, i.e., spalling, and rebar
exposure. Moreover, most prior research lacks multiple CNN model analyses and detailed
sensitivity analyses of hyper-parameters. A comprehensive comparison of the different
CNN models’ performance based on a variety of hyper-parameters can provide a good
understanding of how a well-tuned model can help build an automatic DL-based damage
classification model. Considering the challenges above, this study outlined some specific
improvements for all these challenges: (a) Building a large dataset of labelled images for
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two different types of defects representing the diversity of the defects’ physical parameters
and image architectures. For CNN models, the successful completion of pattern recognition
and object detection highly depends on a comprehensive and diverse dataset. Previously,
most of researchers have developed and validated the CNN techniques with a limited
quantity and defect-targeted images which do not replicate the real-time environmental
exposure. In actual circumstances, it is highly unfavorable to collect images without any
background noises because of the significant uncertainty in locations, lighting condition,
and contents. This study collected defect images from various sources including actual
industrial inspection reports (courtesy to TBT Engineering), web-based resources, and pre-
developed datasets by other researchers. One of the primary focuses of this study is to build
a comparative dataset collecting images from various resources to imitate the real structural
site conditions. (b) Avoiding augmented images for the developed damage classification
algorithm is another improvement. Augmented images are avoided as the augmented
dataset can provide a false presentation of good performance with a specific dataset. At
the same time, the models do not achieve a successful evaluation in real-world application.
(c) Performing a detailed sensitivity analysis to identify optimized hyper-parameters for
CNN classifiers and segmentation models is the final improvement. This study analyzes
different pre-built CNN models for defect classification and segmentation. Moreover, the
hyper-parameters are tuned during the training process to achieve an optimized CNN
model. For sensitivity analysis, different types of hyper-parameters are selected and im-
plemented in the CNN models to find the best-tuned hyper-parameters values for defects
classification and detection.

2. Methodology

For defect classification, CNN models analyze the image pixel’s spectral information
and classify the pixels into multiple classes. In this study, two different types of concrete
defects are considered: (a) concrete crack and (b) concrete spalling. For the identification
of these defects, the overall procedure is divided into three sections: (a) data processing,
(b) CNN models training and tuning, and (c) trained model’s performance evaluation.
A schematic diagram of the work flow followed in this study for defect identification is
shown in Figure 1. From Figure 1, the CNN classification process is initialized with a data
process which includes defects type selection, data acquisition from various resources, and
image processing. Image processing indicates converting general image resolution into
desired resolution and splitting the dataset for training and testing purposes. Once the data
processing is completed, the defect images are used as input for CNN classifier models. In
the CNN implementation stage, different parameters and hyper-parameters are trained
and tuned to achieve the best performance from the models. Finally, at the evaluation stage
the trained model is evaluated based on a few evaluation matrices and validated with a
test dataset to check prediction accuracy.

2.1. Building Defects Database

A well-organized dataset containing quality and quantity is highly recommended for
achieving a robust performance from any CNN model. According to [28], CNN models
can achieve better test accuracy with a more extensive training dataset. While a larger
dataset positively impacts the model’s performance, the dataset should have high-quality
images representing real-world environmental conditions: Images with background noises,
including surface roughness (i.e., scaling, edges, and holes), lighting condition, background
debris, etc. The authors of [29] found that the quality and quantity of the dataset signif-
icantly influence the performance of the CNN model, and the low-quality images affect
the models’ potentiality. In another study, ref. [16] tested a CNN model with a dataset of
targeted and noise-free images. They subsequently tested it with a dataset of rough surface
images and found that the model’s precision decreased from 87.4% to 23.1%.
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2.1.1. Data Preparation

In this study, concrete cracks and spalling are considered for defect types. One of
the primary focuses of this study is to build a comparative dataset by collecting images
from various resources to imitate the actual structural site conditions. Firstly, defect images
were collected from actual infrastructure inspection reports executed by a local industry
partner, TBT Engineering. These images served as an exact replication of an actual event
that occurred at defected structure site. However, the number of images collected from the
inspection reports is inadequate to run a successful DL-based automated defect condition
assessment project. Therefore, this study took advantage of the online resources to deal with
the challenges mentioned above, as some previous studies also explored DL applications
in concrete defect identification. Part of the concrete crack and spalling images were
retrieved from a freely available annotated dataset created by [30]. Apart from these
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sources, some images were collected from open-source online sources and experimental
test results conducted on concrete members. Finally, a dataset of 4087 crack images and
1100 spalling images was developed for this study (Figure 2). A few data samples of crack
and spalling images are presented in Figure 3. The developed dataset has a wide range
of defects characteristics, such as different areas, lengths, widths, and shapes, including
horizontal, vertical, and zigzag shapes on the various concrete surface. These realities in
defect area and shape are meant to aid the CNN models in learning the versatile patterns of
the defects to make a more accurate prediction with untrained images. Referencing Table 1,
it can be stated that most studies have used the data augmentation process to create a big
dataset from the original dataset. To the author’s best knowledge, the proposed dataset in
this study is one of the most extensive datasets of both concrete defects without applying
any image augmentation process.
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Table 1. Dataset comparison of prior studies and current study.

Reference Original Dataset Size Defects Type Data Augmentation

[13] 808 cracks, 86 non-cracks Crack or non-crack No

[22] 2000 cracks (road and bridge) Crack or non-crack Yes

[24] 351 cracks
118 non-cracks (masonry) Crack or non-crack Yes

[2] 1800 cracks Crack or non-crack No

[31] 1184 cracks (pavement) Different types of cracks Yes

Proposed dataset 4087 cracks, 1100 spalling Crack and spalling No

2.1.2. Data Processing

Since the images are collected from multiple sources, the image properties are different
for the entire dataset. At first, the image resolutions are unified by converting all the
images into a resolution of 224 × 224 pixels. Then, the entire dataset is randomly divided
into input and testing images for a model’s learning process. The input dataset is used
to train and develop a prediction model, whereas the function of the testing dataset is
to determine the model’s prediction accuracy. The input images have two components:
the training dataset and the validation dataset. While the training dataset was used for
the learning process, the validation dataset offers an unbiased evaluation of the training
dataset by subsequently tuning the hyper-parameters. Conventionally, while splitting the
entire dataset, the input dataset is considered to have a more significant portion of images,
while the rest was used for testing purposes. However, there is no universal approach to
dataset splitting ratio. For instance, most of the researchers [2,32,33] have considered an
80–20% train–test split ratio for their CNN models. On the other hand, ref. [34] adopted
70% of the entire dataset as a training and validation dataset and the rest of the 30% as
a test dataset. The authors of [35] divided the dataset into a 60–40% ratio to use 60%
as input images and 40% for evaluating the models. As the crack and spalling datasets
have a big difference in size, this study decided to use the maximum images for training
and validation purposes for the CNNs classification and split the dataset into 70–20–10%
ratios for training, validation, and testing purposes. Table 2 presents the summary of data
distribution for train, validation, and testing. From the Table 2 it is evident that there is data
imbalance between concrete cracks and spalling images. However, as crack and spalling
have a very distinguishable features (i.e., defect area and shape) CNN models can easily
identify the differences between the defects.

Table 2. Image distribution for classification CNNs.

Defect Classes Total Train Dataset Validation Dataset Test Dataset

Crack 4087 2861 (70%) 817 (20%) 409 (10%)
Spalling 1100 770 (70%) 220 (20%) 110 (10%)

2.2. CNN Classifier Model Configuration

In the vision-based DL process, deep neural networks learn the features from the
dataset by tuning a group of parameters and later on transferring these attributes to solve
novel tasks. This phenomenon of transferring the learned data to a new model is referred to
as transfer learning. In practical use, transfer learning uses the pre-learned elements from a
trained model to initialize the training process of a new DL model. This can be considered
as a less resource-intensive approach as the new models do not have to start training from
scratch. To consider the pre-trained models for new tasks, usually the original model
should have a certain amount of better generalization adaptability to perform satisfactorily
with new unseen data [36]. In general, a novel CNN model requires analyzing a large
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amount of data resulting in training a few million parameters. However, these training
parameters can reduce sizes by implementing a transfer learning process.

In this study, five different CNN classifiers are considered: (a) VGG19, (b) ResNet50,
(c) InceptionV3, (d) Xception, and (e) MobileNetV2. One of the main reasons behind choos-
ing these five models is that after analyzing the previous studies, it was perceived that these
models have a consistent difference in their trainable layers and performance potentiality.
For example, while the VGG-19, followed by ResNet-50, has the lowest trainable layers,
they have shown acceptable performance prospects with their unique architecture. As
MobileNetV2 was built to perform faster in a mobile application system, this model is
considered in this study to evaluate the model’s damage identification performance if the
model is implemented in a mobile application. Moreover, InceptionV3 and Xception have
many trainable layers, which helped this study comprehend the variation in model perfor-
mance with a change in trainable layers. The algorithms of these networks were developed
using Keras applications [37]. Keras application includes the pre-built DL models, which
can be used for training the model and making the prediction. For the coding language,
Python is used backend by TensorFlow. After building the CNN classifier application, the
model simulations are run using Google Collaboratory.

2.2.1. VGG-19

In 2015, [19] proposed the VGG-16 and VGG-19 models and analyzed the effect of the
depth of the CNN model for the classification purpose. VGG-19 consists of 19 layers with
convolutional layers, pooling layers, fully connected layers, and a softmax layer. There are
two distinctive characteristics of the VGG network: (a) the filter size remains the same for
all the feature map sizes, and (b) using the max-pooling function the feature map size is
reduced to half, and the number of filters obtained is doubled.

2.2.2. ResNet-50

ResNet was first introduced by [20] where they described a residual learning algo-
rithm with the advantage of going deeper without encountering performance degradation.
ResNet was also proved effective in solving the problem with vanishing gradient descent
by decreasing the error within the deeper layer. In each layer of the convolutional layer, a
residual learning block was added, which worked as a “skip connection”.

2.2.3. Inception

The Inception model was first introduced by [21] and showed remarkable performance
on the ImageNet Visual Recognition Challenge (2014). This model was once regarded as the
state-of-the-art deep learning model for its noteworthy performance in image recognition
and detection. The main objective of this model is to connect the model sparsely, replacing
the fully connected networks of the convolutional layers. The sparsely connected network
is the core concept of the inception layer.

2.2.4. Xception

The basic concept of Xception is based on the Inception and refers to “extreme incep-
tion”. However, Xception works in a reverse compared with Inception. Firstly, Xception
applies the filters on each depth map, and a 1 × 1 convolution is used to compress the input
space across the depth. Another notable difference between the Inception and Xception
model is the presence of non-linearity. Inception uses non-linearity throughout all its oper-
ations, followed by ReLu non-linearity; however, Xception avoids any type of non-linearity
in its architecture.

2.2.5. MobileNetV2

This model takes a unique approach called depthwise separable convolutions to build
a lightweight neural network. In practice, using the depthwise separable convolutions,
MobileNet significantly reduces its quantity of the learnable parameters making the model
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smaller and faster. This unique convolution works in two steps: (a) depthwise convolution
and (b) pointwise convolution. In depthwise convolution, the filters’ depth and spatial
dimension (input channel) are separated, and a single filter is applied for each input
channel. Finally, the pointwise convolution, a 1 × 1 convolution, combines the outputs of
the depthwise convolution.

2.3. Sensitivity Analysis of Hyper-Parameters

In this study, pre-trained ImageNet weights are considered to start the training
process of CNN models, followed by a continuous trial–error method to reach the op-
timized point of hyper-parameters. Then, a sensitivity analysis was performed to train the
hyper-parameters and find the best-performed models. This study considers a few hyper-
parameters, such as batch size, activation function, optimization function, loss function and
learning rates for sensitivity analysis. As [38] mentioned, these parameters are the most
critical parameters that guide the models toward optimized convergence. The details of
these hyper-parameters are presented in Table 3.

Table 3. Details of hyper-parameters.

Name of Parameters Value of Parameters

Batch Size (CNN classifiers) 10
Learning rate (CNN classifiers) 0.1, 0.001, 0.0001

Optimization function SGD, RMSprop
Activation function ReLu

Evaluation metrics threshold 0.5
Loss function (CNN classifiers) Binary cross-entropy

Pre-trained weights ImageNet
Callbacks Early stopping

Epoch 100

The feature extraction in DL is a nonlinear process and requires the application of
nonlinear functions called the activation function. In a neural network, the activation layer
uses an activation function (nonlinear) to navigate how the weighted sum of the input
transforms from nodes to output. In this study, Rectified Linear Activation (ReLu) function
(Figure 4) is used for all the CNN models, as shown in Equation (1). ReLu is a linear
function that provides output only if the input is positive; otherwise, the output is zero
meaning the neuron is deactivated. This provides advantages to computational efficiency
as not all the neurons are activated in one instance.

f(x) = max (0, x) (1)
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To update the model variables, it is crucial to calculate the derivation of the ground
truth and the prediction value. The function that calculates the derivation is referred to
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as the loss function. This study considers the binary cross-entropy (BCE) loss function for
the classification. BCE is a cross-entropy function used to choose between two choices (i.e.,
concrete crack and spalling). This loss function is usually considered to achieve prediction
by the sigmoid activation function. Cross-entropy (CE) is a pixel-wise loss function and
performed prominently for various object detection applications [39]. Moreover, using
this loss function in the CNN model provides the model the highest compatibility to be
employed in the new dataset. Equation (2) presents the mathematical approach to how the
binary cross-entropy loss function (LBCE) calculates the average loss, where yj is the scaler
value of output, yi is the corresponding target value, and n is the output size.

Loss = − 1
n ∑n

i=1 yi × log yj + (1 − yi)× log
(

1 − yj

)
(2)

The optimization technique in a neural network works by finding the minimum or
maximum output of the function depending on the input parameters or arguments. While
updating the variable parameters through the forward pass and backpropagation process,
the model emphasizes minimizing the loss function and optimizing the model’s accuracy.
The loss function guides the optimizers by quantifying the difference between the expected
result and the predicted result of the model. For classification CNN, two optimizers are
used: Stochastic Gradient Descent (SGD) and Root Mean Square Propagation (RMSprop).
SGD is a type of gradient descent process that is linked with a random probability. SGD
takes a single random data to update its parameters for each iteration. To the DL researchers,
RMSprop is one of the most popular optimizers. RMSprop has a unique feature which
restrains swaying in the vertical direction when helping the learning rate to learn faster in
the horizontal direction, making the convergence faster.

To achieve the best output result, the values of hyper-parameters for CNN classifiers
are designated after carefully analyzing the learning process. According to Table 2, a batch
size of 10 is considered, and the models are trained for 100 epochs. An epoch refers to the
one complete training cycle of a forward pass and backpropagation. To finalize the epoch
size, two functions called early stopping and the reduced learning rate is applied in these
models. These two functions help the models avoid over-fitting by stopping the model’s
training process when the best accuracy is achieved. This also helps reduce the models’
computational costs (time and computer memory). After completing all the combinations of
sensitivity analysis, it is found that the models reach their optimized performance condition
within the 100 epochs. Therefore, this study considered 100 epochs for model training.
Moreover, for batch size, it is observed that with a group of 10 images, the model learns
the features with a minimal computational cost. Moreover, as an activation function, ReLu
performed to have a positive impact on the model’s performance. According to some
previous studies, SGD and RMSprop are some commonly used optimizers to train the CNN
models [40–43]. Moreover, some studies used a learning rate of 0.001 [40] and 0.0001 [42] to
control the learning process of the CNN model to achieve the best performance. Hence this
study explored two different optimization functions: SGD and RMSprop along with three
different learning rates 0.1, 0.001, and 0.0001 for each of the five models separately and
summarized the results in Section 3. Finally, the best hyper-parameters values are decided
on by evaluating the trained model with the testing dataset and comparing their results
using the evaluation matrices.

2.4. Evaluation Metrics

In CNN model analysis, evaluation matrices are considered to quantify the statistical
performance of the output results of the trained models. Evaluating the DL models is
essential to understanding the output results and comparing various models’ performance
to select an appropriate model for different tasks. This study considers four different
metrics to evaluate the performance of defects classification: Accuracy, Precision, Recall,
and Confusion matrix. The following are formulations for these evaluation metrics:
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Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Here, TP, TN, FP, and FN indicate true positive, true negative, false positive, and
false negative, respectively. TP denotes if the crack image is classified correctly while TN
shows if the spalling image is classified correctly. FP denotes if the crack image is classified
incorrectly while FN represents if the spalling image is classified incorrectly.

The confusion matrix is a type of matrix which presents the numerical summary of the
final predictions (TP, TN, FP, and FN). This model uses a binary confusion matrix, dividing
the dataset into two classes. For this study, “0” represents the “crack” and “1” is termed
as “spalling”.

3. Result and Discussion

For the sensitivity analysis, at first, each CNN classifier model, VGG19, ResNet50,
IncptionV3, Xception, and MobileNetV2, considered two different optimizers, SGD and
RMSprop. Later, each CNN classifier with both SGD and RMSprop optimizer was evaluated
for three learning rates 0.0001, 0.001, and 0.1. Finally, thirty models were analyzed and
evaluated separately with the combination of two optimizers and three learning rates for
five CNN classifiers. Table 4 represents the performance of all the CNN classifiers for
learning rates 0.0001, 0.001, and 0.1, respectively. Three evaluation matrices, accuracy,
precision, and recall, were considered to evaluate the model’s performance.

Table 4. Summary results of defects classification models.

CNN Models Learning Rate
Accuracy Precision Recall

SGD RMSProp SGD RMSProp SGD RMSProp

* InceptionV3

0.1 86% 88% 78% 82% 100% 97%

0.001 91% 89% 83% 79% 100% 100%

0.0001 84% 89% 81% 84% 94% 100%

Xception

0.1 89% 87% 79% 76% 100% 100%

0.001 90% 88% 81% 78% 100% 100%

0.0001 89% 88% 82% 78% 94% 100%

MobileNetV2

0.1 81% 79% 71% 73% 94% 76%

0.001 82% 83% 71% 72% 94% 100%

0.0001 82% 84% 71% 70% 94% 100%

ResNet-50

0.1 85% 87% 72% 76% 97% 100%

0.001 82% 87% 69% 77% 89% 97%

0.0001 79% 85% 69% 74% 89% 97%

VGG-19

0.1 63% 65% 60% 62% 81% 82%

0.001 61% 62% 64% 68% 80% 84%

0.0001 63% 67% 61% 62% 82% 86%

Note: * Best performance.

From Table 4, it can be established that InceptionV3 outperformed all the other models
in the case of both optimizers. For a learning rate of 0.001, SGD optimizer IncpetionV3
achieved the best accuracy, precision, and recall values of 91%, 82%, and 100%, respectively.
Xception attained the second-best performance by adopting SGD optimizer with an accu-
racy of 89%, precision of 82%, and recall of 94%. The architecture of Xception is based on
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the Inception model, which is one of the possible reasons for the performance resemblance
of these two models. The inception model is considered to have better performance than
ResNet as the Inception model focuses on reducing computation cost while learning the
features with deeper learnable layers, eventually increasing optimization accuracy. How-
ever, ResNet only works on computational accuracy without concern for optimization,
which can overfit the training process and ultimately affect the prediction performance.
In the case of MobileNet, this model has fewer learnable parameters than the Inception
model, which can be an advantage to achieving good performance with lower memory
capacity, but then with higher learnable parameters the Inception model performs better
than MobileNet. It is evident that the InceptionV3 model outranked the other models.

In the case of a learning rate of 0.001, InceptionV3 showed the best output, followed
by the Xception model (Figure 5). With a learning rate of 0.1, the training process skipped
many learning features and converged faster towards a suboptimal position. In contrast,
a learning rate of 0.0001 is a slow pace to update the models’ weights and increase the
computational cost without improving the model’s performance significantly. Between
two optimizers, the optimizer SGD aided in obtaining the best performance for defects
classification for IncpetionV3. The accuracy, precision, and recall values of InceptionV3
are found at 91%, 83%, and 100%, respectively. Similar to InceptionV3, Xception has the
best performance with the SGD optimizer. According to [44] SGD has better stability and
generalization capacity than other adaptive optimization methods (i.e., RMSprop), which
helps the models to reach their optimization point better than others. The authors of [45]
studied experimental and empirical analysis to prove that for classification tasks, SGD
converged better than other adaptive methods. They also stated that the performance did
not improve much with faster initial training progress in validation.
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After analyzing the models with evaluation metrics, confusion matrix evaluation was
performed based on the true label vs. prediction label of crack and spalling to determine
which CNN classifier performs better on defects identification. Figure 6 portrays the
confusion matrix for InceptionV3 and Xception models. For all the confusion matrix
diagrams, the x-axis and y-axis represented the true label and predicted label, where “0”
denotes the crack, and “1” refers to “spalling”. As mentioned earlier, the InceptonV3
and Xception model has the best performance with optimizer SGD and a learning rate
of 0.001. Therefore, this study illustrated the confusion matrix graphs only for those
conditions. Figure 6a,b illustrate the true and false prediction of defects by the InceptionV3
and Xception model, respectively, for a learning rate of 0.001 and optimizer SGD. The
graphs show that crack prediction with both InceptionV3 and Xception models predicted
forty-nine images correctly while making eight false predictions. In the case of spalling
detection, InceptionV3 predicted all the spalling cases correctly, whereas Xception falsely
identified two. From the explanation above, it is clear that the InceptionV3 model has
superiority over the Xception model.
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As the loss function helps the model reduce the difference between the true value and
prediction value for tuning the hyper-parameters, it is essential to track the training loss and
validation loss over the training period. Figures 7–9 present the graphical understanding of
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the InceptionV3 model’s performance over the epochs for three learning rates 0.0001, 0.001,
and 0.1. From the graphs, it is prominent that IncpetionV3 models have the least amount
of loss with a learning rate of 0.001. Moreover, the trained model obtained sharp training
accuracy, precision, and recall close to 100%.
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Figure 9. Defects classification with InceptionV3: result of the evaluation metrics and model loss for
optimizer SGD and learning rate 0.01.

After analyzing the model’s performances, the IceptionV3 model ranked as the best-
performed model for defects classification. Moreover, this model reached its performance-
optimized point owing to the SGD optimization function and learning rate of 0.001. Apart
from InceptionV3, the Xception model also showed a promising ground for defect classifi-
cation using the SGD optimizer. On the other hand, among all the CNN classifiers VGG19
ranked last. One possible reason behind the InceptionV3 model functioning better than
other models is that the model has the highest layers of depth for learning, which facilitates
the model to gain better performance. On the other hand, VGG19 has the least depth of
learning layers, which may have affected its overall performance.
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Figures 10 and 11 demonstrate some sample results of defects identification of cracks
and spalling for all the CNN classifiers. The image’s first sentence describes the prediction
result of the defects, and the second line shows the label of defects type. Figure 10 indicates
that InceptionV3 predicted most of the cracks with 100% accuracy. On the other hand,
some crack images have an accuracy of around 90% and predicted very few crack images
with spalling. Moreover, the VGG19 model has the least accuracy in crack prediction and
even has some false predictions. Figure 11 shows that similar to crack prediction, the
InceptionV3 model also performed best for spalling detection and VGG19 has the least
accuracy. In both figures, the red box indicates the prediction inaccuracy. All the probability
percentages for each damage case are the output results of developed CNN models.
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4. Conclusions

This research investigated the performance of various DL methods for automatic
damage detection on concrete surfaces. For defects classification, this study conducted
CNN classification for multi-class defects; concrete crack and spalling trained the model
with different types and values of hyper-parameters to obtain the best output from the CNN
classifiers. This study collected a dataset of 4080 crack images and 1100 spalling images,
which is one of the largest datasets of both concrete defects without applying any image
augmentation process. The conclusions drawn from this study are summarized below:
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• A total of thirty models were evaluated combining the learning rates (0.0001, 0.001,
and 0.1) and optimization functions (SGD and RMSprop) with five different CNN
models (VGG-19, ResNet50, MobileNetV2, Xception, and InceptionV3);

• InceptionV3 model outranked the other models with accuracy, precision, and recall of
91%, 83%, and 100%, respectively. One possible reason behind the InceptionV3 model
functioning better than other models is that the model has the highest layers of depth
for learning, which facilitates the model to gain better performance. VGG19 has the
least prospect with defect identification;

• With the help of the confusion matrix, this study found that IncpetionV3 made the
least false predictions with crack identification. Moreover, IncpetionV3 labelled all the
spalling cases correctly in the case of spalling identification;

• Among three learning rates, 0.0001, 0.001, and 0.1, with a learning rate of 0.001 all the
CNN models achieved the best performance, which establishes the idea that a low
learning rate does not always confirm better performance with CNN models;

• In the case of optimization functions, SGD assisted the CNN modes to achieve better
performance, proving that SGD has better stability and generalization capacity than
other adaptive optimization methods (i.e., RMSprop).

5. Recommendation for Future Studies

Based on the analysis performed in this study, a few areas have future scopes to
improve the automatic defects detection process. Firstly, this study worked with images of
two types of defects because of the limited availability of resources for other types of defects.
Future projects working with DL-based defects detection need more collaboration with
industrial partners to collect a large amount of diverse images. Secondly, future studies can
take advantage of DL’s multiple object detection proficiency and create a model capable to
identify multiple defects at a time from both images and videos. Once an adequate dataset
is developed, it is possible to identify various types of defects from a single image or a
video clip. Moreover, the outcomes of this research work are expected to expedite future
research toward optimizing the CNN models to develop an automatic damage detection
process with real-world application.
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30. Çağlar, F.O.; Özgenel, R. Concrete Crack Images for Classification. 2019. Available online: https://data.mendeley.com/datasets/

5y9wdsg2zt/2 (accessed on 20 August 2022).
31. Liu, J.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee VC, S.; Ding, L. Automated pavement crack detection and segmentation based on

two-step convolutional neural network. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1291–1305. [CrossRef]
32. Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic pixel-level crack detection and measurement using fully

convolutional network. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 1090–1109. [CrossRef]
33. Wang, J.J.; Liu, Y.F.; Nie, X.; Mo, Y. Deep convolutional neural networks for semantic segmentation of cracks. Struct. Control

Health Monit. 2022, 29, e2850. [CrossRef]

http://doi.org/10.1111/j.1467-8667.2010.00674.x
http://doi.org/10.1007/s00138-009-0244-5
http://doi.org/10.1111/j.1467-8667.2011.00716.x
http://doi.org/10.1111/j.1467-8667.2006.00445.x
http://doi.org/10.1007/s11265-013-0813-8
http://doi.org/10.3233/ICA-170551
http://doi.org/10.1007/s00138-011-0394-0
http://doi.org/10.1016/j.autcon.2016.06.008
http://doi.org/10.1016/j.advengsoft.2006.06.002
http://doi.org/10.1002/stc.2766
http://doi.org/10.3390/s20102778
http://doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038
http://doi.org/10.1109/TIE.2019.2945265
http://doi.org/10.1111/mice.12549
http://doi.org/10.1111/mice.12313
http://doi.org/10.3390/app11062868
http://doi.org/10.1111/mice.12411
http://doi.org/10.1016/j.autcon.2021.103606
http://doi.org/10.1016/j.jobe.2022.105246
http://doi.org/10.1002/stc.3079
http://doi.org/10.1002/stc.2507
http://doi.org/10.1016/j.autcon.2018.06.007
http://doi.org/10.1109/TITS.2020.2990703
https://data.mendeley.com/datasets/5y9wdsg2zt/2
https://data.mendeley.com/datasets/5y9wdsg2zt/2
http://doi.org/10.1111/mice.12622
http://doi.org/10.1111/mice.12412
http://doi.org/10.1002/stc.2850


Sensors 2022, 22, 8714 18 of 18

34. Tang, Y.; Zhang, A.A.; Luo, L.; Wang, G.; Yang, E. Pixel-level pavement crack segmentation with encoder-decoder network.
Measurement 2021, 184, 109914. [CrossRef]

35. Lin, J.J.; Ibrahim, A.; Sarwade, S.; Golparvar-Fard, M. Bridge inspection with aerial robots: Automating the entire pipeline of
visual data capture, 3D mapping, defect detection, analysis, and reporting. J. Comput. Civ. Eng. 2021, 35, 04020064. [CrossRef]

36. Dai Wenyuan, Y.Q.; Guirong, X.; Yong, Y. Boosting for transfer learning. In Proceedings of the 24th International Conference on
Machine Learning, Corvallis, OR, USA, 20–24 June 2007.

37. Chollet, F. Keras Documentation. keras. io, 33. 2015. Available online: https://keras.io/ (accessed on 8 November 2022).
38. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, UK, 2016.
39. Huyan, J.; Li, W.; Tighe, S.; Xu, Z.; Zhai, J. CrackU-net: A novel deep convolutional neural network for pixelwise pavement crack

detection. Struct. Control Health Monit. 2020, 27, e2551. [CrossRef]
40. Poojary, R.; Pai, A. Comparative study of model optimization techniques in fine-tuned CNN models. In Proceedings of the 2019

International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab
Emirates, 19–21 November 2019.

41. Kumar, A.; Sarkar, S.; Pradhan, C. Malaria Disease Detection Using CNN Technique with sgd, rmsprop and adam Optimizers. In
Deep Learning Techniques for Biomedical and Health Informatics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 211–230.

42. Agarwal, M.; Rajak, A.; Shrivastava, A.K. Assessment of optimizers impact on image recognition with convolutional neural
network to adversarial datasets. J. Phys. Conf. Ser. 2021, 1998, 012008.

43. Verma, P.; Tripathi, V.; Pant, B. Comparison of different optimizers implemented on the deep learning architectures for COVID-19
classification. Mater. Today Proc. 2021, 46, 11098–11102. [CrossRef] [PubMed]

44. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. Proc. Mach. Learn. Res. 2016,
48, 1225–1234.

45. Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of adaptive gradient methods in machine learning.
Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.

http://doi.org/10.1016/j.measurement.2021.109914
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000954
https://keras.io/
http://doi.org/10.1002/stc.2551
http://doi.org/10.1016/j.matpr.2021.02.244
http://www.ncbi.nlm.nih.gov/pubmed/33643854

	Introduction 
	Prior Studies 
	Reserarch Objective and Contribution 

	Methodology 
	Building Defects Database 
	Data Preparation 
	Data Processing 

	CNN Classifier Model Configuration 
	VGG-19 
	ResNet-50 
	Inception 
	Xception 
	MobileNetV2 

	Sensitivity Analysis of Hyper-Parameters 
	Evaluation Metrics 

	Result and Discussion 
	Conclusions 
	Recommendation for Future Studies 
	References

