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Abstract: The structural properties of phosphor materials, such as their grain size distribution
(GSD), affect their overall optical emission performance. In the widely used gadolinium oxysulfide
(Gd2O2S) host material, the type of activator is one significant parameter that also changes the GSD
of the powder phosphor. For this reason, in this study, different phosphors samples of Gd2O2S:Tb,
Gd2O2S:Eu, and Gd2O2S:Pr,Ce,F, were analyzed, their GSDs were experimentally determined using
the scanning electron microscopy (SEM) technique, and thereafter, their optical emission profiles
were investigated using the LIGHTAWE Monte Carlo simulation package. Two sets of GSDs were
examined corresponding to approximately equal mean particle size, such as: (i) 1.232 µm, 1.769 µm
and 1.784 µm, and (ii) 2.377 µm, 3.644 µm and 3.677 µm, for Tb, Eu and Pr,Ce,F, respectively. The
results showed that light absorption was almost similar, for instance, 25.45% and 8.17% for both cases
of Eu dopant utilizing a thin layer (100 µm), however, given a thicker layer (200 µm), the difference
was more obvious, 22.82%. On the other hand, a high amount of light loss within the phosphor
affects the laterally directed light quanta, which lead to sharper distributions and therefore to higher
resolution properties of the samples.

Keywords: powder phosphors; doping effects; grain size distribution

1. Introduction

In a wide variety of medical imaging systems, optical sensors (i.e., complementary
metal-oxide semiconductors [CMOS], charge-coupled devices [CCD], etc.) are employed
in combination with phosphor–scintillator layers to form an ionizing radiation sensor or
detector [1,2]. In the first case, the detector is consistently found in phosphor-based form
where the physical and luminescent properties of the phosphor affect the optical signal
transfer and contribute to a high quality of image acquisition. Gadolinium oxysulfide
(Gd2O2S) host material activated with terbium (Gd2O2S:Tb), europium (Gd2O2S:Eu), or
praseodymium, cerium, and fluorine (Gd2O2S:Pr,Ce,F), has, until now, been incorporated
as the most efficient X-ray-to-light converter in many medical imaging modalities [1–3]. For
example, (i) Gd2O2S:Tb powder phosphors are employed in X-ray projection [4] imaging
(radiation imaging) and portal imaging systems (radiotherapy), and (ii) Gd2O2S:Pr ceramic
phosphors are applied in X-ray computed tomography systems [5]. Figure 1 shows exam-
ples of non-destructive testing (NDT) CMOS imaging sensors, adopted for dual energy
medical imaging applications and coupled with Gd2O2S:Tb phosphor screens [6–8].

In recent years, in the field of material science, several preparation methods have been
developed and successfully applied for the synthesis of powder phosphors [9]. Most of
the time, construction of the phosphor materials and their corresponding properties (e.g.,
layer thickness, particle sizes and schemes, activator dopant concentrations, absorbing
dye incorporation, etc.) have remained trade secrets from the manufacturers [10,11]. On
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the other hand, a crucial issue in phosphor material research for advanced luminescent
properties is the description of the material characteristics in detail in order to implement
an accurate methodological approach which provides plausible results. Therefore, an
important component in phosphor research and development is the necessary information
to feed the methodological approach (e.g., the experimental measurements or the theoretical
analysis). In the same vein, for computational optical diffusion modeling, a significant
requirement is the entry of input data related to the structural properties of the material,
especially when the assumption of a phosphor layer composed of identical particles of a
specific size (either corresponding to a mean size taken from previous published works or
manufacturer datasheets) is dominant.
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Figure 1. Non-destructive testing CMOS imaging sensors coupled with Gd2O2S phosphor screens.

Our previous investigations examined the influence of grain size distribution (GSD)
on Gd2O2S light emission properties. In particular, the optical performance was evalu-
ated on the well-known commercial mammographic cassette (Min-R) [12], considering
layers consisting of particles (i) of identical grain sizes and (ii) following theoretical GSD
configurations (Poisson, Gaussian) [11]. In both studies, the variations of light emission
(amount and distribution) showed the importance of considering the exact GSD in light
emission modeling where diffusion is described through the light ray interactions with the
phosphor grains. In the present work, GSD’s effects on light spreading were assessed for a
variety of commercial phosphors purchased from Phosphor Technology (England, UK) [13].
In all cases, Gd2O2S was the powder phosphor material under investigation; however,
phosphor samples (six in total) were synthesized with different dopant activators (i.e.,
Tb, Eu and Pr,Ce,F dopants) and also presented different GSD for a certain activator. The
determination of the role of activator doping effects in grain-size distributed phosphors and
their impact on light emission and imaging performance were the main contributions that
this paper sought to make. Activator doping effects have been included in many previous
studies [14,15], where their influences on the emission spectrum, emission efficiency/light
yield, and decay time were examined, without, however, taking into account the grain
size distribution. The GSD data of the materials were estimated from scanning electron
microscopy (SEM) micrographs. SEM techniques are widely accepted as appropriate and
accurate for such purposes, being employed even in more demanding submicron applica-
tions [16]. In order to incorporate the GSDs in the optical diffusion model, we considered
it more appropriate to simulate the multiple light ray intrinsic interactions with particles
within the framework of [17]: (i) Monte Carlo techniques [18] for the simulation of each
light ray track separately and (ii) Mie scattering theory to derive the required optical param-
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eters to feed the intrinsic stages of light propagation. This was accomplished with the help
of the LIGHTAWE Monte Carlo simulation package [19]. The simulation model was carried
out by considering an X-ray beam of 25 keV upon two phosphor layers with thicknesses
of 100 µm and 200 µm, respectively. The optical emission performance was evaluated
and compared between the samples in terms of (i) the total amount of light emitted and
(ii) the light distributed at both exit sides of the phosphor layers, i.e., the reflection and
transmission mode.

2. Materials and Methods
2.1. Synthesis Analysis and Characterization

Samples of Gd2O2S:Tb (code numbers: UKL65/UF-R1 and UKL65/F-R1), Gd2O2S:Eu
(code numbers: UKL63/UF-R1 and UKL63/N-R1), and Gd2O2S:Pr,Ce,F (code numbers:
UKL59CF/F-R1 and UKL59CF/S-R1) phosphors were purchased from Phosphor Technol-
ogy (England, UK) [13]. The size distribution of the grain particles, as well as the energy dis-
persive X-ray (EDX) elemental spectra of the Gd2O2S:Tb, Gd2O2S:Eu, and Gd2O2S:Pr,Ce,F
phosphors were measured with a scanning electron microscope (Jeol JSM 6510LV), as shown
in Figure 2. The accelerating voltage was 20.00 kV. For the elemental analysis of particles,
the carbon thread evaporation process was employed. Carbon was flash evaporated under
vacuum conditions to produce films suited for the specimens in a BAL-TEC CED 030 carbon
evaporator (~10−2 mbar) [20].
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Figure 2. EDX spectra: (a) Gd2O2S:Tb UKL65/UF-R1, (b) Gd2O2S:Tb UKL65/F-R1, (c) Gd2O2S:Eu
UKL63/UF-R1, (d) Gd2O2S:Eu UKL63/N-R1, (e) Gd2O2S:Pr,Ce,F UKL59CF/F-R1, and (f) Gd2O2S:Pr,Ce,F
UKL59CF/S-R1 phosphors.

The corresponding stoichiometric results are summarized in Table 1. These results
showed the following percent weights for the chemical elements within Gd2O2S:Tb,
Gd2O2S:Eu, and Gd2O2S:Pr,Ce,F grains: The dominant element is gadolinium (Gd) ranging
from 74.62% to 78.53% weight, then oxygen (O) ranging from 12.09% to 15.47%, sulphur (S)
ranging from 6.81% to 8.68%, terbium (Tb) ranging from 1.74% to 2.99%, europium (Eu)
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ranging from 0.92% to 1.46%, cerium (Ce) 0.39%, praseodymium (Pr) (0.31–0.32%), and
fluorine (F) (0.21–0.25%) activators, respectively.

Table 1. Stoichiometric results for the examined grains.

Chemical Element Gd2O2S:Tb
UKL65/UF-R1

Gd2O2S:Tb
UKL65/F-R1

Gd2O2S:Eu
UKL63/UF-R1

Gd2O2S:Eu
UKL63/N-R1

Gd2O2S:Pr.Ce.F
UKL59CF/F-R1

Gd2O2S:Pr.Ce.F
UKL59CF/S-R1

Gadolinium (Gd) 78.53 78.11 74.62 77.07 76.63 75.48
Oxygen (O) 12.82 12.09 15.24 13.39 14.47 15.47
Sulphur (S) 6.90 6.81 8.68 8.62 7.99 8.09

Terbium (Tb) 1.74 2.99 - - - -
Europium (Eu) - - 1.46 0.92 - -

Praseodymium (Pr) - - - - 0.31 0.32
Cerium (Ce) - - - - 0.39 0.39
Fluorine (F) - - - - 0.21 0.25

Totals 100 100 100 100 100 100

Figure 3 shows the SEM micrographs obtained from sites of interest within the
Gd2O2S:Tb, Gd2O2S:Eu, and Gd2O2S:Pr,Ce,F phosphors samples. All resolvable parti-
cles were measured manually in order to avoid any decrease in accuracy due to automatic
identification software, in non-spherical and aggregated particles [21,22]. In non-spherical
grains, Feret’s diameter method was used to estimate particles’ diameter, measured in an
arbitrarily fixed orientation [23,24].
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Figure 3. SEM fragments from the: (a) Gd2O2S:Tb UKL65/UF-R1, (b) Gd2O2S:Tb UKL65/F-R1,
(c) Gd2O2S:Eu UKL63/UF-R1, (d) Gd2O2S:Eu UKL63/N-R1, (e) Gd2O2S:Pr,Ce,F UKL59CF/F-R1,
and (f) Gd2O2S:Pr,Ce,F UKL59CF/S-R1 phosphors.

2.2. Description of the Monte Carlo Model

A schematic representation of the components that make up the model is provided in
Figure 4.

The Monte Carlo model has been developed to simulate the light emission properties
of the Gd2O2S luminescent material under the excitation of an X-ray beam of energy 25 keV.
Three different cases of activator doping were examined as follows: (i) Tb activator of light
wavelength 545 nm, (ii) Eu activator of light wavelength 623 nm, and (iii) Pr,Ce,F activators
of light wavelength 513 nm.
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Figure 4. A schematic illustration of the basic structural aspects of the Monte Carlo model: (a) input
data and output results; (b) the flow of the Monte Carlo algorithms.

Two sets of GSDs were examined corresponding to approximately equal mean particle
sizes as provided in Table 2 (Section 3.1), namely (i) 1.232 µm, 1.769 µm, and 1.784 µm;
(ii) 2.377 µm, 3.644 µm, and 3.677 µm, for Tb, Eu, and Pr,Ce,F, respectively. The structural
and optical properties considered to perform the optical emission are summarized below:
(a) packing density 50%, (b) complex refractive index 2.3 × 10−5i, and (c) refractive index of
the medium 1.35. Two phosphor layers (i.e., layers of 100 µm and 200 µm) were investigated
so as to compare the optical diffusion characteristics in thin and thick layers, respectively.
A large number of light photons (106) was considered to be created after X-ray-to-light
conversion, and thereafter light photons were diffused within the layer until their escape
after their interactions with the phosphor particles.

Table 2. Descriptive statistics for Gadolinium Oxysulphide phosphor grains.

Sample Descriptive
Statistics

Gd2O2S:Tb
UKL65/UF-R1

Gd2O2S:Tb
UKL65/F-R1

Gd2O2S:Eu
UKL63/UF-R1

Gd2O2S:Eu
UKL63/N-R1

Gd2O2S:Pr,Ce,F
UKL59CF/F-R1

Gd2O2S:Pr,Ce,F
UKL59CF/S-R1

Mean grain size (µm) 1.232 2.377 1.769 3.644 1.784 3.677
Standard error 0.046 0.081 0.050 0.117 0.051 0.139

Median grain size (µm) 1.105 2.170 1.604 3.582 1.675 3.338
Mode grain size (µm) N/A 1.473 1.435 N/A 1.766 3.326

Standard deviation 0.424 1.031 0.701 1.170 0.566 1.542
Sample variance 0.180 1.064 0.491 1.368 0.321 2.377

Kurtosis 8.809 1.589 0.038 1.621 2.082 2.885
Skewness 2.163 1.286 0.760 0.804 1.130 1.362

Range (µm) 2.925 5.000 3.118 6.552 3.183 8.817
Minimum grain size (µm) 0.566 0.894 0.609 1.422 0.884 1.162
Maximum grain size (µm) 3.492 5.894 3.727 7.974 4.067 9.979

Counted grains 83 162 196 100 125 123
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3. Results
3.1. The Structural Properties of the Phosphor Samples

The estimation of GSDs was based on data obtained from the SEM fragments, as
shown in Figure 5. Table 2 shows the corresponding descriptive statistics of the examined
grain samples.
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The corresponding mean particle sizes were as follows. For Gd2O2S:Tb (code number:
UKL65/UF-R1) it was found equal to 1.232 µm (standard deviation = 0.424); for Gd2O2S:Tb
(code number: UKL65/F-R1) it was found equal to 2.377 µm (standard deviation = 1.031);
for Gd2O2S:Eu (code number: UKL63/UF-R1) it was found equal to 1.769 µm (standard
deviation = 0.701); for Gd2O2S:Eu (code number: UKL63/N-R1) it was found equal to
3.644 µm (standard deviation = 1.170); for Gd2O2S:Pr,Ce,F (code number: UKL59CF/F-R1)
it was found equal to 1.784 µm (standard deviation = 0.566); for Gd2O2S:Pr,Ce,F (code
number: UKL59CF/S-R1) it was found equal to 3.677 µm (standard deviation = 1.542).
From Tables 1 and 2 it can be seen that the average particle size of Gd2O2S varies with the
concentration of the activator and the synthesis method [25]. For Gd2O2S:Tb, when the
concentration of the Tb activator increases from 1.74 to 2.99, the average particle size also
increases from 1.232 to 2.377 µm. This is also the case for Gd2O2S:Pr,Ce,F in which when
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the total concentration of the Pr,Ce,F activators increases from 0.91 to 0.96, and the average
particle size also increases from 1.784 to 3.677 µm. However, in Gd2O2S:Eu, an opposite
behavior is observed, since when the concentration of the Eu activator increases from 0.92
to 1.46, then the average particle size decreases from 3.644 to 1.769 µm.

3.2. Evaluation of Required Optical Parameters to Feed the Model

Figure 6 depicts the variation of the (a,b) light extinction coefficient and (c,d) anisotropy
factor as a function of particle size (diameter) of the phosphor samples. The range of
particle sizes for each sample is given according to the analysis of their GSDs provided in
Figure 4. The evaluation of the optical parameters was based on Mie scattering theory. The
mathematical expressions used to predict the optical parameters are given in Appendix A.
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trated for the GSD distributions provided in Figure 4 of Part 1 of this work. Two comparable sets of
GSDs of approximately similar size were considered: (i) 1.232 µm, 1.769 µm, and 1.784 µm (left side),
and (ii) 2.377 µm, 3.644 µm, and 3.677 µm (right side), for Tb, Eu, and Pr,Ce,F, respectively.

3.3. Light Emission Performance of Phosphor Samples

The light emission performance was assesed considering two cases of light production.
The distributed sites of light production were obtained by assuming an X-ray beam of 25 keV
upon two phosphor layers: (i) a thin layer of 100 µm and (ii) a thick layer of 200 µm. These
values are typically used in mammography and radiography applications, respectively.
The distribution of light production as a function of depth within the phosphor layer is
provided in Figure 7. In both cases, the sites of light production are determined by the
sites of X-ray absorption, which follow the exponential law of radiation (X-ray) attenuation
within the layer. The mass attenuation coefficient was taken as equal to 20.32 cm2/g (a
value which corresponds to the X-ray attenuation properties of Gd2O2S at 25 keV assuming
a density of 7.34 g/cm3). In order to compare and estimate the light diffusion characteristics
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between the different GSDs configurations, both the spatial distribution and the amount of
light were evaluated in terms of (a) the modulation transfer function (MTF) curves shown
in Figure 8 and (b) the percentage of light emitted relative to light produced (reflection and
transmission mode) as given in Tables 3 and 4.
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Figure 7. The light distribution (%) as a function of the depth of the interaction site (the percentage
interaction depth with respect to the total screen thickness) within the phosphor layer of Gd2O2S
phosphor material irradiated by an X-ray beam of 25 keV upon a phosphor layer of thickness:
(a) 100 µm (upper image) and (b) 200 µm (lower image).

The difference in light distribution, expressed through MTF and resolution, is mainly
due to the light interaction mechanisms within the powder layer. The MTF curves were
obtained from the full width at half maximum (FWHM) of the emitted light point spread
function (PSF) and are related to the angular distribution of the light diffusion towards the
output surface of the layer. The MTF curves and the amount of light emitted were evalu-
ated assuming two comparable sets of GSDs of approximately similar size: (i) 1.232 µm,
1.769 µm, and 1.784 µm and (ii) 2.377 µm, 3.644 µm, and 3.677 µm, corresponding to the
Tb, Eu, and Pr,Ce,F activators, respectively. Based on the MTF curves, at 10% MTF, the
following specific numerical estimations of resolution were found: (i) 12.9 cycles/mm for
1.232 µm, which was similar to 1.769 µm and 2.4% higher than that of 1.784 µm, considering
the thin layer of 100 µm. However, for the thick layer of 200 µm, the resolution was found
to be 11.6 cycles/mm for 1.232 µm, which was 8.7% higher than that of 1.769 µm and 4.5%
higher than that of 1.784 µm; (ii) 12.1 cycles/mm for 2.377 µm, which was 4.5% higher
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than that of 3.644 µm and 5.6% higher than that of 3.677 µm, considering the thin layer of
100 µm. However, for the thick layer of 200 µm, the resolution was found 9.6 cycles/mm
for 2.377 µm, which was 16.3% higher than that of 3.644 µm and 17.5% higher than that
of 3.677 µm. In both sets of GSDs, the difference in light distribution seemed to be low
when investigating the thin phosphor layers; nevertheless, the difference was found to
increase in thick layers due to the larger number of total light photon interactions with the
phosphor particles.
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Two comparable sets of GSDs of approximately similar size were considered: (i) 1.232 µm, 1.769 µm,
and 1.784 µm (left side), and (ii) 2.377 µm, 3.644 µm, and 3.677 µm (right side), for Tb, Eu, and
Pr,Ce,F, respectively.

Table 3. Light emission performance (absorption, transmission, and reflection) of different GSD
configurations: (i) Gd2O2S:Tb (1.232 µm), (ii) Gd2O2S:Eu (1.769 µm), (iii) Gd2O2S:Pr,Ce,F (1.784 µm),
(iv) Gd2O2S:Tb (2.377 µm), (v) Gd2O2S:Eu (3.644 µm), and (vi) Gd2O2S:Pr,Ce,F (3.677 µm). Light
performance is given by the light quanta produced from an X-ray beam with an energy of 25 keV
upon a phosphor layer with a thickness of 100 µm.

Light Emission Performance

Absorption (%) Reflection (%) Transmission (%)

Thickness: 100 µm

Gd2O2S:Tb
(1.232 µm) 24.51 43.3 32.19

Gd2O2S:Eu
(1.769 µm) 25.45 42.74 31.81
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Table 3. Cont.

Light Emission Performance

Absorption (%) Reflection (%) Transmission (%)

Thickness: 100 µm

Gd2O2S:Pr,Ce,F
(1.784 µm) 19.23 45.94 34.83

Gd2O2S:Tb
(2.377 µm) 12.44 49.33 38.23

Gd2O2S:Eu
(3.644 µm) 8.17 51.37 40.46

Gd2O2S:Pr,Ce,F
(3.677 µm) 8.46 51.1 40.44

Table 4. Light emission performance (absorption, transmission, and reflection) of different GSD
configurations: (i) Gd2O2S:Tb (1.232 µm), (ii) Gd2O2S:Eu (1.769 µm), (iii) Gd2O2S:Pr,Ce,F (1.784 µm),
(iv) Gd2O2S:Tb (2.377 µm), (v) Gd2O2S:Eu (3.644 µm), and (vi) Gd2O2S:Pr,Ce,F (3.677 µm). Light
performance is given by the light quanta produced from an X-ray beam with an energy of 25 keV
upon a phosphor layer with a thickness of 200 µm.

Light Emission Performance

Absorption (%) Reflection (%) Transmission (%)

Thickness: 200 µm

Gd2O2S:Tb
(1.232 µm) 50.52 34.28 15.20

Gd2O2S:Eu
(1.769 µm) 42.15 38.92 18.93

Gd2O2S:Tb
(2.377 µm) 46.35 36.57 17.08

Gd2O2S:Eu
(3.644 µm) 31.98 44.49 23.53

Gd2O2S:Pr,Ce,F
(3.677 µm) 22.82 49.19 27.89

Gd2O2S:Tb
(2.377 µm) 21.89 49.69 28.32

4. Discussion

The evaluation of light propagation and emission is directly dependent on (i) the
sites of light production within the layer and (ii) the total number of light ray interactions
(scattering and absorption) with the phosphor particles. Both factors alter the amount and
direction of light tranjectories and affect the configuration of light transport within the
material until the arrival of light photons at the output surface of the layer. On the one
hand, the sites affect the distance for light photons to reach the exit surfaces, while on the
other hand, the number of interactions influence the amount of light absorption which
in turn greatly affects the laterally directed light quanta (due to their longer trajectories)
and consequently the spatial distribution of emitted light photons. The aforementioned
procedures are the main processes that cause significant changes to the optical difussion
properties of phosphor materials, and their suitability for use in medical imaging sensors
depends on the way they are treated.

Regarding the first process, the distributed sites of light production depend on the
thickness of the phosphor layer. Based on the results illustrated in Figure 7, the fraction
of produced optical photons was approximately evaluated as (a) 14% at a layer thickness
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of 100 µm compared to 18% at a layer thickness of 200 µm considering the first sublayer
and (b) 7% at a layer thicnkess of 100 µm compared to 5% at a layer thicnkess of 200 µm
considering the last sublayer. These results showed that in thick layers a higher fraction of
light is produced at sites away from the back side of the layer (i.e., the non-irradiatate output
surface). As a result, the amount of light emitted in transmission mode is considerably
lower in thick layers (200 µm) due to the long light photon trajectories until escape. This
can be also verified by numerical data provided in Tables 3 and 4 for all cases. For instance,
the amount of light emitted was estimated to be higher at a layer thickness of 100 µm
compared to 200 µm. An increase of approximately (a) 111.8% and 62.5% considering
the mean size of 1.232 µm and 2.377 µm, respectively, was found for Tb dopant Gd2O2S;
(b) 68.0% and 45.1% considering a mean size of 1.769 µm and 3.644 µm, respectively, for
Eu dopant Gd2O2S; and (c) 103.9% and 42.8% considering a mean size of 1.784 µm and
3.677 µm, respectively, for Pr,Ce,F dopant Gd2O2S. The amount of light emitted is also
related to the amount of light absorbed within the phosphor layer, which was observed to
be dominant in thicker phosphor layers.

As mentioned above, the increase of light absorption is also due to the second process
of multi-intercations of the light beam with the optical scatterers (i.e., the phosphor grains).
This is another aspect which plays a critical role in the fluctuations of the light emitted
(either in the amount or distribution). According to Tables 3 and 4, light absorption was
found (i) to be almost similar, 24.51% and 25.45%, for Tb and Eu dopants considering the
first set of GSDs (mean size of 1.232 µm and 1.769 µm) and the thin layer (100 µm), while
for the thicker layer (200 µm) the difference was more obvious (50.52% and 42.15%, respec-
tively); (ii) to be almost similar, 8.17% and 8.46%, for Eu and Pr,Ce,F dopants considering
the second set of GSDs (mean size of 3.644 µm and 3.677 µm) and the thin layer (100 µm),
while for the thicker layer (200 µm), light absorption was slightly different (22.82% and
21.89%, respectively). Apart of the amount of light loss within the phosphor, the higher
number of light interactions (i.e., light suffers higher attenuation) affects the laterally di-
rected light quanta, which leads to sharper distributions and therefore to higher resolution
properties, as shown in Figure 8 and analyzed in Section 3.3. The intrinsic mechanisms of
light attenuation are based on the optical parameters, which are given in Figure 6. In small-
sized GSDs, the light extinction coefficient takes high values contributing to the increase
of light interactions (light absoprtion is higher for the first set of samples where the mean
particle size is low). In addition, the oscillations observed in the optical extinction are due
to the dependence of the extinction efficiency factor Qext on particle size (Equation A1 in
Appendix A). The type of dopant for phosphor synthesis can alter the GSD of the phosphor
material, as shown in Figure 5. GSDs with small particles will provide lower intensity
in the scintillation emission due to scattering, and on the other hand, screens with large
particles tend to lose homogeneity [26]. Advanced structural properties could be achieved,
owing to particle shape and size based on the synthesis methods, e.g., vapor transport
(evaporation/condensation), surface diffusion, lattice (volume) diffusion, grain boundary
diffusion, and dislocation motion [27], as well as their corresponding preparation intrinsic
mechanisms and processing conditions (temperature, particle size, applied pressure, parti-
cle packing, etc.). The presence of impurities also changes the luminescence properties of
the compounds [28]. Furthermore, particle shape affects the packing of the so-called “green
body” of the phosphor structure, and possible deviations from the spherical shape lead to
increased porosity along with reduced packing density [29]. The finding that the type of
activator provides different GSD could be traced to the aforementioned synthesis methods
and processing conditions, however, up to now, there is no clear understanding of the exact
relation of the particular GSD shape with the dopant usage. A future research direction
could be the analysis of a high number of GSDs of phosphor samples (i.e., repeatable
preparation of future tests is needed) so as to find a potential dependence between the type
of the dopant and the GSD configuration. The results of the present analysis could be useful
in the design of new sensors with improved performance, both in terms of sensitivity (i.e.,
emission efficiency) and medical image quality.



Sensors 2022, 22, 8702 13 of 15

5. Conclusions

The GSD of powder phosphors is affected by several parameters according to the
synthesis methods and processing conditions used during the development of the phosphor
layers. One of these parameters is the type of dopant, which plays a significant role in the
particle shape and size configuration. This role and its impact on the light emission and
imaging performance were the main contributions that this paper sought to achieve.

In the present study, we tried to investigate a series of Gd2O2S powder phosphors
doped with different types of dopants (e.g., Tb, Eu, and Pr,Ce,F). The analysis of phosphor
samples showed different GSDs based on the type of activator. Our Monte Carlo optical
difussion model showed almost similar light absorption in some cases, e.g., 24.51% and
25.45% for Tb and Eu dopants and 8.17% and 8.46% for Eu and Pr,Ce,F dopants considering
the thin layer (100 µm). However, for the same conditions, the difference was more obvious,
50.52% and 42.15%, and slightly different, 22.82% and 21.89%, when examining the thicker
layer (200 µm). It was also found that there was a direct dependence of light loss upon the
distribution of light emission, which, therefore, affected the resolution properties of the
phosphor layers. Our results indicate that in powder phosphor investigations, apart from
the optical properties of the dopant (concentration and wavelength emission), one should
also take into account the effect on the structural properties due to modifications of the
particle sizes within the phosphor layer.
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Appendix A

Optical diffusion is described through the light ray interactions with the phosphor
particles. Within the framework of the Mie scattering theory, the simulation algorithms
describe light trajectory in terms of two optical parameters. The first is the light extinction
coefficient, mext, which denotes the path length that light travels within the materials until
interaction with the phosphor particles. The light extinction coefficient is evaluated as
follows [13]:

mext = VdAQext (A1)

where Vd is the volume density of the phosphor material, A is the geometrical cross-section
of the grain, and Qext is the extinction efficiency factors. The second optical parameter is
the anisotropy scattering factor, g,, which denotes the direction of the light after scattering
with the phosphor particles. The anisotropy factor is obtained according to the Henyey-
Greenstein distribution as given below:

g =

∫ π
0 2πS11(θ)cosθsinθdθ∫ π

0 2πS11(θ)sinθdθ
(A2)
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where S11(θ) is the first element of the so-called Mueller matrix, which implies that light
extinction is independent of the light polarization state. S11(θ) is related to the complex
elements of scattering matrix S1(θ) and S2(θ).
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