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Abstract: With the recent growth of the Internet of Things (IoT) and the demand for faster compu-
tation, quantized neural networks (QNNs) or QNN-enabled IoT can offer better performance than
conventional convolution neural networks (CNNs). With the aim of reducing memory access costs
and increasing the computation efficiency, QNN-enabled devices are expected to transform numerous
industrial applications with lower processing latency and power consumption. Another form of QNN
is the binarized neural network (BNN), which has 2 bits of quantized levels. In this paper, CNN-,
QNN-, and BNN-based pattern recognition techniques are implemented and analyzed on an FPGA.
The FPGA hardware acts as an IoT device due to connectivity with the cloud, and QNN and BNN
are considered to offer better performance in terms of low power and low resource use on hardware
platforms. The CNN and QNN implementation and their comparative analysis are analyzed based
on their accuracy, weight bit error, RoC curve, and execution speed. The paper also discusses various
approaches that can be deployed for optimizing various CNN and QNN models with additionally
available tools. The work is performed on the Xilinx Zynq 7020 series Pynq Z2 board, which serves
as our FPGA-based low-power IoT device. The MNIST and CIFAR-10 databases are considered for
simulation and experimentation. The work shows that the accuracy is 95.5% and 79.22% for the
MNIST and CIFAR-10 databases, respectively, for full precision (32-bit), and the execution time is
5.8 ms and 18 ms for the MNIST and CIFAR-10 databases, respectively, for full precision (32-bit).

Keywords: internet of things (IoT); convolutional neural network (CNN); quantized neural network
(QNN); binary neural network (BNN); FPGA; pattern recognition

1. Introduction

Deep learning has enabled artificial intelligence (AI) to quickly progress in recent
years. The convergence of AI and the internet of things (IoT) is redefining the way indus-
tries, businesses, and technologies function. IoT can be used in various applications of
automation with less or no human intervention. AI makes it possible for machines to learn
from experience, adjust to new inputs, and perform human-like tasks. One of the primary
objectives of AI is pattern classification and recognition. One of the ways that pattern
recognition is carried out is through using rectangular windows followed by a classification
process [1,2]. Numerous machine learning algorithms have been developed that play a
vital role in pattern recognition. There are numerous algorithms, such as support vector
machines (SVM), stochastic gradient descent (SGD), etc., for feature extraction. However,
a typical convolutional neural network (CNN) has the ability to learn, adapt, and extract
features automatically from existing databases [3,4]. In short, CNNs are the the popular
method for any pattern classification or object detection algorithm [5,6]. However, they are
computationally intensive and are difficult to deploy in any mobile interface device. To de-
velop the performance of feature representation, the design induces more complexity, and
their deployment on mobile platforms can be challenging. So, the need for a lightweight
network configuration, without decreasing the accuracy of the system, remains [7].
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A typical architecture of a CNN can be seen in Figure 1. In general, a CNN contains
three basic layers. The first layer is the convolutional layer [8], the second is the pooling
layer followed by the batch normalization layer, and the third is an output later, which
is a fully connected layer. At each layer, the features are classified, and subsequently the
information is passed on to the next layer. The binary neural network (BNN) approach is
similar to CNN but provides better storage and memory capacity.

Figure 1. Architecture of a CNN.

Another approach is the BNN. This approach is a type of DNN processor that pro-
vides better storage space in terms of computing and memory usage while having a
marginal tradeoff with accuracy. For a detailed performance comparison, some works
have analyzed the BNN approach using the processor model of an infrared spectrum (IR)
human-based image recognition application. In one work, algorithm analysis was per-
formed for a 32-bit DNN using various model parameters, such as the kernel number and
synaptic connection [9]. In this, the system structure was applicable for a BNN, such as an
application-specific integrated circuit or a field programmable gate array (FPGA). The local
storage was leveraged; that is, the full storage in the weights of BNN was used to speed
up the process. Recently, object detection was performed using a hybrid convolutional
recurrent network [1]. This work used the BNN to compare its performance against a
GPU. A BNN’s architecture can be seen in Figure 2. Here, the input image is passed to the
binary convolution layer. The features are scaled down before being passed to the next
activation function for the classification of the pattern in another format, followed by the
batch normalization layer. The output is a discovered pattern or object.

Figure 2. Architecture of a BNN.

Another form of NN is the quantized neural network (QNN). QNNs are low-precision
neural networks and have similar performance to a CNN while safeguarding the network
structure. A BNN is also a form of amQNN. QNN consists of a quantization layer, multiply
accumulation (MAC) layer, and a batch normalization layer. Although the storage and
computation costs are greatly reduced, there is data loss due to quantization errors, which
occurs under tradeoff conditions. A suitable quantization architecture should be able to
store useful information in continuous variables and is critical to network performance.
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Figure 3 shows a QNN architecture. The network layer contributes differently to the
overall performance, each with different sensitivities to size. As the network propagates
forward, the variability of the hierarchical functions subsequently rises. In the shallow
layer, the internal features are dispersed over multiple complexes. To obtain the functions
as in [10,11], we need to have accurate neurons. At deeper layers, the coarse convolution
filter can distinguish the previous local features [12]. Thus, parameter accuracy can be
flexibly designed using network configuration and hierarchical feature distribution [13].
The difference in weight implementation and distribution between a full precision neural
network and a BNN [14] is shown in Figure 4. While the full precision values can vary
from 10 to 64 bits or even more, the BNN has a 1 bit memory stack.

Figure 3. Architecture of a QNN.

Figure 4. The difference weight implementation and distribution between a full precision neural
network and a binarized neural network [14].

There were various methods of training and quantization described in [15,16]. In most
methods, the major challenges were the following: (a). In [15], the authors used the Pascal
VOC database, with 2000 iterations for training purpose. This consumed a lot of storage
space and I/O resources. (b). Extracting each range’s suggested feature individually wasted
a lot of resources because the DNN function’s sharing feature was not used.

The major contributions of this paper are as follows:

• The paper analyzes the effect of pattern classification on various DNN classifiers on a
IoT based hardware platform, including CNN, QNN, and BNN, and their implemen-
tation on an FPGA based IoT platform.

• The hardware used in the work is low power, compatible with Python, and mobile,
which can also connect to the cloud, making it more compatible with IoT devices.

• Using the architecture of a BNN, we can reduce the computing time without much
variation in the accuracy.
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• We use the MNIST and CIFAR-10 databases for our analysis in terms of the prediction
accuracy, weight bit error rate, RoC curve, and execution time on the PYNQ Z2
FPGA board.

In the remainder of this paper, the related work and a literature survey are presented
in Section 2; the background and the system concept for an IoT-based pattern detection
implemented in the PYNQ Z2 FPGA ZYNQ board are described in Section 3, based on
CNN, QNN, and BNN DNN; Section 4 presents the results and discussion, and Section 5
concludes this work.

2. Related Work

The recent works on pattern recognition are described as per the CNN, QNN, and
BNN works in the FPGA- and IoT-based platforms.

One of the earlier works on BNN was proposed by Austin et al. [17]. The author
described the implementation of a binary neural network on a hardware platform. The
research showed that training and implementation was 200 times faster than that of a
current workstation. However, with the advent of modern computing platforms, numerous
techniques have improved this over time.

A recent work by Li et al. [9] proposed a fixed sign binary neural network for the
IoT. They demonstrated that their FSB algorithm achieved almost full precision results
using CIFAR-10 and an imageNet database. They showed that the resource constrained
IoT platforms could use BNN along with their proposed algorithm for better accuracy and
faster computation.

A VLSI-implemented BNN for an embedded vision-based IoT was proposed by
Kumar et al. [18]. They proposed binary weighted convolutional neural networks and
realized them on an FPGA, which helped in the case of low energy resources.

An IoT application for remote sensing application was proposed by Reiter et al. [19].
The main motive to develop the application was to reduce the bandwidth of expensive
earth observation images during capture and transmission. The authors developed a BNN
and QNN based real-time remotely sensed cloud detection using FPGA.

Another work on QNN was proposed by Chang et al [20]. To counter the complex
memory and computational complexity involved in full precision CNN, a new method
called CLIP-Q was proposed. The authors developed a software and hardware codesigned
platform and tested it on the CIFAR-10 and CIFAR-100 datasets. A similar kind of work was
proposed by [21] for quantizing the weights of pretrained neural networks, which was used
for multilayer perceptron (MLP) and CNN. The authors used a method to quantize each
neuron or hidden unit using a greedy path-following algorithm. They used the MNIST,
CIFAR-10, and VGG16 datasets. The methods were more computationally efficient, and the
quantization error also decayed with the width of the NN layer.

Due to the difficulty of training a mixed precision model and the vast space of all
possible bit quantizations, finding an optimal mixed precision model that can preserve ac-
curacy while satisfying specific constraints on the model size and computation is extremely
difficult. For this, Yu et al. [22] proposed a novel soft Barrier Penalty-based NAS (BP-NAS)
for mixed precision quantization. This ensured that all the searched models were within
the valid domain defined by the complexity constraint and thus could return an optimal
model under the given constraint by conducting a single search.

Similarly, Chu et al. [15] proposed a mixed-precision QNN with progressively de-
creasing bitwidth. For feature representation, a bitwidth assignment heuristic based on
quantitative separability was provided. Several common CNNs, such as AlexNex, ResNet,
and Faster R-CNN, were quantized using the proposed mixed-precision method. Bartan
and Mert [23] presented a convex optimization strategy for training quantized NNs with
polynomial activations; hidden convexity in two-layer neural networks, semidefinite lifting,
and Grothendieck’s identity were all used for their method.

For network compression, QNN can be an efficient approach that can be implemented
on FPGAs. Chen et al. implemented n-bit QNNs [24]. The authors’ work was able to show
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similar accuracy when they used Resnet, Densenet, and Alexnet. The experimental work
was conducted on an Xilinx ZCU102 platform.

Due to significant losses from the XNOR operations due to binary mapping, Wang et al. [25]
proposed a channel-wise interaction-based binary convolutional neural network learning
method (CI-BCNN) for efficient inference. The authors mined the channel-wise interactions by
reinforcement learning. For this purpose, they used the CIFAR-10 and ImageNet datasets.

With all the scenarios for recently developed DNN classifiers, the challenge for a
simple and readily available computer vision application platform for IoT application still
remains. With the demand for low power and higher computing efficiency, the need to use
an efficient algorithm for various IoT based applications is always a challenge.

3. Background and System Concept

Pattern classification and subsequent object recognition is the process of recognizing
objects and classifying patterns in images. In the case of digital images and video, object
recognition is a computing technology related to computer vision that includes image
processing that handles the recognition of instances of specific semantic objects (people,
buildings, cars, etc.).

Patterns or input images are recognized and categorized according to the CNN, QNN,
and BNN methods. In Figure 1, the input image is collected from the MNIST and CIFAR-10
datasets. The image is first reprocessed for noise removal, which also includes various
undesirable regions of the target image. The features of the datasets are classified using the
DNN techniques of CNN, BNN, and QNN. In the real-world scenario, the DNN classifier
plays a vital role in computer vision, natural language processing, and speech recognition.
However, one of the challenges is that DNNs consume large amounts of memory and
perform at a high computational cost. This is a great disadvantage to any mobile and
compact devices and can greatly impact the battery life.

3.1. Convolution Neural Network (CNN)

The CNN classifier for pattern classification can be described as shown in Figure 5.
The CNN classifier contains three major blocks: (a) a convolution layer, (b) a pooling layer,
and (c) an activation layer.

Figure 5. Block diagram of a CNN for pattern classification.

The convolution layer is the main unit of any CNN process. This is the first layer,
which takes the input. This layer extracts the feature from the input image. It has three
main operations, standard convolution, extended convolution, and transpose convolution.

3.2. Binarized Neural Network (BNN)

DNNs are computationally expensive and memory intensive for training and storing
models. For miniature devices such as IoT devices, this poses a challenge. The binary neural
network (BNN) is bounded by the set [+1, −1] [26]. BNNs require much less memory,
which is why they are preferred for low-power devices [27]. A single-bit of binary data
occupies only 1/32 times of the memory needed for a 32-bit display and has 32 times
less memory access. A BNN’s architecture is almost identical to that of a CNN; the only
difference is that all of its parameters are binarized to either +1 or −1. The −1 is encoded as
0, and +1 is encoded as 1. While using the CIFAR-10 dataset, the BNNs, constructed in the
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beginning, lost roughly 3% of their accuracy. Binary convolution is easy, as it is computed
as 0, 1, and its hardware execution is as easy since it uses a simple XNOR function with
a smaller portion. This leads to a lower hardware cost for binary arithmetic. Figure 6a
roughly describes the flowchart block of a BNN.

(a)

(b)

Figure 6. Block diagram of (a) BNN and (b) QNN for pattern recognition.

3.3. Quantized Neural Network (QNN)

As mentioned, QNNs are low-precision neural networks and can perform similarly
to CNN while safeguarding the network structure. A BNN is also a form of a QNN. It
defines the model parameters that are conserved by using a smaller bit width; moreover,
the model size is reduced several times. QNN consists of a quantization layer, a multiply
accumulation (MAC) layer, and a batch normalization layer. Although the storage and
computation costs are greatly reduced, data loss due to quantization errors occurs under
tradeoff conditions. A suitable quantization architecture should be able to store useful
information in continuous variables and is critical to network performances. Figure 7
describes the typical blocks of a QNN flowchart.

For quantization, to convert from a floating point to fixed point, we need to find the
required number of bits m to represent the unsigned integer part:

m = 1 +
[

log2( max
1<i<N

|xi|)
]

. (1)

In the process of quantizing a network, the network can be deployed to the IoT device.
Deployment includes:

• Exporting DNN weights and encoding them in a suitable format for on-target inference.
• Creating an inference program based on the DNN’s architecture.
• Compiling the program.
• Uploading a weighted inference program to the IoT platform.
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Figure 7. Flow diagram of a QNN for object detection.

Figure 8 demonstrates the distribution for a convolutional kernel layer.

Figure 8. Weight distribution in a convolutional neural network kernel layer [28].

3.4. Overall Process for Deploying the Algorithms

1. Import the MNIST and CIFAR-10 database sets.
2. Set the parameters required for training.
3. Load a DNN classifier, i.e., CNN, BNN, or QNN.
4. Perform DNN on the CPU and also on the FPGA-based IoT device.
5. Observe and analyze the parametric results.

4. Results and Discussion

For the purpose of analysis and validation, we used an FPGA board, which acted as
a IoT platform. The FPGA board is a Xilinx 7020 Zynq board, which can be connected
through the cloud and has low power for its operation (5–7 V DC). The board is also



Sensors 2022, 22, 8694 8 of 14

compatible with Python, which is suitable for the purpose of analysis and experimentation.
Figure 9 shows the hardware board used for our simulation and analysis. The MNIST
and CIFAR-10 databases were used for the purpose of analysis and experimentation. The
experimentation was performed on a CPU and then implemented on the FPGA hardware.
The PC had an intel Core i5-4590 3.30 GHz CPU, 16.0 GB RAM, and a Windows 10 Pro
64-bit OS. Python was used for the evaluation and analysis. The accuracy, execution time,
weight bit error rate, and RoC curve were analyzed for the DNN classifiers. Subsequently,
the algorithms were implemented on an FPGA-based IoT boar, which is Python compatible,
which acted as the IoT device. It was a ZYNQ 7020 board with 512 DDR3. The board is very
mobile and qualifies as an IoT device with all the features; it can be connected to the cloud,
has a lower power usage, and can be customized as an remote sensor for multipurpose
functionality [29].

(a) (b)

Figure 9. The PYNQ Z2 Xilinx board and its operational setup. (a) FPGA Xilinx 7200 Pynq Z2 board;
(b) setup with the RoC curve for the CIFAR-10 and MNIST for CNN.

4.1. MNIST Dataset

MNIST is an abbreviation for the Modified National Institute of Standards and Tech-
nology Dataset. This is a collection of 60,000 tiny square grayscale photos of handwritten
basic digits ranging from 0 to 9 [30]. Several standard databases have evolved to aid
machine learning and pattern recognition research, in which handwritten numbers are
preprocessed, including hashing and normalization, to allow researchers to compare the
recognition results of various approaches on a common foundation. The MNIST database
for handwritten digits is open source and has become a standard for quick testing of
machine learning methods.

4.2. CIFAR-10

the CIFAR-10 is a dataset for image classification developed by the Canadian Institute
for Advanced Research (CIFAR). There are 60,000 32 × 32 color pictures in the dataset, with
50,000 for training and 10,000 for testing. Planes, vehicles, birds, cats, deer, dogs, frogs,
horses, boats, and trucks are divided into ten categories [31].

4.3. Performance Measures

The following performance parameters were analyzed:

• Prediction accuracy
• Weight bit error
• RoC curve
• Power consumption
• Execution time.

The FPGA-based IoT device is shown in Figure 9a, and the setup is shown in Figure 9b.
Figure 10 shows the validation accuracy of the CIFAR-10 with the varying learning rates.
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The learning rate should be chosen optimally. The learning rate with 0.01 showed a low
prediction rate, and 0.5 had a high prediction rate for QNN, but it decreased sharply with
noisy labels.

Figure 10. Variation in accuracy with respect to the LR in the CIFAR-10 for the QNN.

Tables 1–3 show the execution times for various quantization levels from the CPU and
the ZYNQ board with integer values of 8, 16, and 32 bits, respectively, with respect to the
MNIST database, showing the performances for various quantization levels.

Table 1. Execution time for different platforms and models, integer 8.

Model CPU ZYNQ Z2 Board

MNIST 0.3 ms 2.9 ms

CIFAR-10 20 ms 160 ms

Table 2. Execution Time for different platforms and models, integer 16.

Model CPU ZYNQ Z2 Board

MNIST 0.6 ms 4.7 ms

CIFAR-10 24 ms 174 ms

Table 3. Execution Time for different platforms and models, integer 32.

Model CPU ZYNQ Z2 Board

MNIST 0.7 ms 5.8 ms

CIFAR-10 27 ms 180 ms

Similarly, Tables 4 and 5 shows the inference times on the CPU and FPGA, respectively.
The accuracy on the CPU for the MNIST 32 bit was 98.3%, and its accuracy was 95.5 % on
the ZYNQ FPGA board.
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Table 4. Inference Times on the CPU.

Dataset Inference Time (s) Accuracy (%)

MNIST (FP 32) 79.56 × 10−3 98.3

CIFAR-10 (FP 32) 385.74 × 10−3 82.3

Table 5. Inference Times on the FPGA.

Dataset Inference Time (s) Accuracy (%)

MNIST (FP 32) 8.41 × 10−6 95.5

CIFAR-10 (FP 32) 327.74 × 10−6 79.22

The power consumption of the FPGA shown in Table 6 was the peak value reached
during the run time.

Table 6. Peak value of the power consumption of the FPGA reached during the run time, FP32—Full
precision 32 bit, INT 8—8 bit integer.

Platform Precision Power Consumption

MNIST FPGA FP 32 2.70 W

MNIST FPGA INT 8 2.54 W

CIFAR-10 FPGA FP 32 2.94 W

CIFAR-10 FPGA INT 8 2.66 W

The weight bit error rate for the validation accuracy is shown in Figure 11.

Figure 11. Weight bit error rate for the validation accuracy for the MNIST and CIFAR-10 databases.

The RoC curves for the MNIST and CIFAR are shown in Figures 12–14. They show the
FPGA for the CNN, followed by the BNN and QNN, respectively.
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Figure 12. The RoC curves for the CIFAR-10 and MNIST for the CNN.

Figure 13. The ROC curves for the CIFAR-10 and the MNIST for the BNN.
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Figure 14. The ROC curves for the CIFAR-10 and the MNIST for the QNN.

5. Conclusions

A detailed analysis of two pattern classification classes was implemented on low
power IoT-based FPGA hardware. The challenge with the DNN-based pattern classification
method can be overcome by using a quantized neural network; furthermore, BNN can
also be used. The work was performed on an XILINX Zynq 7020 series Pynq board, which
served as the hardware platform. The MNIST and CIFAR-10 databases were considered
for simulation and experimentation. In this work, the CNN, QNN, and BNN classification
algorithm models for the MNIST and CIFAR-10 databases were successfully implemented
on an IoT-based hardware platform. The DNN classifier model was implemented in Python
and analyzed for various evaluation parameters. These included the prediction accuracy,
weight bit error rate, ROC curve, and execution time. The results showed that the BNN
and QNN could be efficiently implemented and operated on mobile hardware devices such
as the one used in this work, i.e., the ZYNQ Z2 board, which is an FPGA-based device
that can be used as an IoT device. The analysis from the experiments performed using the
FPGA-based hardware showed that the QNN, including the BNN, for pattern recognition
application for IoT applications can be used in IoT based applications including in real time.
This can be used for the future scope of the work. Most importantly, the QNN replaced the
conventional CNN, reducing the device’s memory usage and computational resources.

Author Contributions: Conceptualization, M.R.B.; methodology, M.R.B.; validation, M.R.B.; formal
analysis, M.R.B.; investigation, M.R.B.; resources, M.R.B. and J.-Y.R.; writing—original draft prepa-
ration, P.B.; writing—review and editing, P.B. and J.-Y.R.; supervision, J.-Y.R.; funding acquisition,
M.R.B., J.-Y.R., A.S., T.S.D. and Y.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B09043286).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Sensors 2022, 22, 8694 13 of 14

Acknowledgments: We are thankful to the National Research Foundation (NRF), Korea, for sponsor-
ing this research publication under Project BK21 FOUR (Smart Robot Convergence and Application
Education Research Center).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kousik, N.; Natarajan, Y.; Raja, R.A.; Kallam, S.; Patan, R.; Gandomi, A.H. Improved salient object detection using hybrid

Convolution Recurrent Neural Network. Expert Syst. Appl. 2021, 166, 114064.
2. Pérez-Hernández, F.; Tabik, S.; Lamas, A.; Olmos, R.; Fujita, H.; Herrera, F. Object detection binary classifiers methodology

based on deep learning to identify small objects handled similarly: Application in video surveillance. Knowl.-Based Syst. 2020,
194, 105590.

3. Zhao, Z.Q.; Zheng, P.; Xu, S.t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 3212–3232.

4. Wang, W.; Lai, Q.; Fu, H.; Shen, J.; Ling, H.; Yang, R. Salient object detection in the deep learning era: An in-depth survey. IEEE
Trans. Pattern Anal. Mach. Intell. 2021, 44, 3239–3259..

5. Ghatwary, N.; Zolgharni, M.; Ye, X. Early esophageal adenocarcinoma detection using deep learning methods. Int. J. Comput.
Assist. Radiol. Surg. 2019, 14, 611–621.

6. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey.
Int. J. Comput. Vis. 2020, 128, 261–318.

7. Wu, X.; Sahoo, D.; Hoi, S.C. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64.
8. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on

convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
9. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.

ISPRS J. Photogramm. Remote. Sens. 2020, 159, 296–307.
10. Lin, Z.; Yih, M.; Ota, J.M.; Owens, J.D.; Muyan-Özçelik, P. Benchmarking deep learning frameworks and investigating FPGA

deployment for traffic sign classification and detection. IEEE Trans. Intell. Veh. 2019, 4, 385–395.
11. Zhu, J.; Wang, L.; Liu, H.; Tian, S.; Deng, Q.; Li, J. An efficient task assignment framework to accelerate DPU-based convolutional

neural network inference on FPGAs. IEEE Access 2020, 8, 83224–83237.
12. Blaiech, A.G.; Khalifa, K.B.; Valderrama, C.; Fernandes, M.A.; Bedoui, M.H. A survey and taxonomy of FPGA-based deep

learning accelerators. J. Syst. Arch. 2019, 98, 331–345.
13. Li, S.; Luo, Y.; Sun, K.; Yadav, N.; Choi, K.K. A novel FPGA accelerator design for real-time and ultra-low power deep

convolutional neural networks compared with titan X GPU. IEEE Access 2020, 8, 105455–105471.
14. Giefer, L.A.; Staar, B.; Freitag, M. FPGA-Based Optical Surface Inspection of Wind Turbine Rotor Blades Using Quantized Neural

Networks. Electronics 2020, 9, 1824.
15. Chu, T.; Luo, Q.; Yang, J.; Huang, X. Mixed-precision quantized neural networks with progressively decreasing bitwidth. Pattern

Recognit. 2021, 111, 107647.
16. Qin, H.; Gong, R.; Liu, X.; Bai, X.; Song, J.; Sebe, N. Binary neural networks: A survey. Pattern Recognit. 2020, 105, 107281.
17. Austin, J.; Kennedy, J. Presence, a hardware implementation of binary neural networks. In Proceedings of the International

Conference on Artificial Neural Networks, Skövde, Sweden, 2–4 September 1998; Springer: London, UK, 1998, pp. 469–474.
18. Kumar, V.; Baskar, D.; Arunsi, M.; Jenova, R.; Majid, M.; et al. VLSI design and implementation of High-performance Binary-

weighted convolutional artificial neural networks for embedded vision based Internet of Things (IoT). Procedia Comput. Sci. 2019,
163, 639–647.

19. Reiter, P.; Karagiannakis, P.; Ireland, M.; Greenland, S.; Crockett, L. FPGA acceleration of a quantized neural network for
remote-sensed cloud detection. In Proceedings of the 7th International Workshop on On-Board Payload Data Compression,
Virtual, 21–23 September 2020.

20. Cheng, W.; Lin, C.; Shih, Y.Y. An Efficient Implementation of Convolutional Neural Network With CLIP-Q Quantization on
FPGA. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 4093–4102.

21. Lybrand, E.; Saab, R. A Greedy Algorithm for Quantizing Neural Networks. J. Mach. Learn. Res. 2021, 22, 156–1.
22. Yu, H.; Han, Q.; Li, J.; Shi, J.; Cheng, G.; Fan, B. Search what you want: Barrier panelty nas for mixed precision quantization. In

Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland,
2020; pp. 1–16.

23. Bartan, B.; Pilanci, M. Training quantized neural networks to global optimality via semidefinite programming. In Proceedings of
the International Conference on Machine Learning. PMLR, Virtual, 18–24 July 2021; pp. 694–704.

24. Chen, J.; Liu, L.; Liu, Y.; Zeng, X. A learning framework for n-bit quantized neural networks toward FPGAs. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 1067–1081.

25. Wang, Z.; Lu, J.; Tao, C.; Zhou, J.; Tian, Q. Learning channel-wise interactions for binary convolutional neural networks. In
Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 568–577.



Sensors 2022, 22, 8694 14 of 14

26. Jain, D.K. An evaluation of deep learning based object detection strategies for threat object detection in baggage security imagery.
Pattern Recognit. Lett. 2019, 120, 112–119.

27. Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Muramatsu, C.; Fukuda, M.; Kise, Y.; Nozawa, M.; Kuwada, C.; Fujita, H.; Katsumata, A.; et al.
Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning
object detection technique. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 424–430.

28. Novac, P.E.; Hacene, G.B.; Pegatoquet, A.; Miramond, B.; Gripon, V. Quantization and Deployment of Deep Neural Networks on
Microcontrollers. Sensors 2021, 21, 2984.

29. Belabed, T.; Quenon, A.; Da Silva, V.R.G.; Sakuyama, C.A.V.; Souani, C. Full Python Interface Control: Auto Generation And
Adaptation of Deep Neural Networks For Edge Computing and IoT Applications FPGA-Based Acceleration. In Proceedings
of the 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Kocaeli, Turkey, 25–27
August 2021; pp. 1–6.

30. Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process.
Mag. 2012, 29, 141–142.

31. Doon, R.; Rawat, T.K.; Gautam, S. Cifar-10 classification using deep convolutional neural network. In Proceedings of the 2018
IEEE Punecon, Pune, India, 30 November–2 December 2018; pp. 1–5.


	Introduction
	Related Work
	Background and System Concept
	Convolution Neural Network (CNN)
	Binarized Neural Network (BNN)
	Quantized Neural Network (QNN)
	Overall Process for Deploying the Algorithms

	Results and Discussion
	MNIST Dataset
	CIFAR-10
	Performance Measures

	Conclusions
	References

