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Abstract: Not only for radio frequency but also for optical communication systems, knowledge of 

the signal-to-noise ratio (SNR) is essential, e.g., for an adaptive network, where modulation schemes 

and/or error correction methods should be selected according to the varying channel states. In the 

current paper, this topic is discussed for a bandlimited optical intensity link under the assumption 

that the data symbols are known to the receiver unit in form of pilot sequences. This requires a 

unipolar signal design regarding the symbol constellation, but also a non-negative pulse shape sat-

isfying the Nyquist criterion is necessary. Focusing on this kind of scenario, the modified Cramer–

Rao lower bound is derived, representing the theoretical limit of the error performance of the data-

aided SNR estimator developed in this context. Furthermore, we derive and analyze a maximum 

likelihood algorithm for SNR estimation, which turns out to be particularly simple for specific val-

ues of the excess bandwidth, among them the most attractive case of minimum bandwidth occupa-

tion. Numerical results confirming the analytical work conclude the paper. 
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1. Introduction 

In a series of papers recently published by the author [1–3], parameter estimation 

and synchronization for a bandlimited optical intensity link have been discussed. In this 

context, a unipolar waveform design is indispensable with respect to pulse shaping and 

symbol constellation [4,5]. Furthermore, it is most helpful that pulse shapes satisfy the 

Nyquist criterion, which allows for a simple detection process in the receiver unit [6]. 

However, not only for radio frequency (RF) but also for optical wireless communica-

tion (OWC) solutions [7–10], the relevant transmission parameters have to be recovered 

reliably, because otherwise subsequent receiver stages, such as  error correction algo-

rithms, cannot be operated in an efficient way [11,12]. In particular, recovery of the symbol 

timing is of paramount importance in this respect, since this is a prerequisite for many 

other estimation and detection procedures. In [1–3], it has been shown how this might be 

achieved for a bandlimited optical intensity link under different conditions, e.g., whether 

data are known to the receiver unit or not in the form of pilot sequences, or if the estimator 

or synchronizer module is to be implemented in a feedforward or feedback manner. 

Usually, the estimation of the signal-to-noise ratio (SNR) requires that the symbol 

timing has been established before by a properly selected algorithm. It is to be recalled 

that knowledge of the SNR is normally needed for adaptive communication systems to 

select modulation and coding schemes according to the given channel conditions [13], but 

also powerful error correction methods—such as turbo or LDPC algorithms—need this 

sort of information [14]. Scanning the open literature, numerous papers are available 

about SNR estimation in RF channels, e.g., the frequently cited overview by Pauluzzi and 

Beaulieu [15], but little or no information is published for OWC systems. This has been 

the main motivation of the current contribution addressing data-aided SNR estimation 
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for a bandlimited optical intensity channel. Finally, it is to be noticed that the article was 

prepared for a Special Issue of Feature Papers 2022 in the Communications Section of 

MDPI Sensors. 

The rest of the paper is organized as follows: the signal and channel model for ana-

lytical and simulation work is introduced in Section 2, whereas Section 3 focuses on the 

derivation of the Cramer–Rao lower bound (CRLB) as the theoretical limit of the jitter 

performance for any algorithm discussed in the context of SNR estimation. In Section 4, 

we derive a maximum likelihood (ML) algorithm and analyze it in terms of mean value 

and variance. Numerical results are shown in Section 5, and Section 6 concludes the paper. 

2. Signal and Channel Model 

As already mentioned in the introductory section, properly selected pulse shapes and 

modulation schemes are necessary to satisfy the non-negativity as well as the Nyquist 

constraints required for a bandlimited optical intensity channel. In this respect, it is as-

sumed that the real-valued data symbols ak, k , are independent and identically distrib-

uted (i.i.d.) elements of an M-ary PAM alphabet  . It makes sense to organize the alpha-

bet such that the symbols are normalized to unit energy, i.e.,  2[ ] 1
k

a , where [ ]  de-

notes the expectation operator. Then, with    1
6
( 1)(2 1)

M
M M , we have 

k
a   = 


1 {0, 1, , 1}

M

M . This means that the average value is given by 





  



3( 1)1 1
[ ]

2 2(2 1)a k

M

MM
a

M
  (1)

On the other hand, the signal at the output of the opto-electrical receiver module is 

obtained as 

   ( ) ( ) ( )
k

k

r t A a h t kT w t  (2)

where A > 0 is the channel gain, h(t) describes the pulse shape, T and  symbolize the 

symbol period and the propagation delay between receiver and transmitter station, re-

spectively. We assume that A is a constant regarding the observation interval used for 

estimation purposes, because variations of the channel state are normally slow enough so 

that fading effects need not be taken into account. As already required previously, h(t) 

must satisfy the non-negativity as well as the Nyquist criterion, e.g., achieved by a squared 

raised cosine function [1,6]. In line with the investigations carried out in [1–6], the receiver 

signal in (2) is also assumed to be distorted by additive white Gaussian noise (AWGN), in 

the following expressed by w(t), with zero mean and variance 2

w
. 

In addition, we introduce the average optical power as 
0 a

P h , where 





 
1

( )h h t dt
T

 (3)

so that the average electrical SNR at the receiver can be defined as 





2 2

0

2s

w

A P
 (4)

However, before being treated in further stages of operation, the signal in (2) has to 

pass the receiver filter q(t), whose output is given by  ( ) ( ) ( )z t q t r t , where  denotes the 

convolutional operator. For convenient reasons, this is summarized in Figure 1. 
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Figure 1. Signal model for SNR estimation. 

Since there exists no simple solution for a matched filter structure in the context of a 

bandlimited optical intensity link [6], it is suggested that q(t) exhibits a flat behavior over 

the spectrum occupied by the user component in (2). This straightforward approach guar-

antees that the waveform will not be distorted, but the price to be paid is an increased 

amount of noise the subsequent receiver stages have to cope with. In particular, this means 

that the transfer function of the filter performs a rectangular shape in the frequency do-

main, i.e.,  ( ) [ ( )]Q f q t T  for  | | (1 )f T  and ( ) 0Q f  elsewhere, with  as 

the roll-off factor (excess bandwidth) of the selected pulse shape; recall that  = 0 indicates 

the minimum bandwidth scenario. The related impulse response is then furnished by ap-

plication of the inverse Fourier transform [16], i.e., 


 

  1 2(1 )
( ) [ ( )] sinc[2(1 ) ]q t Q f t T

T
  (5)

with sinc(x) =  sin( ) ( )x x . Of course, the noise signal at this flat filter output develops 

as n(t) = w(t)  q(t) representing a zero-mean non-white Gaussian process. Assuming in 

the next step that the symbol timing has been reliably recovered and corrected, e.g., by 

the algorithm proposed in [1], the T-spaced samples at the output of the receiver filter are 

obtained as 

   ( )
k k k

z z kT A a n  (6)

where [ ] 0
k

n  and       2[ ] 2(1 ) sinc[2(1 )( )]
i k w

n n i k . 

3. Cramer–Rao Lower Bound 

3.1. Derivation of the Log-Likelihood Function 

The Cramer–Rao lower bound (CRLB) is a major figure of merit when it comes to the 

estimation of a parameter [17]. The reason behind this is the fact that the bound represents 

the theoretical limit of the jitter (error) variance of any estimator developed in this context. 

According to the signal model specified previously, we have to consider the param-

eter vector u = (u1, u2) = (A, w). The CRLB for ui is determined by 

 1CRLB( ) [ ( )]
i i

u J u  (7)

where []i indicates the i-th diagonal entry of the inverted Fisher information matrix (FIM) 

expressed by J(u). In the case that no nuisance parameter needs to be taken into account, 

the FIM entries are computed as 

  
    

   


2

, ,

( ; )
[ ( )]

i k i k

i k

J
u u

z u
J u  (8)

with z as the given vector of observables, (z;u) denotes the log-likelihood function (LLF) 

characterizing the communication link, and [ ]  symbolizes expectation with respect to 

the noise model. 

By inspection of (8), it is clear that the computation of the CRLB requires the 

knowledge of the LLF describing the subject of investigation. To this end, we assume that 

a sequence of L receiver samples (6) forms the vector z expressed by 
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  Az a n  (9)

The vector a of known data symbols specifies the pilot sequence, which is to be used 

for estimation purposes in the sequel, and n denotes the noise vector with covariance ma-

trix 

     2[ ] 2(1 )T

w
R n n Ω  (10)

where the entries for line i and column k of  are given by      sinc[2(1 )( )]
ik ki

i k  

forming this way a symmetric Toeplitz matrix [18]. As a result, the likelihood function for 

our estimation problem can be written as [19,20], 



  


11
2

( ) ( )1
Pr( ; )

(2 ) det( )

TA A

L
e

z a R z a
z u

R
 (11)

However, instead of using u = (A, w), it is easier to concentrate in the following on 

the average electrical SNR normalized by 2

0
P , i.e.,    2 2 2

0s s w
P A . Then, by introduction 

of  2

n w
P , we have that u = (s, Pn) and the related LLF is furnished by 

2
( ; ) logPr( ; ) ~ log

2 4(1 )

T T T

s n s n

n

n

P PL
P

P

 



 
   



z Ψz z Ψa a Ψa
z u z u  (12)

which has been achieved by  1Ψ Ω  as well as omitting all immaterial constants and 

factors not depending on u. 

3.2. Modified Cramer–Rao Lower Bound 

In the next step, the FIM entries are obtained by computing the second-order deriv-

atives according to (8), the results of which have then to be averaged with respect to the 

noise vector n. However, this approach means that the CRLB will be a function of the 

selected pilot sequence a. Therefore, it is suggested to extend the averaging procedure to 

a as well, which creates the so-called modified Cramer–Rao lower bound (MCRLB) [21–

23]. Doing so, we get after some algebra: 

 

  
   

  
 

2

11 2

( ; ) 1
[ ]

8(1 )
T

ss

J
a

z u
a Ψa  (13)



 

  
      

    
  

2

22 2 2 2 3

( ; ) 1
[ ] [ ]

2 8(1 ) 2(1 )

T Ts

n n n n

L
J

P P P P
a n

z u
a Ψa n Ψn  (14)

 

  
    

   
 

2

12 21

( ; ) 1
[ ]

8(1 )
T

s n n

J J
P P a

z u
a Ψa  (15)

Evaluating (7) for u1 = s, the corresponding MCRLB is given by 

 


22

2

11 22 12

MCRLB( )
s

J

J J J
 (16)

Substituting (13)–(15) into (16) and scaling the result with respect to 2

s
, we obtain 

the normalized MCRLB expressed as 



Sensors 2022, 22, 8660 5 of 12 
 

 

2

MCRLB( )
NMCRLB( )

4
2(1 )

[ ] (1 ) [ ]

s
s

s

n

T T

n s

P

L P







 



 
      n a

n Ψ n a Ψ a 

 (17)

Introducing the auxiliary terms 

   
    

     

        
1 1 1 1 1

0 1 2
0 0 1 0 0

1 1 1
, ,

L L L L L

ii ik ik ik
i i k i i kL L L

 (18) 

where ik is the entry of  indicating line i and column k, the expected operations in (17) 

can be written as 



 

    

 

 

  

   

  

   



 

     



  

  

 

 

1 1

0 0

1 1 1
2

0 0 0,

1 1 1
2 2

0 1
0 0 1

[ ] [ ]

[ ] [ ]

2 ( 2 )

L L
T

i k ik
i k

L L L

i ii i k ik
i i k k i

L L L

a ii a ik a
i i k i

a a

a a a

L

a
a Ψ a

 (19) 

and 

1 1

0 0

1 1
2

2
0 0

[ ] [ ]

2 (1 )

L L
T

i k ik
i k

L L

n ik ik n
i k

n n

L P



   

 

 

 

 



   





n
n Ψ n 

 (20) 

Finally, by plugging (19) and (20) into (17), we have that 




 

 
        

2
2 0 1

2 1 4(1 )
NMCRLB( )

2 1 ( 2 )
s

s a
L

 (21) 

Nevertheless, the relationship might be simplified for   1
2

{0, , 1} , because in this 

case    = sinc[2(1 )( )] 1
ik

i k  for i = k and zero elsewhere. This means that 
1Ω Ω  = 

L
Ψ I , with IL as the L-dimensional identity matrix, which means also that    

0 2
1  

and  
1

0 . Hence, the normalized bound boils down to 






 
   

 

4(1 )2
NMCRLB( ) 1

s

s
L

 (22) 

4. Maximum Likelihood Estimation 

4.1. Derivation of the Estimator Algorithm 

By means of the LLF in (12), we are basically in the position to derive a maximum 

likelihood (ML) algorithm for SNR estimation. However, the SNR parameter is composed 

of two ingredients—channel gain A and the noise power Pn—the estimates of which are 

needed to compute the SNR estimate. This is simply achieved by substituting   2

s n
A P  

into (12), deriving the resulting LLF with respect to A and Pn, equating both relationships 

to zero and solving them analytically. Doing this, we obtain for u = (A, Pn) 




 

 ˆ

ˆ( ; )
0

ˆ2(1 )

T T

n

A

A Pu=u

z Ψ a a Ψ az u
 (23) 

and 
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2

2

ˆ

ˆ ˆ2( ; )
0

ˆ ˆ2 4(1 )

T T T

n n n

A AL

P P P

 
   

 
u=u

z Ψ z z Ψ a a Ψ az u
 (24)

Then, by introduction of  T

aa
M a Ψa ,  T

a z
M z Ψ a , and  T

zz
M z Ψ z , we find the 

estimates for channel gain and noise power in closed form: 

 ˆ
T

a z

T
aa

M
A

M

z Ψ a

a Ψ a
 (25) 

22ˆ ˆ2 1ˆ
2(1 ) 2(1 )

T T T
a z

n zz

aa

MA A
P M

L L M 

  
   
  
 

z Ψ z z Ψa a Ψa
 (26) 

By inspection of (25) and (26), it is clear that a viable solution is only achievable for 

Maa > 0, i.e., a pilot sequence consisting of zero symbols only would not work. Finally, 

according to the invariance principle for ML estimates [24], the SNR solution is given by 

 
2ˆ

ˆ
ˆs

n

A

P
 (27) 

4.2. Probability Analysis 

In this subsection, we want to derive the probability density function (PDF) of the 

SNR estimate in (27) and analyze it in terms of bias and variance. It turns out that this is 

possible in closed form for  = IL, i.e.,   1
2

{0, , 1} , whereas for other values of , it is 

verified in Section 5 that the analytical results achieved with  = IL are very close to the 

true ones obtained by numerical means. 

By plugging  = IL into (25), the estimate for the channel gain develops as 






      

1

0

( ) 1ˆ
TT T L

k kT T T
kaa

A
A A A a n

M

a n az a n a

a a a a a a
 (28) 

which means that Â  is a zero-mean Gaussian variate. Computing the variance of the lat-

ter, we have to consider that the noise samples nk are zero-mean and i.i.d. in case that  = 

IL. Therefore, 




 

 

    
        
     
   

2 21 1
2 2 2 2

2 2
0 0

1 1ˆ[( ) ]
L L

n
A k k k k

k k aaaa aa

A A a n a n
MM M

 (29) 

where     2 2 2[ ] 2(1 )
n k w

n . The related PDF is then straightforwardly given by 





 
2 2ˆ( ) 21ˆ( )

2

AA A

A

A

f A e  (30) 

On the other hand,  2ˆY A  corresponds to a non-central Gamma variate [19] charac-

terized by the distribution 



 

 
 
  
 
 

2 2( ) 2

2

1
( ) cosh , 0

2

Ay A

Y

AA

A y
f y e y

y
 (31) 

If we consider in the next step the estimate of the noise power for  = IL, we have 
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2ˆ ˆ2ˆ
2(1 )

T T T

n

A A
P

L

 




z z z a a a
 (32) 

With   Az a n  and Â  determined by (28), the numerator in (32) simplifies to 

2
2 ( )ˆ ˆ( ) ( ) 2 ( )

T
T T T T

T
A A A A A      

n a
a n a n a n a a a n n

a a
 (33) 

which represents a central Gamma variate with variance  2

n
 and L—1 degrees of free-

dom [20,25]. Hence, by introduction of  ˆ
n

X P , the PDF of (32) can be written as 









 


 



1 2
2

1
2

1 2

2 1
2

1
( ) , 0

(2 ) ( )

L
x

L

x

X
L

x

f x x e x  (34) 

where 
 





 

2 2
2

2(1 )
n w

x L L
. Employing in the following the PDFs in (31) and (34), the distri-

bution of the SNR estimate is determined by (A2) derived in the Appendix A, i.e., 

  
 

   


 

     

0
1 1

ˆ1
ˆ ˆ( ) , ; , 0

ˆ2 2ˆ ˆ( )

s
s s

L
ss s

K L
f e F  (35) 

Regarding (A3) and (A4), the parameters , , and K0 are functions of the true SNR 

value denoted by s, the roll-off factor , the observation length L, as well as the selected 

pilot sequence a. 

By means of the relationships (A9) and (A10) detailed in the Appendix, we can spec-

ify the first- and second-order moments of (35) as follows: 

0

2(1 )
ˆ ˆ ˆ ˆ[ ] ( )

3s s s s s

aa

L
f d

L M


    

  
      
  (36) 

2 2
2 2 2

2
0

12(1 ) 12(1 )
ˆ ˆ ˆ ˆ[ ] ( )

( 3)( 5)
s

s s s s s

aa aa

L
f d

L L M M

  
    

   
        
 �  (37) 

Therefore, bias and variance of ̂
s
, normalized by 

s
 and  2

s
, respectively, are 

given by 

  


 

  
       

 ˆ[ ] 2(1 )
ˆNBias( ) 1 1

3
s s

s

s aa s

L

L M
 (38) 

and 

2 2

2

2 2

2 2 2

ˆ ˆ[ ] [ ]
ˆNVar( )

2 4(1 )( 2) 4(1 ) ( 2)
1

( 3) ( 5)

s s
s

s

aa s aa s

L L L

ML L M

 




 

 




    
       

 

 (39) 

Via Maa, it is obvious that (38) and (39) depend on the selected pilot sequence. In order 

to avoid this drawback, we could average the relationships with respect to a. The problem 

in this context is that there exists no closed form solution. A way out of this dilemma is 

Jensen’s inequality [26] (Appendix 1B), which provides us with 

 
   

 
�

  2

1 1 1 1

[ ] [ ]aa aa k
M M LL a

 (40) 

and 
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

 
   

    
�

  2 2 4 2 2

1 1 1 1

( 1)[ ] [ ] ( 1) [ ] aaa aa k k
L L LM M L a L L a

 (41) 

where a denotes the symbol kurtosis of the PAM alphabet, which is given by 


 

  
 

 4 6 3 ( 1) 1
[ ]

5 (2 1)( 1)a k

M M
a

M M
 (42) 

By taking into account the auxiliary results in (40) and (41), we finally obtain 






 
      

2(1 )
ˆNBias( ) 1 1

3s

s

L

L L
 (43) 

and 

 


  

    
        

2 2

2 2

2 4(1 )( 2) 4(1 ) ( 2)
ˆNVar( ) 1

( 3) ( 5) [ ( 1)]
s

s a s

L L L

LL L L L L
 (44) 

as lower bounds for the relationships in (38) and (39), respectively. 

5. Numerical Results 

The analytical results achieved for SNR estimation in Sections 3 and 4 will be verified 

by Monte Carlo (MC) simulations. In the following, the former are indicated by lines, 

whereas the latter are shown by markers. Each point in the diagrams below has been ob-

tained by averaging a number of 105 estimates, which turned out to be large enough to 

verify the analytical results with sufficient accuracy. 

Assuming a 4-PAM constellation operated with s = 0 dB and a roll-off factor   {0.0, 

1.0}, Figure 2 illustrates the evolution of the normalized bias as a function of the observa-

tion length L. It is to be noticed that the lines in different colors represent the lower bound 

given by (43); verified by simulation results, we observe that the lower limit is very tight 

over the full range of L. We observe that the bias decreases rapidly with increasing values 

of L, which is also confirmed by (43). In addition, the diagram depicts the results obtained 

for 16-PAM, s = 10 dB, and   {0.2, 0.8}. In the strict sense, the relationship in (43) applies 

only to values of   {0.0, 0.5, 1.0}, but the 16-PAM scenario in Figure 2 demonstrates that 

it represents also a very good approximation for other values of the excess bandwidth. 
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 = 0.8 

N
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m
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4–PAM, s = 0 dB 
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Figure 2. Evolution of the normalized bias. 
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The evolution of the normalized bias has been simulated and verified for modulation 

schemes other than 4-PAM and 16-PAM, e.g., 2-PAM and 8-PAM, as well as for roll-off 

factors different to those exemplified in Figure 2. It turned out that the bias of the estimator 

algorithm is reflected accurately enough by the formula in (43), disappearing for very 

large values of L irrespective of the selected values of M or . 

Using a 4-PAM scheme with L = 10 and the same roll-off factors as before, Figure 3 

illustrates the evolution of the normalized variance as a function of the true SNR value in 

dB. For comparison purposes, the normalized MCRLB expressed by (22) is shown in 

dashed style. We observe that the latter is fairly loose for such small observation windows, 

whereas the lower bound of the variance in (44) appears to be very tight as confirmed by 

simulation results, in particular at larger SNR values. However, the diagram illustrates 

also that the MCRLB is more and more approximated by the jitter variance of the related 

estimator algorithm, when we increase the observation length in Figure 3, verified for 16-

PAM, L = 100, and   {0.2, 0.8}; it is to be recalled that for   {0.0, 0.5, 1.0}, the NMCRLB 

is furnished by (21). Finally, we see that the MC output is very close to (44) over the full 

SNR range, although the relationship is, in a strict sense, only applicable to roll-off factors 

  {0.0, 0.5, 1.0}. These observations also hold true for modulation schemes and roll-off 

factors other than those used in Figure 3; especially, one can see that for L  1 and s  

1, the normalized variance is simply given by 2/L. 
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Figure 3. Evolution of the normalized MCRLB and variance. 

6. Concluding Remarks 

Assuming a data-aided situation, i.e., data symbols are known to the receiver in the 

form of a pilot sequence, SNR estimation for a bandlimited optical intensity link has been 

investigated in the current paper. This requires a signal design achieved by an M-ary PAM 

scheme and a non-negative pulse shape also satisfying the Nyquist criterion. By means of 

a flat receiver filter, it is avoided that the waveforms of the user signal are distorted, but 

the price to be paid is an additional amount of noise which the subsequent receiver stages 

are suffering from. 

Conditioned on reliable recovery and correction of the symbol timing, the modified 

CRLB could be derived as the theoretical limit of the jitter variance produced by the SNR 

estimator developed in the context of this paper. With respect to the latter, an ML solution 

has been obtained in closed form, which turned out to be particularly simple from a com-

putational point of view for specific values of excess bandwidth, among them being the 

minimum bandwidth scenario. For these values, the analytical relationships for bias and 

jitter variance have been obtained in closed form as well. 
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Verified by simulation results, it could be shown that—irrespective of the chosen 

PAM constellation and the value of the excess bandwidth—the bias effect vanishes more 

and more with increasing values of the true SNR value and the observation length L the 

link is operated with. This is also confirmed in view of jitter performance insofar as the 

CRLB is successively approached by increasing values of L. 
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Programme (ASAP), funded by the Austrian Research Promotion Agency (FFG), for a project on 
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Appendix A 

Using the identities introduced in Section 4, i.e.,  ˆ
n

X P  as well as  2ˆY A , together 

with  ˆ
s

Z Y X , the PDF of the SNR estimate can be expressed as [27] 

 

  |

0 0

( ) ( | ) ( ) ( ) ( )
Z Z X X Y X

f z f z x f x dx x f x z f x dx  (A1)

Substituting in the sequel the PDFs given by (31) and (34), we obtain by means of [28] 

(3.462/1) and (9.240) after some lengthy but straightforward manipulations, 

 



  
  

 

0
1 1

1
( ) , ;

2 2( )
Z

L

K L z
f z e F

zz z
 (A2)

where 
1 1

( )F  denotes the confluent hypergeometric (Kummer) function [29] and the pa-

rameters , , and K0 are specified as follows: 

  
 

 


   



22

2 2

2(1 )
,

4(1 )2
aa s A

aaA x

MA L

M
 (A3)




 





 

  
     

( 1) 2
2

( 1) 22 2
0 21 1

2 2

( ) ( )

( ) ( )

L
L L

LA

L L
x

K  (A4)

Deriving the m-th order moment of (A2), we first express the confluent hypergeomet-

ric function by its Meijer G-equivalent [30] (8.4.45/2), i.e., 

 
  
  

1,1

1 1 2,1

1,( ) 1
( , ; )

( )

bb
F a b z G

aa z
 (A5)

Applying then the integration rules for Meijer G-functions [30] (2.24.2/6), we get 

0

0

1 2 11
1,10 2 2
2,12

0 22

12 11
(2 1 ) 2 2,12 2 2 2

0 3,2 1
2 22

( ) ,

1,( )

( ) ( )

1, ,( ) ( ) 1

,( )

m

m Z

m

L LL

LL m
m L

LL

M z f z dz m

K z z
e G dz

zz

K e G
m














 


 
  

 

  
      

  
     







 (A6)

Employing the integral definition for Meijer G-functions [30] (8.2.1/1) as well as the 

identity in (A5), which means that 
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
 

       
                   

1 1 1
2,1 1,1 22 2 2
3,2 2 ,1 1 11 1 1

2 2 2 2

1, , 1, ( )1 1 1 1
, ;

, ( ) 2 2

L

L

m
G G F m

m m
 (A7)

the relationship in (A6) might be simplified to 

 
 

      
  

  

2 11
(2 1 ) 22 2

0 1 1

2

( ) ( ) 1 1
, ;

( ) 2 2

L m
m L

m L

m
M K e F m  (A8)

Finally, by taking into account the properties of confluent hypergeometric functions, 

the first- and second-order moments are provided as 


 


 

 


3
( 3) 20 2

1

2

( )
(2 1)

2 ( )

L
L

L

K
M  (A9)

and 


  


 

  


5
( 5) 2 20 2

2

2

( )
(4 12 3)

4 ( )

L
L

L

K
M  (A10)
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