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Abstract: The wide range of unmanned aerial system (UAS) applications has led to a substantial
increase in their numbers, giving rise to a whole new area of systems aiming at detecting and/or
mitigating their potentially unauthorized activities. The majority of these proposed solutions for
countering the aforementioned actions (C-UAS) include radar/RF/EO/IR/acoustic sensors, usually
working in coordination. This work introduces a small UAS (sUAS) acoustic detection system based
on an array of microphones, easily deployable and with moderate cost. It continuously collects
audio data and enables (a) the direction of arrival (DOA) estimation of the most prominent incoming
acoustic signal by implementing a straightforward algorithmic process similar to triangulation and
(b) identification, i.e., confirmation that the incoming acoustic signal actually emanates from a UAS,
by exploiting sound spectrograms using machine-learning (ML) techniques. Extensive outdoor
experimental sessions have validated this system’s efficacy for reliable UAS detection at distances
exceeding 70 m.

Keywords: UAS; microphone array; DOA estimation; identification; machine learning

1. Introduction

The extensive use of unmanned aerial systems (UAS) in many military, leisure, and
commercial applications, has initiated the development of a range of systems aimed to
detect their presence and identify them. A layered approach [1,2] is generally deemed to
be more effective in this effort, given that every detection and/or identification method is
characterized by its respective drawbacks and limitations.

Active methods, such as radar, are better suited for long-range detection systems;
electromagnetic signals travel faster and are less susceptible to propagation losses as
compared to acoustic/sound mechanical waves. As a result, early warning systems rely
heavily on active systems for the detection of distant objects.

Passive methods (video, EO, IR, acoustic) are generally affected by weather con-
ditions. The presence of clouds, fog, rain, etc., has a major impact on optical/electro-
optical/infrared/thermal cameras’ ability to discern objects. Passive RF detection (“captur-
ing” the link signal between the ground control station and the UAS) is less hindered by
atmospheric phenomena but may require LOS with the target. As for acoustic signals, the
sound absorption and attenuation while travelling through air sets significant constraints to
the maximum possible distance of detection/identification. Moreover, the wideband nature
of the acoustic signal characterized by rich harmonic content requires different techniques
and approaches than the narrowband RF signal.

The research for the acoustic detection and tracking of aerial bodies [aircraft, un-
manned aerial vehicles (UAVs)] has been active for decades; in [3], utilizing the acoustical
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Doppler effect, the altitude and speed of a propeller-driven aircraft was estimated by pro-
cessing the acoustic data from a microphone as the aircraft transited overhead at altitudes
of between 250 and1500 ft (76–457 m).

A five-sensor cross array was used in [4] towards the estimation of the motion param-
eters of a moving ground vehicle’s broadband acoustic energy emissions: an early form
of broadband passive acoustic techniques. The research was extended to turboprop and
rotary-wing aircraft flight parameter estimations using both narrowband and broadband
passive acoustic signal processing methods in [5].

Similarly, in [6], higher harmonics in the acoustic spectrogram of a UAV in-flight, as
obtained from a ground-based microphone measurement, were shown to be useful for
estimating the vehicle’s altitude, speed, and true engine revolutions per minute.

A 16-element cross (16-X) array with 0.3 m spacing and a 4-element orthogonal (4-L)
array with 10 m spacing (on the ground) and 1 m elevation were used in [7,8] to detect and
track the flight of gasoline-engine and electric-engine UAVs. A key finding of this research
was that, in contrast to the ground vehicles, the harmonic lines generated by the UAVs
tended to be more stationary.

An acoustic array using 24 custom-made condenser microphones was implemented
in [9]. This system was comprised of commercial off-the-shelf (COTS) hardware, while no
data regarding the aircraft type or its flight path details were provided.

In terms of noise measurements for tactical (large) UAVs, an acoustic signature analysis
can be found in [10,11], while an experimental analysis on the noise of propellers of small
UAVs can be observed in [12,13]. The analyses of quad-copter sUAS acoustic signals using
time-dependent frequency analysis and spectrograms are also presented in [14–16]; the
main frequency content (characteristic band) was found to be below 3 kHz ([14]), between
1 and8 kHz ([15]) and up to 1 kHz and around 4 kHz ([16]). The analysis of the acoustic
measurements showed a tonal component at the one-third octave at the frequency of 5 kHz
in [17].

The possibility of using sound analysis as a UAS detection mechanism via linear
predictive coding (LPC), the slope of the frequency spectrum, and the zero crossing rate of
the acoustic signal was investigated in [18,19].

The preliminary results of audio fingerprinting techniques being used for sUAS iden-
tification are reported in [20], while in [21], sound detection by correlation is investigated;
in these studies, measurements were conducted at small distances (a maximum distance of
1 m and 3 m, respectively).

The greater part of the abovementioned research works relied on the post-processing
of recorded audio data and/or the analysis of sound harmonic lines. In recent years, the
substantial increase in modern systems’ computational power and the progress of machine
learning (ML) have allowed for the use of more complex techniques and real-time data
processing.

Reports of long detection ranges of light planes and UASs (varying in size) have been
presented in [22–24]. However, these systems consist of either large or intricate components:
a 16-microphone array (6 on the x-axis, 6 on the y-axis, and 4 on the z-axis) with an element
spacing of 0.5 m ([22]); a 120-element microphone array complemented with a video camera
([23]); a tetrahedral shaped acoustic array with a color camera associated with a range-gated
active (laser) imaging system ([24]).

Passive methods that employ machine-learning techniques on the visual data captured
by cameras [for instance, in [25], where an attempt to distinguish birds from drones inside
video frames using convolutional neural networks (CNNs) is presented], are outside the
scope of this work. Similarly, ML techniques used in active methods [such as radar data
processing ([26])] are not investigated.

A binary classification model that uses audio data to detect the existence of a drone
was presented in [27]. Modern ML techniques of sound classification methods were em-
ployed [Gaussian mixture model (GMM), CNNs, and recurrent neural networks (RNNs)],
achieving a reported maximum range of detection at 150 m. Measurements were obtained
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using a single microphone and, thus, did not allow for DOA estimation. Similarly, in [28],
the use of CNNs, RNNs, and convolutional recurrent neural networks (CRNNs) was in-
vestigated; data samples were collected using a smartphone’s embedded microphone—no
detection distance was reported.

A real-time detection system is presented in [29]. FFT was performed on the sampled
data and two methods for detection were evaluated: plotted image machine learning (PIL)
and K-nearest neighbors (KNN). The data were collected using a single microphone, with
no additional data pertaining to the systems’ hardware or the detection range being made
available by the authors.

A generalization of the application concept presented in [20] is introduced in [30]; an
ML-based UAV warning system was used which employs support vector machines (SVMs)
to “understand” and recognize the drone audio fingerprint.

The concept of monitoring UASs to detect, control, and jam amateur drones is pro-
posed in [31] while providing a broad description of large-scale suitable architectures for
the task.

The aircraft acoustic detection (AAD) system was presented in [32]; automated detec-
tion, classification, and tracking of low-flying aircraft using a network of passive acoustic
sensors were performed by autonomously powered sensor nodes, each equipped with a
microphone cluster, cameras, and complementary electronics. The research was extended
in [33] where the steered-response phase transform (SRP-PHAT) was investigated and
reported the systems’ ability to detect small UASs at distances of 294 m. Following these
studies, [34] presented the drone acoustic detection system (DADS) which was tested
along with various other acoustic systems. DADS was not introduced as a solution to
provide low-cost and/or high mobility characteristics and was reported to find the DOA of
a Phantom 4 UAS at up to 360 m under quiet conditions.

An extensive review of the literature on the auditory perception of UAVs is presented
in [35]. It provides a catalog of systems developed for a variety of purposes, one of which
was “UAS detection”. As stated in this work, “there is not even a standard performance
metric used by all the works, which makes them difficult to compare”. The authors
categorized the reviewed works under groups according to the number of microphones
used, localization techniques, etc.

In the present work, we propose a lightweight, low-cost, and easily deployable cross—
shaped microphone array of 4 elements that performs a 2-dimensional DOA estimation of
the most prominent acoustic signals and confirms whether the signal of interest emanates
from a UAS or not, thus identifying the target. The DOA estimation is achieved via a
comparison between the couples of incoming signals, while identification is made possible
by feeding a single channel (microphone) input to a pre-trained CNN, in order to perform
the real-time classification of the acoustic data, ultimately verifying that the sound pertains
to a UAS. We explicitly provide estimates for the achieved and measured range of the DOA
estimation and detection, unlike many of the existing works. Exploiting the cardioid polar
pattern of COTS microphones and the proposal of a deep neural network (the CNN of
specific architecture) are two more contributions of the present work.

The rest of this article is organized as follows. Section 2 presents the hardware
equipment used for the system implementation, gives an overview of the proposed system,
introduces the fundamental principles behind the DOA estimation—identification (ML)
algorithmic processes, and lays out the systems’ testing method. In Section 3, the results
of the experimental sessions are presented and thoroughly discussed. Finally, Section 4
includes concluding remarks on the system’s effectiveness and highlights the possible
future enhancements of the proposed system.

2. Materials and Methods
2.1. Hardware and Experimental Setup—System Overview

The proposed UAS acoustic detection system is comprised of a 4-element, cross-
shaped microphone array that uses an external sound card to connect to a laptop computer
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for data acquisition and signal data processing. An overview of the array is given in
Figure 1; the microphone holding clamps were fixed on the edges of two aluminum bars
bolted together perpendicularly. A metal rod was attached to the center of the bars to
allow for easy mounting on larger poles, tripods, or other supporting accessories whenever
additional elevation of the array was required.
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Figure 1. The proposed microphone array (a) schematic view and (b) hardware implementation
inside an anechoic chamber.

The hardware specifications of the main hardware equipment used in the experimental
setup is provided in Table 1.

Table 1. Technical specifications of the hardware equipment used.

Hardware Type Manufacturer/Model Specifications

Microphones
AKG P170

General Purpose
Instrumental Microphones

Capsule: 1/2” true condenser
Frequency Response: 20 Hz to 20 kHz

Sensitivity: 15 mV/Pa (−36.5 dBV)

Cables Proel CHL-250 LU10

Length: 10 m
Conductor resistance: 85 Ohm/km

Diameter: 6.15 ± 0.2 mm
Connection: XLR

Sound Card
TASCAM US-16x08 Sampling frequencies: 44.1, 48, 88.2, 96 kHz

USB 2.0 Audio Interface/ Quantization bit depth: 16/24-bit
Microphone Preamp Phantom power: +48 V

The sUAS of choice for our work was the DJI Phantom 3 Advanced (Figure 2), a
popular commercial sUAS, universally used by amateurs for recreational and semi-
professional activities.
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Figure 3a illustrates the setup used during the indoor experimental sessions; they
included preliminary data acquisition and microphone calibration tests during the system
software development. Outdoor live measurements were conducted using the setup
presented in Figure 3b.
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Figure 3. The experimental session during (a) indoor and (b) outdoor measurements.

2.2. Acoustic Singal Direction of Arrival Estimation

We consider the setup shown in Figure 4a, where the microphones (elements) of the
array are placed in a cross-shape. Figure 4b shows a representation of the measured polar
diagram of the microphone response for the frequency range 1–2 kHz. It follows a cardioid
pattern, i.e., the microphone is most sensitive to sounds arriving from in front of it while
picking up much less of the sounds arriving from the sides or rear. We found that the precise
positioning of the microphones had an insignificant impact on the method’s effectiveness.
Bearing in mind that the main objective was to seek an incoming “target-UAS” as far away
as possible, the microphones were placed horizontally and slightly tilted upwards in order
to take advantage of the microphone’s response at 0◦ (0 dB).
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Let xn (n = 1, 2, 3, 4) represent the acoustic signal received by the microphone n. For a
single microphone the polar pattern can be described by a straightforward function:

x1(ϕ) = A + B cos ϕ (1)

where x1 represents the microphone response to an incident signal arriving from angle ϕ
(as shown in Figure 5) and A, B are constants.
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Using the polar diagram of Figure 4b, for frequencies between 2 and 4 kHz, we
calculated the constants A and B as follows:

ϕ = 0
(1)⇒ A + B = 1 (point of 0 dB) (2)

ϕ = π
2

(1)⇒ A = 10−
6
10 = 0.25 (point of −6 dB) (3)

Thus, for the particular form of the diagram:

A = 0.25 (4a)

B = 0.75 (4b)

Considering a pair of perpendicularly placed microphones, the response of the second
microphone [in a similar approach to Equation (1)], can be written as:

x2(ϕ) = A + B sin ϕ (5)

The ratio η between the microphone responses to the (same) signal arriving from angle
ϕ can be calculated by Equations (1) and (5):

η =
A + B cos ϕ

A + B sin ϕ
(6)
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Using basic trigonometric identities to transform cos ϕ and sin ϕ to tan ϕ, we find:

tan ϕ =
q2η + q(η − 1)

√
2η

q2 − (η − 1)2 (7)

or

ϕ = tan−1

(
q2η + q(η − 1)

√
2η

q2 − (η − 1)2

)
(8)

where q = B
A = 3 [given by Equations (4a) and (4b)].

Fast Fourier transform (FFT) is the most computationally efficient algorithm to com-
pute the spectral composition for a signal of finite duration, sampled at equidistant points
along the time axis. Fourier transform has been a celebrated mathematical tool—known
sometimes as harmonic analysis—in physics and engineering throughout the last two
centuries. In the case of a signal with period T along the time axis, Joseph Fourier, as
early as 1822, showed that an infinite set of sinusoidal signals with periods T/n (with
n = 1, 2, 3, . . ., and an additional fixed term) can be used to mathematically describe the
signal. These sinusoidal terms constitute the spectral content of the signal with the corre-
sponding harmonic frequencies fn = n/T, and usually, a finite number of them are needed
to compute the involved phenomena. In the case of non-periodic signals, the spectral
content is continuous since T goes to infinity. In the case of a finite duration signal of T∗,
and provided that the spectral content of the signal is limited to ∆ f , in order to reconstruct
the signal accurately, one needs to sample and measure the signal every ∆t = 1/(2∆ f ) and
at least N = T∗/∆t samples are needed. The FFT algorithm computes at N discrete points
for the spectral content of the finite-duration signal.

To meet the Nyquist theorem criteria, we set the sampling rate at 10 kHz (the maximum
frequency of interest is less than 3 kHz). The following steps are taken for DOA estimation:

1. Calculate x̂1, x̂2, x̂3, x̂4, where x̂n represents the FFT of xn or F{x1, x2, x3, x4}.
2. Calculate the sum:

4

∑
n=1

x̂n (9)

3. For the signal given by Equation (9), calculate the number of peaks that exceed a
pre-determined threshold and detect their corresponding locations.

4. For every peak detection of step 3, locate the 2 highest-amplitude signals of the
original signal (step 1), which determine the quadrant of the arrival of “strongest”
incoming signal.

5. Using Figure 5 as a reference, calculate ratio η as follows:

(a) 1st quadrant : η =
|x2|
|x1|

(10)

(b) 2nd quadrant : η =
|x2|
|x3|

(11)

(c) 3rd quadrant : η =
|x4|
|x3|

(12)

(d) 4th quadrant : η =
|x4|
|x1|

(13)

6. Calculate tan ϕ′ using Equation (7).
7. Calculate ϕ = tan−1(ϕ′) using Equation (8).

The resulting (azimuth) angle Φ is calculated as follows:

(a) 1st quadrant : Φ = ϕ (14)
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(b) 2nd quadrant : Φ = 180
◦ − ϕ (15)

(c) 3rd quadrant : Φ = 180
◦
+ ϕ (16)

(d) 4th quadrant : Φ = 360
◦ − ϕ (17)

8. Repeat steps 4 through 8 for every peak found in step 3, to ensure that an averaged
estimate of the DOA (quadrant of the dominant signal) is calculated.

The result of the abovementioned algorithmic process provides a quadrant and angle
estimation, updated every second. As suggested by Equations (10)–(13), an inherent
characteristic of this method is that it relies only on the amplitude of the FFT peaks and not
on their position (frequency bin).

2.3. Identification Using Machine Learning Techniques

Traditional signal processing requires that the input signal is manually pre-processed\
examined in order to discover certain features of interest useful to a specific task (e.g.,
signal pattern recognition, speech detection in arbitrary audio data). The machine-learning
approach automates and simplifies this process significantly by converting the challenge
from an audio signal feature recognition problem to an image classification one. Our
implementation utilizes the basic principles demonstrated in [37] but is appropriately
modified and extended toward our goal of identifying UAS during flight.

We began by defining the categories under which sound samples needed to be collected
and assigned corresponding labels, namely, “Aircraft”, “CH_47”, “Drone”, and “UH-1H”.
In order for the system to be able to discriminate between the UAS (“Drone”) sound and
other aircraft, we grouped the remaining 3 categories under the label “Other”; subsequently,
the problem could be addressed as a binary classification one. The audio samples of the
data set were then divided into training, validation, and test sets.

The raw acoustic signal underwent a time-frequency transformation, ultimately pro-
ducing audio spectrograms; a 2D image representation of the data spectrum of frequencies
was produced. Auditory spectrograms of the 1-s-long audio clips were calculated using a
25 ms sliding window (frame) with a 10 ms step between the frames. Figure 6 presents an
example of the time—frequency transformation for an audio file randomly extracted from
the training set; the acoustic waveform is plotted in the form of samples (x-axis) against
amplitude (y-axis), whereas the spectrogram is plotted as time steps (x-axis) against (y-axis)
the number of filters corresponding to the frequency (100 in our case).

Since audio samples were collected from real-life environments with actual airborne
vehicles being recorded during flight, the need to artificially add background noise was
eliminated. However, the limited number of flights resulted in a modest number of collected
audio samples; this issue was addressed using a common data augmentation method that
arbitrarily increased/decreased the volume of the sound clips by up to 10% and translated
them in time up to 10 times the steps (time equivalent of 0.1 s).

Figure 7 presents the architecture of the CNN used in the proposed system. It consists
of 5 convolutional layers with 3 × 3 kernels, the same padding, and a gradually increasing
number of filters ranging from a minimum of 12 to a maximum of 48. The model’s invari-
ance to the local translation of input features was achieved by adding 4 max pooling layers
before the final fully connected layer and, ultimately, the activation function (Softmax).



Sensors 2022, 22, 8659 9 of 16

Sensors 2022, 22, x FOR PEER REVIEW 9 of 17 
 

 

The raw acoustic signal underwent a time-frequency transformation, ultimately pro-
ducing audio spectrograms; a 2D image representation of the data spectrum of frequen-
cies was produced. Auditory spectrograms of the 1-s-long audio clips were calculated us-
ing a 25 ms sliding window (frame) with a 10 ms step between the frames. Figure 6 pre-
sents an example of the time—frequency transformation for an audio file randomly ex-
tracted from the training set; the acoustic waveform is plotted in the form of samples (x-
axis) against amplitude (y-axis), whereas the spectrogram is plotted as time steps (x-axis) 
against (y-axis) the number of filters corresponding to the frequency (100 in our case). 

 
Figure 6. Example of an acoustic waveform (top) and its corresponding spectrogram (bottom). Spec-
trograms provide a visual representation of high (yellow color) against low (blue color) power sig-
nals. 

Since audio samples were collected from real-life environments with actual airborne 
vehicles being recorded during flight, the need to artificially add background noise was 
eliminated. However, the limited number of flights resulted in a modest number of col-
lected audio samples; this issue was addressed using a common data augmentation 
method that arbitrarily increased/decreased the volume of the sound clips by up to 10% 
and translated them in time up to 10 times the steps (time equivalent of 0.1 s). 

Figure 7 presents the architecture of the CNN used in the proposed system. It consists 
of 5 convolutional layers with 3 × 3 kernels, the same padding, and a gradually increasing 
number of filters ranging from a minimum of 12 to a maximum of 48. The model’s invar-
iance to the local translation of input features was achieved by adding 4 max pooling lay-
ers before the final fully connected layer and, ultimately, the activation function (Softmax). 

Figure 6. Example of an acoustic waveform (top) and its corresponding spectrogram (bottom).
Spectrograms provide a visual representation of high (yellow color) against low (blue color) power
signals.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 7. The CNN model used in the proposed system. 

To update the network weights iteratively based on the training data, the Adam op-
timizer was used for training alongside a mini batch size of 8 on an Intel® i7 8750H with a 
6 GB NVIDIA GeForce GTX 1060.  

A total of more than 380 raw sound samples were collected, with care being taken so 
that the number of samples were as close as possible to be evenly distributed among the 
categories and avoid a training bias. The training results are presented in Table 2. 

Table 2. CNNs training performance results. 

Metric Result 
CPU-time (for single image prediction) 3.55 ms  

Training Error 0.57143%  
Validation Error 3.3333% 

Precision 0.875 
Recall 0.88095 

F1 Score 0.87797 

2.4. Testing Methods for the Proposed System 
In order to verify the systems’ efficiency for estimating the DOA of UAS sound and 

identifying its origin, the following procedures were employed: 
• The microphone array was calibrated inside an anechoic chamber to ensure that the 

signal captured by every element received identical amplification levels from the 
sound card. If the signal amplitude from a single microphone was measured -erro-
neously higher, an unwanted bias (possibly caused by the unintentional displace-
ment of the analog gain knobs) would be added to the DOA estimation calculations. 
Calibration minimized the probability of this occurrence. 

• The system was deployed in a suitable open area, and the DJI Phantom was flown in 
random patterns. The flight distance was monitored to evaluate the maximum range 
inside which the DOA estimation application resulted in the steady quadrant and 
angle measurements.  

• Using a location that allowed for the safe observation of aircraft flights and UAS use, 
the system was deployed, and audio data samples were collected. After acquiring 
sufficient samples (during several days of trials due to the random flight schedule of 
the aircraft), the CNN was trained, and the identification application was tested 
against the real-time flights of aircraft and UAS simultaneously. Ground-truth data 
for the aircraft flights were not available, and only rough estimates could be made.  

  

Figure 7. The CNN model used in the proposed system.

To update the network weights iteratively based on the training data, the Adam
optimizer was used for training alongside a mini batch size of 8 on an Intel® i7 8750H with
a 6 GB NVIDIA GeForce GTX 1060.

A total of more than 380 raw sound samples were collected, with care being taken so
that the number of samples were as close as possible to be evenly distributed among the
categories and avoid a training bias. The training results are presented in Table 2.

Table 2. CNNs training performance results.

Metric Result

CPU-time (for single image prediction) 3.55 ms

Training Error 0.57143%

Validation Error 3.3333%

Precision 0.875

Recall 0.88095

F1 Score 0.87797
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2.4. Testing Methods for the Proposed System

In order to verify the systems’ efficiency for estimating the DOA of UAS sound and
identifying its origin, the following procedures were employed:

• The microphone array was calibrated inside an anechoic chamber to ensure that the
signal captured by every element received identical amplification levels from the sound
card. If the signal amplitude from a single microphone was measured -erroneously
higher, an unwanted bias (possibly caused by the unintentional displacement of the
analog gain knobs) would be added to the DOA estimation calculations. Calibration
minimized the probability of this occurrence.

• The system was deployed in a suitable open area, and the DJI Phantom was flown in
random patterns. The flight distance was monitored to evaluate the maximum range
inside which the DOA estimation application resulted in the steady quadrant and
angle measurements.

• Using a location that allowed for the safe observation of aircraft flights and UAS use,
the system was deployed, and audio data samples were collected. After acquiring
sufficient samples (during several days of trials due to the random flight schedule
of the aircraft), the CNN was trained, and the identification application was tested
against the real-time flights of aircraft and UAS simultaneously. Ground-truth data for
the aircraft flights were not available, and only rough estimates could be made.

3. Results and Discussion

The proposed system was tested by conducting numerous real-time experimental
sessions. Rural, suburban, and urban locations were used to investigate its performance for
DOA estimation under different environments (in terms of noise clutter, obstacles, foliage,
etc.). A similar approach for testing the identification algorithm was not an option, given
the requirement for proximity to a helipad or airport. The following subsections describe
the procedures that were followed and discuss the results of each experimental method.

3.1. DOA Estimation

Sound waves are mechanical waves and, as such, are particularly susceptible to
attenuation due to propagation while travelling through the air. Apart from the distance
travelled, the amount of energy (sound level) received by a microphone depends on a
multitude of factors set by the environmental parameters. In order to determine the
maximum range inside which the DOA estimation algorithm could provide constant and
true positive indications of the quadrant, the types of locations presented in Figure 8 were
chosen: (a) an open, quiet rural area with mixed foliage—no surrounding buildings or
significant noise clutter; (b) a suburban area inside a small village, characterized by low
buildings, moderate noise clutter, and low foliage; (c) an urban space with large buildings
and significant noise clutter. At this point, it should be noted, that measurements in the
urban environment were performed on a building rooftop and the reverberation/multi-
path propagation of sound effects were not measured or taken into a specific account.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
 

 

3. Results and Discussion 
The proposed system was tested by conducting numerous real-time experimental 

sessions. Rural, suburban, and urban locations were used to investigate its performance 
for DOA estimation under different environments (in terms of noise clutter, obstacles, fo-
liage, etc.). A similar approach for testing the identification algorithm was not an option, 
given the requirement for proximity to a helipad or airport. The following subsections 
describe the procedures that were followed and discuss the results of each experimental 
method. 

3.1. DOA Estimation 
Sound waves are mechanical waves and, as such, are particularly susceptible to at-

tenuation due to propagation while travelling through the air. Apart from the distance 
travelled, the amount of energy (sound level) received by a microphone depends on a 
multitude of factors set by the environmental parameters. In order to determine the max-
imum range inside which the DOA estimation algorithm could provide constant and true 
positive indications of the quadrant, the types of locations presented in Figure 8 were cho-
sen: (a) an open, quiet rural area with mixed foliage—no surrounding buildings or signif-
icant noise clutter; (b) a suburban area inside a small village, characterized by low build-
ings, moderate noise clutter, and low foliage; (c) an urban space with large buildings and 
significant noise clutter. At this point, it should be noted, that measurements in the urban 
environment were performed on a building rooftop and the reverberation/multi-path 
propagation of sound effects were not measured or taken into a specific account. 

   

(a) (b) (c) 

Figure 8. The three different types of locations used for testing: (a) rural, (b) suburban, and (c) 
urban. 

Next, the UAS was flown in random patterns around the area (marked with lines in 
Figure 8), its DOA estimation being monitored via the control interface shown in Figure 
9.  

Figure 8. The three different types of locations used for testing: (a) rural, (b) suburban, and (c) urban.



Sensors 2022, 22, 8659 11 of 16

Next, the UAS was flown in random patterns around the area (marked with lines in
Figure 8), its DOA estimation being monitored via the control interface shown in Figure 9.
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To avoid instantaneous signal peaks caused by wind gusts and surrounding noise dis-
turbances, microphone windscreens were used, and a threshold parameter was introduced,
under which all sound peaks were not taken into account during calculations. Similarly,
the peak width (in FFT points) was considered, and “narrow” peaks (the corresponding
parameter was set to “3”—a value empirically determined while observing the relevant
graphs while no UAS was present) were omitted as spurious. The quadrant and angle
indications were updated every second.

As the UAS moved away from the take-off home point, the distance from the micro-
phone array increased, and the sound levels received by each element decreased. The
interface of Figure 9 was monitored in order to keep track of the quadrant indication. Up
to a distance, the quadrant DOA estimation remains constant, and no false alarms were
detected (no abrupt changes of indication inconsequent to the UAS’s actual flight path). To
determine this distance, five runs were performed on each environment type in order to
calculate the average maximum distance that the DOA could be unambiguously discovered.
Figure 10 presents the corresponding results.

As intuitively expected, the obstacle-free, open space of the rural environment allowed
for unhindered sound propagation, resulting in DOA estimation at greater distances. On
the contrary, inside the urban areas, multi-path propagation due to tall buildings and
significant noise clutter had a negative impact on the system’s ability to maintain a false
alarm rate of zero. Note that in every scenario, the DOA angle estimation seldom exhibited
minor unpredictable fluctuations of approximately ±5◦.

Table 3 summarizes the results of the abovementioned measurements. Considering
the limitations of the hardware equipment used and the different environment scenarios
examined, the system’s DOA estimation capability at a range of 70.53 m is confirmed.

Table 3. Results summary of the outdoor DOA estimation experiments.

Environment Type Type Average Overall Average (m)

Rural 77.2

70.53 mSuburban 69.8

Urban 64.6
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3.2. Real-Time Identification Using Machine Learning

The system’s aim is to identify UAS flights; thus, discriminating incoming sounds from
different airborne sources, such as helicopters and aircraft, is of key importance. Towards
this goal, audio data samples were collected for training and were labeled under the
categories pointed out in Section 2.3. Local airspace was observed, and every time an aircraft
fly-by took place, a corresponding audio clip was recorded. UAS sound sampling was
performed under less restrictive conditions because it could be flown at will—unlike aircraft
and helicopter flights. Moreover, there was no need to collect samples of background noise
since the data were recorded live from the actual aircraft flights that unavoidably contained
background noise. Figure 11a shows the interface used for the sound sample collection,
and Figure 11b demonstrates a snapshot of the outdoor measurements. The area of choice
for the system deployment was located well above 150 m away from the airport/helipad.
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Figure 11. Application interfaces for (a) audio sample collection for CNN training and (b) identifica-
tion of targets. Notice how the system detects the UAS’s presence, even when a heavy crane truck is
working in the vicinity.

The system’s performance was evaluated using two methods: (a) a non-binary clas-
sification, where the algorithm needed to “decide” whether the target was an “Aircraft”,
“CH_47”, “UH_1H”, or “Drone”, and (b) a binary classification, which narrowed down the
choices of classification to “Drone” or “Other”.

For each of the above cases, the network had to be trained using different parameters
and dataset manipulation (outlined in Section 2.3). Therefore, the system was tested during
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separate sessions, and different numbers of flights were monitored. Table 4 summarizes
the number of flights monitored (“runs”) for each method.

Table 4. Summary of the real-time test runs performed.

Non-Binary Classification Binary Classification

Number of Flights

Aircraft 16

52 (“Other”)CH_47 22

UH_1H 27

Drone 33 52

During the binary classification, due to restrictions of flight availability, the main aim
was to measure the system’s performance against other airborne vehicles and not other
“noise sources” in general. For example, a possible test run could be the “Drone” against
the “Aircraft”/“UH_1H”/“CH_47” individually, but that would provide a very limited
set of samples (e.g., 16 test samples of “Aircraft” flights against “Drone” flights). This
explains the fact that the UAS detection technique’s binary classification performance was
not evaluated using audio signals from other types of classes that were not “Aircraft”,
“UH_1H”, or “CH_47”.

Two lists were completed and used for comparing the results: “True Class”, in which
the actual type of the vehicle flying at any given moment was noted, and “Predicted Class”,
which recorded the system-predicted category (label). Not every incoming signal produced
a predicted label result; appropriate thresholds were set for the prediction probability,
and the number of consecutive frames predicting the same label was needed in order
to affirmatively report a detection. Whenever these criteria were not met, the system
continued to buffer/unbuffer sound frames without indicating results. Figure 12 shows
examples of the aforementioned process: an arbitrary sound—of substantial amplitude—
produces no detection result (Figure 12a), while helicopter sound waveforms, otherwise
indistinguishable, are labeled under their respective categories (Figure 12b,c). Examples of
UAS (“Drone”) detection can be found in Figures 6 and 11b.
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Figure 12. Examples of the waveform/spectrogram running plots, returning identification matches
of (a) arbitrary sound (no match), (b) CH-47, and (c) UH-1H flights.

Figure 13 presents confusion charts that illustrate the effectiveness of the proposed
system. Incorrect predictions, represented by off-diagonal elements, are kept to a minimum
and suggest a possible association between the number of aircraft rotors/propellers and
the resulting predicted label; for example, the CNN was more likely to “mistake” a 2-rotor-
3-winged CH-47 helicopter for a 4-rotor-2-winged DJI quadcopter (21.2%). Similarly, the
2-rotor-2-winged UH-1H was rarely mispredicted, being a 3-rotor-4-winged aircraft (7.7%).
Correctly classified observations represented by diagonal elements reveal a high degree of
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confidence in predicting UAS presence under both scenarios (78.8% for the non-binary and
84% for the binary classification).
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Figure 13. Confusion charts presenting the system’s performance over live measurements, during (a)
non-binary and (b) binary classification.

It should be noted that during the measurements, the aircraft number of flights, flight
paths, distance, speed, and similar parameters could not be controlled. This fact proved
the experiments to be more realistic but had a negative impact on the ability to collect
abundant samples and attain higher precision measurements during live detection. The
overall performance metrics are presented in Table 5.

Table 5. Performance summary for the two methods.

Non-Binary Classification Binary Classification

Overall precision 0.79218 0.82741

Overall recall 0.7721 0.82692

F1 Score 0.78201 0.82717

4. Conclusions

This work introduced a 4-element microphone array system capable of performing a
dual task: estimating the position of origin in 2D and identifying the sounds emitted from
a UAS. The system was built with COTS components, maintaining a low complexity, high
mobility, and reliable performance.

A straightforward algorithmic process was presented for the DOA estimation. Multiple
locations with diverse characteristics in terms of the clutter were used during testing to
estimate the system’s ability to successfully determine the quadrant and angle of the most
prominent incoming acoustic signal. Extensive outdoor testing confirmed the detection
range for UAS flights at distances that exceeded 70 m.

In order to identify the sound source and decide whether it originated from a UAS, a
CNN of five layers was trained using spectrograms of the acquired sound samples from real
aircraft and UAS flights. The feasibility of extending the detection beyond the typical binary
classification problem (“Drone” or “Other” decision) was investigated. The proposed
methods resulted in a precision of 0.78201 and 0.82717 for the non-binary and binary
classifications, respectively. Since flight distances of the aircraft could not be measured, the
determination of the maximum identification range was impossible; as an alternative metric,
the minimum distance between the array location and the airport/helipad of approximately
150 m was considered.

Overall, the system was able to provide the user with a broader awareness of the
surrounding airspace since it was trained to distinguish between flying vehicles of different
types and cue in on their direction.
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Future work will be focused on eliminating the fluctuations of the DOA angle indica-
tion during real-time experiments and investigating the necessary requirements in order
to perform range and elevation estimations. For the identification part of this research,
possible future directions include the collection of more (and even more diverse) sound
samples for the CNN training, verifying that the system is able to detect other types of
UAS, examining any possible overfitting issues due to the environment the samples were
captured in, experimenting with different NN architectures, exploring alternatives for the
spectrograms of sound time-frequency representations, and the sample acquisition by four
microphones simultaneously so that larger datasets may be built in less time.
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