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Abstract: The early detection of pathogen infections in plants has become an important aspect of
integrated disease management. Although previous research demonstrated the idea of applying
digital technologies to monitor and predict plant health status, there is no effective system for
detecting pathogen infection before symptomatology appears. This paper presents the use of a
low-cost and portable electronic nose coupled with machine learning (ML) models for early disease
detection. Several artificial neural network models were developed to predict plant physiological
data and classify processing tomato plants and soil samples according to different levels of pathogen
inoculum by using e-nose outputs as inputs, plant physiological data, and the level of infection
as targets. Results showed that the pattern recognition models based on different infection levels
had an overall accuracy of 94.4–96.8% for tomato plants and between 94.81% and 96.22% for soil
samples. For the prediction of plant physiological parameters (photosynthesis, stomatal conductance,
and transpiration) using regression models or tomato plants, the overall correlation coefficient was
0.97–0.99, with very significant slope values in the range 0.97–1. The performance of all models shows
no signs of under or overfitting. It is hence proven accurate and valid to use the electronic nose
coupled with ML modeling for effective early disease detection of processing tomatoes and could
also be further implemented to monitor other abiotic and biotic stressors.

Keywords: collar and root rot; soilborne pathogens; yield decline; volatile compounds; plant disease
modeling; artificial neural networks

1. Introduction

The Australian Processing Tomato Industry (APTI) has been affected by yield decline
over recent years, which is partly attributed to the increase in disease incidence and sever-
ity caused by a novel Fusarium oxysporum that causes collar and root rot. F. oxysporum
is a slow-growing species compared to many Pythium species that co-existed with it in
processing tomatoes, and it often causes severe damage in the middle to late stages of the
host plants [1–3]. Affected plants usually had poor root development and could not reach
full growth and production potential. In more severe cases, approximately 10–15% of the
processing tomato plants were infected [1,2]. The APTI depends on field surveys to assess
the disease incidence based on symptomology. For general isolation and identification of
putative soilborne pathogens that have been widely applied, diseased plants are sent to
professional laboratories to confirm pathogen identification through culturing and DNA se-
quences [1–3]. Although various pathogens of processing tomatoes have been successfully
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isolated and identified through this general approach, disease detection occurs after plants
have been infected and are exhibiting clear disease symptoms, which is considered too
late and ineffective. This is because F. oxysporum of processing tomatoes typically does not
exhibit disease symptoms until the middle to late growth stage, in glasshouse bioassay, and
disease symptoms would not appear until four weeks after pathogen inoculation. Hence,
rapid disease detection in the early stage is favored for more effective and possible disease
management.

The early detection of plant diseases is crucial because it is the key to effective disease
control. For most soilborne pathogens, once symptoms have developed in a crop, it is
already too late for disease management to occur [4–6]. As a result, a more effective system
is desired to detect plant diseases in a comparatively early stage for the possible implemen-
tation of disease management. To achieve this, several different digital technologies have
been developed and tested. An electronic nose (e-nose), also recognized as an artificial
intelligent nose [7], is one of the emergent digital devices for applications in agriculture [8],
food, and forestry [9]. A typical e-nose comprises an array of sensors [10] that are sensitive
to different volatile organic compounds (VOC) such as ethanol, methane, and many others,
depending on the aims and targets [11–13]. It may also have a data-processing and analysis
unit containing a specific aroma database [14,15]. These targeted VOCs can be constructed
according to individual needs and requirements. When the sensors are exposed to different
VOCs, the portable device will generate different curves reflecting the sensors’ responses
toward these odors [16,17]. For the detection of pathogens using the electronic nose in
particular, a previous study showed that an electronic nose developed by Borowik et al.
was used to measure odor emissions from potato dextrose agar for the identification of Rhi-
zoctonia solani and Fusarium oxysporum in vitro [11], and a separation of clean and infected
cultures was achieved. Additionally, the e-nose was also used for the early detection of
Penicillium digitatum and Penicillium italicum in citrus fruits during storage purposes [18],
and a clear determination of healthy and infected fruits was completed, which proved
the possibility of further applications of this technique. Machine learning (ML) modeling
can identify healthy and infected plants [12,19]. Measurements taken using an e-nose are
usually simple and non-invasive for most of the electronic noses that have been developed;
measurements are taken after the device reached a baseline by calibration prior to each
measurement and then placed on top of the target samples [7,18].

This study aimed to provide a system for the rapid and effective early detection
of Fusarium oxysporum in processing tomatoes in a controlled environment. Since the
previous identification and detection of F. oxysporum have relied on molecular technologies,
as previously mentioned, applying an e-nose coupled with ML models has never been
implemented before [1–3]. Output data from an e-nose was used as inputs to construct more
accurate supervised ML classification and regression models to classify tomato plants and
soil samples into different levels of pathogen infection and to predict plant physiological
parameters using a logistic regression model. The practical implementation of this model
provides the industry and growers with a precise and cost-effective early detection option
which will facilitate the early adoption of management strategies in the future, considering
the increased disease incidence and severity caused by soilborne pathogens.

2. Materials and Methods
2.1. Plant and Pathogen Preparation

Fusarium oxysporum strain UMT01, isolated from diseased plants collected from pro-
cessing tomato fields in early 2022, was used in this study. Tomato seedlings rated suscepti-
ble to F. oxysporum [1,2] were raised in individual seedling cells in seed raising mix (Plugger
111, Australian Growing Solutions Pty Ltd, Tyabb, VIC, Australia) for three to four weeks
until reaching the two-leaf stage. They were gently removed from the seedling cells, and
soil particles were thoroughly washed off the root system. Roots were trimmed and dipped
into spore suspensions with different concentrations of F. oxysporum; the concentrations
of spore suspensions included: (i) 102 spores ml −1 (Low), (ii) 104 spores ml −1 (Medium),
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(iii) 106 spores ml −1 (High), and (iv) 5 × 106 spores ml −1 (Very high). Additionally, a
negative control group with wounded seedlings dipping in sterile water (H2O) was set up
for comparison. Seedlings with different treatments were transplanted into 1.5 L sterile
pots containing sterilized potting mix soil (Plugger 111, Australian Growing Solutions Pty
Ltd.), consisting of 90% composted substances, coarse bark, and 10% sand.

The experiment was conducted in the University of Melbourne glasshouse complex
with 12 h of daylight at 25 ◦C and 12 h of darkness at 20 ◦C for eight weeks. All pots were
properly cleaned and sterilized, and plants were watered every other day to maintain a
roughly at-field capacity to avoid waterlogging or drought conditions. A complimentary
Osmocote fertilizer was applied according to the recommended rate to supply essential
nutrients. The experiment had five replicates with five treatments (four different levels
of F. oxysporum inoculum and a control treatment with no pathogen), and a total number
of 25 pots were set. All pots were arranged in a completely randomized design in a
large growth chamber. The experiment was repeated twice to confirm the replicability of
the results.

2.2. Physiological Measurements

Plant physiological parameters, including stomatal conductance (gs; mol H2O m−2 s−1),
transpiration (E; mmol H2O m−2 s−1), and photosynthesis (A; µmol CO2 m−2 s−1), were
measured using a Li-6400 XT open gas exchange system (Li-Cor Inc., Environmental
Sciences, Lincoln, NE, USA). Measurements were taken from the youngest fully expanded
leaves and repeated twice in different tillers of each plant (n = 10 per treatment, n = 50 in
total). Physiological measurements were taken every two weeks throughout the glasshouse
pathogenicity test, starting from week two due to fragile seedlings with very small leaf
sizes in week 0/day 0 (the day of transplanting), and every fortnightly until week 8, i.e.,
weeks 2, 4, 6, and 8.

2.3. Low-Cost Electronic Nose Measurements

A portable and low-cost electronic nose (Figure 1) developed by the Digital Agriculture
Food and Wine Group from the University of Melbourne (DAFW-UoM) was used to
assess the production of volatile organic compounds [20–24] from processing tomato
plants with different treatments and a control. This e-nose consists of an array of nine
sensors that are sensitive to different volatile compounds: (i) MQ3 (alcohol), (ii) MQ4
(methane: CH4), (iii) MQ7 (carbon monoxide: CO), (iv) MQ8 (hydrogen: H2), (v) MQ135
(ammonia/alcohol/benzene), (vi) MQ136 (hydrogen sulfide: H2S), (vii) MQ137 (ammonia:
NH3), (viii) MQ138 (benzene/alcohol/ammonia), and (ix) MG811 (carbon dioxide: CO2),
as well as a humidity and temperature sensor to measure the ambient conditions (Henan
Hanwei Electronics Co., Ltd., Henan, China). The e-nose was returned to baseline for
30 s before and after each measurement. The device was placed on top of each plant to
record data for 2 min. For each measurement, the e-nose generated outputs every 0.5 s, so
a total of 240 readings from each sensor were obtained, totaling 2160 readings from nine
sensors for one plant, which was the raw size of the database. Once the e-nose was turned
on, and measurements were initiated, the sensor temperature remained constant through
all measurements. The e-nose was used to measure plants when the soil was exposed
and covered using plastic wrap to find any soil-pathogen-host interactions. The output
data (volts) were then extracted and analyzed using a code written in Matlab® R2020a
(Mathworks Inc., Natick, MA, USA) by the DAFW-UoM, to extract the mean values of ten
segments from the highest peak of the curves, the highest and most stable time of the e-nose
curves, as described by Gonzalez Viejo et al. [19]. As 10 mean values were extracted for the
nine sensors, a total of 90 readings were extracted, which was the size of the database after
extraction (Supplementary Material Figure S1). The e-nose measurements were taken from
week 0/day 0, i.e., the day of transplanting, and week 0/day 3, followed by four fortnightly
measurements throughout the glasshouse pathogenicity test (weeks 2, 4, 6, and 8), which
were co-measured with the plant physiological parameters, as described in 2.2.
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Figure 1. Low-cost electronic nose used in this study showing (a) the different sensors and (b) ex-
tracting fan and liquid-crystal display (LCD) screen for data monitoring. The e-nose has connectivity
for an external battery and wireless data transmission capabilities.

2.4. Parallel Soil Experiment

A parallel experiment was conducted to determine if the electronic nose was able
to detect any interactions or changes in the production of VOCs in the soil after being
inoculated with different levels of F. oxysporum spores. For this purpose, steam sterilized
potting mix was put into 1.5 L pots that were cleaned using the same protocol described in
2.1. The pots were prepared with a sterile potting mix without any plant materials. The
same treatments of pathogen inoculum were used, i.e., 102 mL−1, 104 mL−1, 106 mL−1, and
5 × 106 mL−1, plus a control group with sterile water only. This parallel experiment was
set up under the same condition as the pathogenicity test, with a replicate number of five
and a total number of 25 pots.

A true baseline measurement was taken before adding and mixing the relevant spore
suspensions of F. oxysporum to the potting mix for all 25 pots using the portable e-nose,
marked as week 0/day 0. The same measurements were repeated two days later, marked
as week 0/day 2, followed by four-week weekly measurements.

2.5. Statistical Analysis and Machine Learning Models

Plant above-ground height, root dry weight, physiological and e-nose data were
analyzed using ANOVA and Tukey honestly significant difference (HSD) post hoc tests
(α = 0.05) using Minitab 2019 (Minitab, LLC, State College, PA, USA) to assess significant
differences between treatments. These data were also analyzed for significant correlations
(p < 0.05) based on covariance using Matlab® R2020a and represented in a matrix.

Although there are many ML methods, such as support vector machine, random forest,
and linear discrimination, which are simpler than ANN, they are, however, usually lower in
performance and accuracy and slower in the prediction for deployment [12,19,25–27]. Further-
more, methods such as Random Forest and SVM work better with trivial and less intensive
data [27]. Furthermore, for regression models, ANN is the only method that supports
multiple targets; it predicts multiple variables simultaneously, which is one of the main
advantages of regression ANN models over other machine learning methods [28]. Four ML
regression models based on artificial neural networks were developed to predict plant phys-
iological data: (i) photosynthesis, (ii) stomatal conductance, and (iii) transpiration, using
the ten mean values of ten segments in the e-nose curves as inputs. Different models were
constructed using data from all treatments for weeks 2, 4, 6, and 8 (models 1–4; Figure 2a).
All models were developed using a customized code written in Matlab® R2020a by the
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DAFW-UoM to test 17 training algorithms in a loop and to find the best models based on
accuracy and performance. The Bayesian regularization training algorithm rendered the
most accurate models with no signs of under- or overfitting. Data were divided randomly
into 70% for training and 30% for testing using a performance algorithm based on the
means squared error [29].
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Figure 2. Diagrams of machine learning models based on artificial neural networks showing (a) the
regression models 1–4, (b) pattern recognition models 5–11. Abbreviations: W: weights and b: bias; MQ3:
alcohol; MQ4: methane; MQ7: carbon monoxide; MQ8: hydrogen; MQ135: ammonia/alcohol/benzene;
MQ136: hydrogen sulfide; MQ137: ammonia; MQ138: benzene/alcohol/ammonia; MG811: carbon
dioxide.

Seven pattern recognition ML models (Figure 2b) were developed to classify tomato
plants and soil samples into different levels of F. oxysporum infection: (i) control, (ii) low
(102 spores mL−1), (iii) medium (104 spores mL−1), (iv) high (106 spores mL−1), and (v) very
high (5 × 106 spores mL−1), using the ten mean values of ten segments in the e-nose curves
as inputs. Different models were developed for different dates at day 0 + day 3, weeks
2, 4, 6, and 8 (models 5–9, respectively) for tomato plants, and day 0 + day 2 (model 10)
and weeks 1–4 for soil samples (model 11). The Bayesian regularization training algorithm
rendered the most accurate models with no signs of under- or overfitting. Data were
divided randomly into 70% for training and 30% for testing using the MSE performance
algorithm.

3. Results

Table 1 shows the significant differences (p < 0.05) in photosynthesis, stomatal conduc-
tance, and transpiration starting from week 2. Photosynthesis for the control at week
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6 was significantly higher (17.84 µmol CO2 m−2 s−1) than the inoculated treatments
(2.49–10.42 µmol CO2 m−2 s−1). Unlike photosynthesis, stomatal conductance at week
2 and week 8 was significantly higher than the inoculated plants (1.03 and 0.98 mol H2O
m−2 s−1, respectively). Lastly, for transpiration, week 4 and week 6 of the control plants
had significantly higher values than the inoculated treatments (6.60 and 6.46 H2O m−2 s−1,
respectively). All inoculated processing tomatoes did not exhibit visible diseased symp-
toms until four weeks after inoculation, although the physiological response started to
show significant differences from week 2. In general, the control plants had the highest gas
exchange rates for all three parameters, and as the pathogen inoculum gradually increased,
all three parameters decreased significantly.

Table 1. Mean values ± standard error of the plant physiological data for all treatments.

Treatment Photosynthesis
(µmol CO2 m−2 s−1)

Stomatal Conductance
(mol H2O m−2 s−1) Transpiration (mmol H2O m−2 s−1)

Measurements W2 W4 W6 W8 W2 W4 W6 W8 W2 W4 W6 W8

Control
14.86 a 14.17 a 17.84 a 15.42 a 1.03 a 0.94 a 0.93 a 0.98 a 5.19 ab 6.60 a 6.46 a 5.61 a

±0.57 ±0.11 ±0.43 ±0.07 ±0.12 ±0.01 ±0.01 ±0.04 ±0.42 ±0.13 ±0.05 ±0.08

102 (low)
10.98 b 10.42 b 11.77 b 9.41 b 0.77 ab 0.44 bc 0.68 b 0.57 b 4.68 b 4.55 b 4.20 b 4.47 b

±0.84 ±0.16 ±0.54 ±0.14 ±0.05 ±0.23 ±0.02 ±0.27 ±0.15 ±0.36 ±0.09 ±0.14

104 (medium)
6.32 c 9.75 b 8.28 bc 6.60 c 0.37 bc 0.38 bc 0.59 b 0.47 bc 3.31 c 4.11 b 3.89 bc 3.41 c

±0.48 ±0.13 ±0.11 ±0.08 ±0.05 ±0.23 ±0.02 ±0.04 ±0.20 ±0.12 ±0.03 ±0.11

106 (high)
4.89 cd 6.03 d 4.43 cd 3.55 dc 0.36 bc 0.31 bc 0.34 bc 0.23 c 2.92 cd 3.45 c 3.07 c 3.05 c

±0.42 ±0.23 ±0.16 ±0.14 ±0.03 ±0.10 ±0.01 ±0.03 ±0.18 ±0.15 ±0.13 ±0.04

5 × 106 (very high)
2.29 d 2.26 d 2.49 d 1.07 d 0.20 c 0.16 c 0.13 c 0.11 c 2.56 d 2.40 d 1.39 d 1.27 d

±0.41 ±0.16 ±0.10 ±0.07 ±0.02 ±0.01 ±0.02 ±0.01 ±0.20 ±0.09 ±0.11 ±0.09

Different letters a–d show significant differences between treatments (rows) based on ANOVA and the Tukey
honestly significant difference (HSD) post hoc tests (α = 0.05; p < 0.05).

Figure 3 shows stacked mean values from the e-nose sensor readings for all treat-
ments. There were no significant differences (p > 0.05) at day 0 except for MG811 (CO2),
MQ7 (CO), MQ135 (ammonia/alcohol/benzene), and MQ137 (ammonia), as the measure-
ments were taken right after the transplanting of seedlings; hence no inoculation had
occurred yet. On day 3, significant differences (p < 0.05) were observed for most of the
sensors except for MQ136 (H2S). For weeks 2–8, significant differences were found in
most sensors except MQ136 (H2S) in all measurement weeks, MG811 (CO2) at week 2,
MQ138 (benzene/alcohol/ammonia) at week 2, MQ4 (CH4) at weeks 2, 4 and 6, MQ135
(ammonia/alcohol/benzene) at week 4, and MQ137 (ammonia) at week 8. Among the
nine sensors, MQ4 (CH4) and MQ3 (alcohol) produced the highest mean values. Sensor
MG811 (CO2) provides inverse outputs; therefore, higher Volts mean lower CO2. Overall,
the control was the highest in all sensors and significantly different from day 3.

Figure 4 shows the stacked mean values of the e-nose sensor readings for the parallel
soil experiment. There were no significant differences (p > 0.05) in baseline measurements
except for MG811 (CO2) and MQ3 (alcohol). Starting from day 2, significant differences
were observed for most sensors except MQ136 (H2S) in all measurements, MQ138 (ben-
zene/alcohol/ammonia) at weeks 1 and 4, MQ137 (ammonia) at week 1, MQ135 (ammo-
nia/alcohol/benzene) at week 1, and MQ4 (CH4) at weeks 3 and 4. Similar to the plant
measurements, MQ4 (CH4) and MQ3 (alcohol) produced the highest mean values for the
soil samples. Control samples had the highest values for MQ7 and MQ8 since day 2 and
MQ137 from week 2. On the other hand, treatments 106 and 5 × 106 were the highest in
MQ3 on day 2 and week 1 and MQ4 on week 2.
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same letters are significantly different (p < 0.05).
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(CO; r = 0.97 and r = 0.91, respectively), MQ137 (ammonia; r = 0.95 and r = 0.97, respec-
tively), MQ138 (benzene/alcohol/ammonia; r = 0.95 and r = 0.97, respectively), and 
MG811 (CO2; r = 0.89 and r = 0.95, respectively). Furthermore, MQ135 (ammo-
nia/alcohol/benzene), MQ138 (benzene/alcohol/ammonia), and MG811 (CO2) had a sig-
nificantly negative correlation with the level of inoculum (r = −0.93, r = −0.92, and r = 
−0.92, respectively). Similarly, stomatal conductance had a positive correlation with 
MQ3 (r = 0.95), MQ7 (r = 0.90), MQ135 (r = 0.91), MQ137 (r = 0.94), MQ138 (r = 0.92), and 
MG811 (r = 0.94). Additionally, transpiration and stomatal conductance also had a signif-
icantly positive correlation with MQ3 (r = 0.95 for both), MQ7 (r = 0.90 and r = 0.91, re-
spectively), MQ135 (r = 0.91 and r = 0.92, respectively), MQ137 (r = 0.94 and r = 0.97, re-
spectively), MQ138 (r = 0.92 and r = 0.97, respectively), and MG811 (r = 0.94 and r = 0.95 
respectively). On the contrary, the level of inoculum had a negative correlation with 
MQ135 (ammonia/alcohol/benzene, r = −0.93), MQ138 (benzene/alcohol/ammonia, r = 
−0.92), and MG811 (CO2, r = −0.92). 

Figure 4. Electronic nose outputs (stacked mean values) for all treatments at each measurement of
the parallel soil experiment (a) baseline, (b) day 2, (c) week 1, (d) week 2, (e) week 3, and (f) week 4.
Error bars represent 95% confidence intervals, and columns that do not share the same letters are
significantly different (p < 0.05).
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Figure 5 shows that both photosynthesis and transpiration had a significantly positive
correlation (p < 0.05) with MQ3 (alcohol; r = 0.99 and r = 0.95, respectively), MQ7 (CO;
r = 0.97 and r = 0.91, respectively), MQ137 (ammonia; r = 0.95 and r = 0.97, respectively),
MQ138 (benzene/alcohol/ammonia; r = 0.95 and r = 0.97, respectively), and MG811 (CO2;
r = 0.89 and r = 0.95, respectively). Furthermore, MQ135 (ammonia/alcohol/benzene),
MQ138 (benzene/alcohol/ammonia), and MG811 (CO2) had a significantly negative cor-
relation with the level of inoculum (r = −0.93, r = −0.92, and r = −0.92, respectively).
Similarly, stomatal conductance had a positive correlation with MQ3 (r = 0.95), MQ7
(r = 0.90), MQ135 (r = 0.91), MQ137 (r = 0.94), MQ138 (r = 0.92), and MG811 (r = 0.94). Addi-
tionally, transpiration and stomatal conductance also had a significantly positive correlation
with MQ3 (r = 0.95 for both), MQ7 (r = 0.90 and r = 0.91, respectively), MQ135 (r = 0.91
and r = 0.92, respectively), MQ137 (r = 0.94 and r = 0.97, respectively), MQ138 (r = 0.92
and r = 0.97, respectively), and MG811 (r = 0.94 and r = 0.95 respectively). On the contrary,
the level of inoculum had a negative correlation with MQ135 (ammonia/alcohol/benzene,
r = −0.93), MQ138 (benzene/alcohol/ammonia, r = −0.92), and MG811 (CO2, r = −0.92).
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Table 2 shows the results from the machine learning regression models to predict plant
physiological data (photosynthesis, stomatal conductance, and transpiration) using the
e-nose outputs as inputs. Models 1–4 were constructed using data from all treatments from
weeks 2–8. All models had very high accuracies and slope (b) values with R = 0.97 and
b = 0.99 for model 1, R = 0.98 and b = 0.97 for model 2, R = 0.99 and b = 0.98 for model 3,
and R = 0.97 and b = 1.00 model 4. For all four models, no signs of under- or overfitting
were observed since MSE for training (<0.01 for all) was lower than the testing (≤0.02
for all).
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Table 2. Machine learning regression models based on artificial neural networks (Bayesian regular-
ization) to predict plant physiological data using the electronic nose outputs as inputs; ten neurons
were used. Abbreviations: R: correlation coefficient; b: slope; MSE: means squared error.

Stage Samples Observations R b Performance (MSE)

Model 1—All treatments, Week 2

Training 175 525 0.99 0.98 <0.01
Testing 75 225 0.95 0.99 0.02
Overall 250 750 0.97 0.99 -

Model 2—All treatments, Week 4

Training 175 525 0.99 0.99 <0.01
Testing 75 225 0.93 0.93 0.02
Overall 250 750 0.98 0.97 -

Model 3—All treatments, Week 6

Training 175 525 0.99 0.98 <0.01
Testing 75 225 0.98 0.97 0.01
Overall 250 750 0.99 0.98 -

Model 4—All treatments, Week 8

Training 175 525 0.99 0.99 <0.01
Testing 75 225 0.91 1.00 0.02
Overall 250 750 0.97 1.00 -

Figure 6 shows that, according to the 95% prediction bounds, model 1 had 2.13% as
outliers (16 out of 250 data points), with the majority from photosynthesis (50% out of
16 outliers). Model 2 presented 2.53% as outliers (19 out of 750 data points), with most
from stomatal conductance (57.89% out of 19 outliers). On the other hand, model 3 had
4.93% as outliers (37 out of 750 data points), with stomatal conductance and photosynthesis
presenting the highest number of outliers (each with 45.95% out of 37 outliers). Furthermore,
model 4 had 3.20% as outliers (24 out of 750 data points), with most from transpiration
(41.67% out of 24 outliers).

Table 3 shows the results from the pattern recognition models to classify tomato plants
into five different inoculum levels. Models 6 (week 2) and 8 (week 6) had the highest overall
accuracy of 96.8% for both, followed by model 5 (day + day 3) with 95.2% and models
9 (week 8) and 7 (week 4) with 94.8% and 94.4%, respectively. None of the five models
showed signs of under- or overfitting since the MSE values for training (<0.01 for all) were
lower than the testing stage (≤0.02).

Table 3. Machine learning pattern recognition models based on artificial neural networks (Bayesian
regularization) to classify tomato plants into different levels of pathogen inoculum using the electronic
nose outputs as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error Performance (MSE)

Model 5—Day 0 + Day 3

Training 350 99.40% 0.60% <0.01
Testing 150 85.30% 14.70% 0.02
Overall 500 95.20% 4.80% -

Model 6—Week 2

Training 175 98.30% 1.70% <0.01
Testing 75 93.30% 6.70% 0.02
Overall 250 96.80% 3.20% -

Model 7—Week 4

Training 175 98.30% 1.70% <0.01
Testing 75 85.30% 14.70% 0.01
Overall 250 94.40% 5.60% -
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Table 3. Cont.

Stage Samples Accuracy Error Performance (MSE)

Model 8—Week 6

Training 175 97.70% 2.30% <0.01
Testing 75 94.70% 5.30% 0.01
Overall 250 96.80% 3.20% -

Model 9—Week 8

Training 175 99.40% 0.60% 0.01
Testing 75 84.00% 16.00% 0.02
Overall 250 94.80% 5.20% -
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Table 4 shows the results from the pattern recognition models to classify soil samples
into five different treatments. It can be observed that both models 10 and 11 had high
overall accuracy. Model 10 had a slightly higher overall accuracy (96.22%) than model 11
(94.81%). Neither of the models had any signs of under- or overfitting since the MSE values
for training (<0.01 for both) were lower than the testing (0.02 for both).

Table 4. Machine learning pattern recognition models based on artificial neural networks (Bayesian
regularization) to classify soil samples into different levels of pathogen infection using the electronic
nose outputs as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error Performance (MSE)

Model 10—Baseline + Day 2

Training 350 98.30% 1.70% <0.01
Testing 150 91.35% 8.65% 0.02
Overall 500 96.22% 3.78% -

Model 11—Weeks 1–4

Training 700 97.13% 2.87% <0.01
Testing 300 89.40% 10.60% 0.02
Overall 1000 94.81% 5.19% -

Figure 7 shows the overall receiver operating characteristic [30] curves of the pattern
recognition models for the classification of the tomato plants [31] and soil samples (f and
g), which assessed the overall diagnostic performance of the pattern recognition models.
As true-positive was achieved for all pattern recognition models, the most optimal models,
as described before (models 5–11), were selected.
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4. Discussion
4.1. Physiological Response of Tomato Plants to F. oxysporum Infection

The reduction in plant physiological parameters may have resulted from water and
nutrient deficits due to roots being infected by Fusarium oxysporum [32–35]. Since the
Australian Processing Tomato Industry has a normal growing season of four months,
and physiological data started to differ significantly from week 2, the early change in
plant physiological response was important for the further application of early detection.
Transpiration and photosynthesis were found to be positively correlated with stomatal
conductance and stomata opening. The results were consistent with previous research
where root systems were infected by the collar and root rot Fusarium oxysporum, leading
to a damaged collar and root system with lesions and rot [1,32,35]; hence effective water
and nutrients uptake from the root system was significantly reduced, and stomatal closure
occurred as a stress response resulting from water deficit [36–38]. Anatomical alterations to
smaller stomatal sizes and stomatal closure due to water deficit caused by poor root growth
leads to decreased stomatal conductance [39]. Gudesblat et al. [40] and Ye et al. [41] showed
that once stomatal activities were limited in response to increased pathogen inoculum,
especially for pathogenic fungal species, the photosynthetic capacity, transpiration, and gas
exchange rates were all significantly reduced.

4.2. Production of Plant Volatile Compounds in Response to F. oxysporum Infection

For the e-nose readings, the variability in the production of VOCs was expected, which
was assumed to be correlated with the interactions between F. oxysporum and the tomato
plants. As mentioned previously, the normal growing season of Australian processing
tomatoes is four months, and significant differences in e-nose results were observed from
day 3 of processing tomatoes; hence the early detection of changes in VOC production
was achieved. For the volatile compound MQ3 (alcohol), previous research found that
F. oxysporum was able to assimilate ethanol from plant cell walls [42–46]. However, this
experiment found that with increased F. oxysporum inoculum, the production of alcohol
decreased gradually. The largely reduced photosynthesis could have caused this variability
hence the reduced biomass production and depletion of available resources and nutrients,
leading to a significantly reduced alcohol production with an increased pathogen inoculum.

The concentration of MG811 (CO2) was consistent with the physiological data with
high levels of F. oxysporum inoculum causing root infection leading to significant stom-
atal closure due to water deficit, thereby largely limiting gas exchange. This is similar
to previous studies [32,33], where the Fusarium crown and root rot of tomatoes caused
stomatal closure due to water deficit as a result of root lesions and severely damaged water-
conducting tissues. Consequently, plants were unable to capture and utilize CO2 from the
ambient environment to achieve effective gas exchange with low stomatal conductance
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and photosynthesis [47,48], which could lead to the accumulation and elevated levels of
CO2 [49–51] on the plant leaf surface being captured by the e-nose.

4.3. Response of Soil Samples to F. oxysporum Inoculation

In general, the e-nose readings from soil samples were not as responsive as from
the tomato plants, and the differentiation or identification of soil samples with different
concentrations of inoculum was unsuccessful. For the e-nose outputs of soil samples, the
fluctuation at the baseline measurement for MQ3 (alcohol) and MG811 (CO2) could have
been due to the high sensitivity of the e-nose that took measurements every 0.5 s, hence able
to capture any changes in volatile compounds from the soil surface [19]. As the experiment
progressed, the higher release of CO2 with increased inoculum levels could have been due
to the ability of F. oxysporum to interact with the organic compounds in the potting mix,
hence assimilating and releasing CO2 back to the environment, which was consistent with
previous studies [51–54]. For MQ3 (alcohol), previous studies found that F. oxysporum was
able to ferment ethanol directly from monosaccharides in plant cell wall tissues [42–46]
under certain anaerobic and microaerobic conditions [44,45]. Nonetheless, as F. oxysporum
gradually became dominant in the microbial environment, the resources and nutrients
were largely depleted; thus, ethanol fermentation may not have continued further, and a
reduction in alcohol production was observed after week 2. As a result, the e-nose could be
used as an indicator to identify clean, healthy soil from F. oxysporum-infected soil; however,
the identification of different inoculum levels cannot be completely achieved solely based
on e-nose results as there was no statistical difference in the inoculated treatments with
different levels of infection. Determination of the exact concentration of the inoculum in the
soil over time (using qPCR to detect the pathogen’s DNA) would provide a more accurate
method to correlate volatile compounds with the level of inoculum in the soil.

4.4. Development of Machine Learning Models

The glasshouse pathogenicity bioassays were conducted in a growth chamber with
highly controlled ambient conditions; hence the models developed did not include dis-
turbance from any other abiotic or biotic stressors. The high similarity of ML models
developed from the glasshouse pathogenicity bioassay and the parallel soil experiment
demonstrated the accuracy of the novel low-cost digital e-nose compared to more so-
phisticated and expensive instrumentations, such as gas chromatography [55–57] and/or
near-infrared spectroscopy [58].

Compared to the growing season of Australian processing tomatoes, normally three to
four months, the first 1.5–2 months after sowing or transplanting (depending on different
planting methods) are extremely crucial when considering disease management. The
eight-week glasshouse pathogenicity bioassay provided an effective way for early disease
detection, as both pattern recognition and regression models had very high accuracies
from week 2. For the glasshouse pathogenicity bioassay, the e-nose outputs, machine
learning regression, and pattern recognition models provided significant separation and
prediction of plant physiological parameters and levels of infection, respectively, with
high accuracies. Considering the parallel soil experiment, the separation of soil samples
inoculated with different levels of F. oxysporum was not completely successful when based
on e-nose readings alone, and simple statistics such as ANOVA and the ANN pattern
recognition models for classification purposes had a very high accuracy of 96.22% and
94.81%, respectively (models 10 and 11). As mentioned previously, all models developed
from tomato plants based on e-nose outputs could demonstrate the differences in the
pathogen–plant interactions under different inoculum levels, which were successfully
validated from the Licor data. The plant physiological machine learning models developed
from the e-nose outputs as inputs and Licor data as targets for all treatments had high
correlation coefficients and no sign of overfitting.

For both ML regression and pattern recognition models, model 1 (regression model,
week 2) with a correlation coefficient R = 0.97, models 2 and 5 (pattern recognition models,
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day 0 + day 3 and baseline + day 2, respectively), with an overall accuracy of 95.2% and
96.22%, respectively, were extremely crucial as they could be considered as a valid early
detection of F. oxysporum infection on both tomato plants and soil samples. Since no
visible or clear disease symptoms had developed in such a short period, timely effective
management strategies could be implemented once early detection is achieved through
different machine learning models. As the models were developed from a highly controlled
environment that focused only on the impact of the soilborne pathogen F. oxysporum,
the next stage would be to implement this technique and to deploy the models in field
conditions where there will be more complicated ambient conditions with more complex
soil–microbial–host interactions. The low-cost, effective, and accurate e-nose coupled with
ML modeling could be further applied to monitor pathogen interactions with plants and/or
soil through integrated disease management.

5. Conclusions

This is the first report of applying the low-cost electronic nose and machine learning
modeling for the early detection of disease caused by Fusarium oxysporum in processing
tomato plants. With the accurate machine learning models developed from the cost-effective
portable electronic nose, it provides solid evidence and validation for the application of the
e-nose in processing tomato fields for the early detection of plant disease and the assessment
of plant health status without destructive sampling. The early detection of changes in the
production of volatile compounds could hence be applied in field conditions to identify
early signs of plant diseases and pathogen infection. The decrease in gas exchange could
provide preliminary evidence of compromised plant health conditions, especially in the
early growth stages. In addition, the ML models with high accuracy can also be further
applied to assess and evaluate other abiotic and biotic stressors related to poor plant growth,
including, but not limited to, water stress, droughts, insects, or other soilborne and foliar
pathogens. This provides an efficient and cost-effective plant monitoring system that could
become one of the important aspects of integrated pest and disease management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22228645/s1, Figure S1: Simplified flowchart showing e-nose
data acquisition and processing for each individual plant.
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