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Abstract: Accurate information about growing crops allows for regulating the internal stocks of
agricultural products and drawing strategies for negotiating agricultural commodities on financial
markets. Machine learning methods are widely implemented for crop type recognition and classifica-
tion based on satellite images. However, field classification is complicated by class imbalance and
aggregation of pixel-wise into field-wise forecasting. We propose here a Bayesian methodology for the
aggregation of classification results. We report the comparison of class balancing techniques. We also
report the comparison of classical machine learning methods and the U-Net convolutional neural net-
work for classifying crops using a single satellite image. The best result for single-satellite-image crop
classification was achieved with an overall accuracy of 77.4% and a Macro F1-score of 0.66. Bayesian
aggregation for field-wise classification improved the result obtained using majority voting aggrega-
tion by 1.5%. We demonstrate here that the Bayesian aggregation approach outperforms the majority
voting and averaging strategy in overall accuracy for the single-image crop classification task.

Keywords: crop classification; unbalanced classes problem; pixel-wise aggregation

1. Introduction

Crop identification from satellite images is an important problem in precision agricul-
ture. Possessing accurate information about growing crops makes it possible to regulate
agricultural products’ internal stocks and to draw strategies for negotiating agricultural
commodities on financial markets. Recent developments in remote sensing and data
processing techniques have enabled both scientists and practical workers to simplify the
process of crop identification.

The growing use of satellite imagery at very high spatial and temporal resolution
allows land managers to obtain extensive data on how the land is used. Different methods
for mapping crop patterns by classifying multi-source and multi-temporal data have
been proposed and tested by using time series from different satellites in recent years [1].
However, most of these studies demonstrated these methods having certain drawbacks,
which were mainly related to the high cost of data collection for time-series and the cloud
cover problem, which is commonly faced in different regions. For example, snow cover may
stay for more than four months in northern countries, such as Canada or Russia. For some
countries, such as India, monsoon season with its dense cloud cover could be the reason for
the absence of satellite data. This essentially means that sometimes only one or two cloud-free
images can be obtained from satellites and analyzed during the vegetation period. Therefore,
an adequate single-image crop classification approach should be used in this case.
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Although ML and DL classification algorithms are used to classify crops, the processed
classification results’ aggregation toward the field level is not considered in the previous
articles. It is also worth noting that most works use multi-temporal data for training.
However, how to conduct one-show multi-spectral image learning for crop classification
needs to be clarified. The objective of this study was to examine resampling and aggregation
techniques for ML and DL models. In this work, we compared ML and DL models, such as
convolutions neural networks (CNNs), for crop type recognition. The Sentinel-2 satellite
image was used as input data for classification models. We compared classical aggregation
methods of pixel-wise classification and also suggested a new approach to aggregate results
towards field-wise ones using a Bayesian strategy.

This paper is organized as follows. Section 2 describes the related ML and DL ap-
proaches for crop classification, current methods of resampling to tackle class imbalance
problems, and recent Bayesian methods applications. Section 3 describes the datasets,
satellite image preprocessing and spectral indices generation, ML and DL models used
for classification, classical resampling methods, and Bayesian aggregation proposed in
this paper. Section 4 presents the results of crop classification, such as overall accuracy
and macro-F1 score, and comparison of aggregation methods. Section 5 presents the
conclusions.

The main contributions of this paper are as follows:

• We demonstrated the performance of ML models and the U-Net neural network to
address crop classification problems;

• We compared resampling techniques to tackle the problem of high imbalance of classes;
• We proposed a new Bayesian aggregation strategy of pixel-wise classification.

2. Related Works

Several major approaches are used to tackle the problem of crop classification based
on satellite images. For the last decade, classical machine learning (ML) was the most
popular and powerful instrument used for these purposes. Many authors have already
studied crop type classification using traditional statistical or machine learning methods
including Random Forest [2–4], Discriminant analysis [5], k-Nearest Neighbors, Extreme
Learning Machine [6], Maximum Likelihood Classification [7,8], CART Decision Trees [4,9]
and Support Vector Machine (SVM) [7,10–14]. Recently, multi-spectral Sentinel-2 images
and SAR Sentinel-1 data were combined for the crop mapping problem supported with the
Random Forest model in Germany; for major crops, the F1-score was equal to 0.8 [15].

Class imbalance has a serious effect on crop type recognition. For example, class imbal-
ance explains 40% of the accuracy variability [16]. Recently, class balancing techniques have
been compared, showing improved results using SMOTE-based methods [17]. Moreover,
researchers have studied the impact of phenology-based methods on the problem of class
imbalance, while absence samples for classification were automatically generated using
dynamic time warping [18].

A number of researchers reported on the use of neural networks to tackle the problem
of crop classification. For example, deep convolutional neural network [19–21] and LSTM
recurrent neural networks [21] were successfully used for crop recognition. High-resolution
Planet satellite tiles and time series of Sentinel-2 tiles were used for the segmentation
of crop types in Africa and Germany using 2D U-Net + CLSTM and a 3D-CNN M as
reported by Rustowicz et al. [22]. Another example is CNN’s multi-temporal approach
with channel-attention, which demonstrates an average F1 score of 0.6 for classifying
multi-class crops [23]. However, another paper claims that the one-shot classification based
on hyperspectral imaging and deep convolutional networks approach is effective [24].
Spatiotemporal transferability is one of the most challenging problems in crop recognition.
Recently, a transferable model based on the U-Net++ architecture was proposed [25].

Statistical methods based on Bayesian theory have become widespread for environ-
mental applications and Earth sciences. An example is the deep Bayesian network applied
to develop a robust satellite image classifier to prevent adversarial attacks [26]. Moreover,
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Bayesian model averaging was used to provide an aggregated probabilistic estimate of
soybean crop yield forecast of deep neural networks, such as the 3DCNN (3D Convolu-
tional Neural Network) and ConvLSTM (Convolutional Long Short-Term Memory) [27].
For classifying tree species, Bayesian inference was used, making it possible to achieve
an overall classification accuracy of 87% [28]. Recently, Bayesian Deep Image Prior was
proposed to downscale soil moisture data from satellite products [29].

3. Materials and Methods
3.1. Dataset Description

The dataset used in this work was taken from the ‘Farmpins’ Crop Classification
Challenge, which was held on the Zindi challenge platform in 2019 [30]. This dataset
consists of time series of satellite images and labeled field masks for South Africa dated in
2017. The area of interest is the proximities of the Orange River—the major agricultural
region of South Africa.

The satellite image time-series in the dataset include Sentinel-2 scenes. FarmPin
provides satellite images of the entire region across 11 time slices per year covering both
summer and winter months. Each Sentinel-2 multi-spectral satellite image has 13 bands,
and each band represents the intensities of absorbed radiation by the satellite’s sensor in a
specific wavelength range. Bands of the Sentinel-2 L1C images have three different spatial
resolutions: 60 m, 20 m, and 10 m for the pixel’s side length.

Labeled field mask data represent field masks for each of nine crops: cotton, dates,
grass, lucern, maize, pecan, wineyard, intercrop (mixed wineyard and pecan), and the last
one is for vacant fields with no plants on them. The organizers of the challenge claimed
that all data were verified by them personally and with the help of drones in 2017.

The initial dataset was split into training and testing datasets, which contain 2497
and 1074 fields, respectively. In this work, only the labeled part was used for training and
validating the obtained models; therefore, the final number of fields used in this work was
2497. They were further split into the training and validation sets.

The distribution of fields by classes from the dataset is shown in Table 1.

Table 1. Number of fields for each crop after preprocessing of Farmpin dataset.

Cotton Dates Grass Lucern Maize Pecan Vacant Vineyard Intercrop

113 2 85 468 251 135 233 789 71

A distinctive feature of the dataset is relatively small areas of the fields. Each field
occupies the area of approximately 0.015 km2 on average. Hence, fields contain around
150 pixels at 10 m resolution, which is the best available spatial resolution of Sentinel-2 images.

Since pixel-wise classification with each pixel being treated independently was primar-
ily used by us, the number of pixels in the Dates class was not enough to train a model. For
this reason, the Dates class was removed from the experiments. Additionally, the Intercrop
class was omitted as these fields contain both the Vineyard and Pecan classes.

3.2. Satellite Data Preprocessing

The Sentinel 2 L1C satellite images were used as input data for classification. The
preprocessing pipeline that has been used in the experiments is described below:

1. Radiometric calibration.
Radiometric calibration is a procedure used to convert meaningless pixel values (DNs)
into physical values such as the intensities of light reflected from all reflecting media
and absorbed by the satellite filter. Reflected light from the ground and atmosphere
is denoted as Top of the Atmosphere (TOA) reflectance. To derive an image from
an uncalibrated image, gain and offset should be applied to raw pixel values (DNs).
Typically, information about gain and offset is received from the data provider or
obtained from the satellite image metadata.
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2. Atmospheric correction.
Since light reflected by plants is worked with, atmospheric correction procedure
should be applied, which converts TOA reflectance into surface or BOA reflectance
(BOA—bottom of the atmosphere). Both of these procedures, radiometric calibration
and atmospheric correction, were performed with the help of the Sentinel Applica-
tion Platform (SNAP) tool [31]. Radiometric correction is automatically applied to
uploaded Sentinel images. Atmospheric correction was carried out using the Sen2Cor
plug-in, which is freely distributed by Sentinel.

3. Spatial resampling.
As it was mentioned above, Sentinel images contain bands of different resolutions:
60 m, 20 m, and 10 m per pixel’s side length. Bands with the 60 and 20 m resolution were
resampled using bilinear interpolation to the resolution of 10 m per pixel’s side length.

4. Band normalization.
Band normalization is a standard procedure used to normalize each band of a
satellite image. Pixel values (normalized BOA reflectance in this case) were used
as an input or baseline of the model. The following formula was used for the
calculations: x̂ij =

xij−µj
σj

, where x̂ij is the i-th pixel in a normalized j-th band in the
image x; µj and σj are the mean pixel value of j-th band and its standard deviation,
respectively. This normalization improves the robustness of the trained models.

3.3. Feature Generation

Spectral vegetation indices (SVI) were used as additional features in the classification
models. SVI quantifies the contribution of vegetation properties and allows reliable spatial
and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural
variations. Since different plants have different spectrum reflectance rates, SVI will also
differ from one crop to another [32]. Following is a list of the used vegetation indices:

• Normalized Difference Vegetation Index (NDVI).
NDVI is the most well-known vegetation index in agriculture. NDVI is considered to
be an indicator of crop health. It has been shown that there is a strong correlation be-
tween NDVI and the amount of green vegetative mass [33]. The NDVI was calculated
as follows:

NDVI =
NIR− Red
NIR + Red

. (1)

• Enchanced Vegetation Index (EVI).
EVI is the optimized version of NDVI designed to have a slightly higher sensitivity in
the regions with high biomass amounts. In this study, the 2-band version of this index
was used [34]. The EVI was calculated as follows:

EVI = 2.5
NIR− Red

NIR + 2.4 Red + 1
. (2)

• Normalized Difference Red Edge Index (NDRE).
NDRE is similar to NDVI, except that Red Edge (RE) Band (Band 6) is used instead of
Red Band. The NDRE was calculated as follows:

NDRE =
NIR− RE
NIR + RE

. (3)

• Modified Soil-Adjusted Vegetation Index (MSAVI).
MSAVI is the index used to minimize bare soil effects on the Soil Adjusted Vegetation
Index (SAVI) [35]. The modified soil-adjusted vegetation index (MSAVI) is a vegetation
index used for areas with large patches of bare soil. These areas are unsuitable for
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NDVI due to the small vegetation areas and the absence of chlorophyll. The MSAVI
was calculated as follows:

MSAVI =
2 NIR + 1 +

√
(2 NIR + 1)2 − 8(NIR− Red)

2
. (4)

These features were calculated from BOA reflectances before the normalization step
of the preprocessing pipeline and were added as additional channels. In total, the input
tensor for classification models contained 17 channels.

3.4. Resampling Algorithms

Classification of crops via satellite data related to class imbalance data, since in most
agricultural regions several major crops and many minor crops are grown [16]. The small
area of fields in the study region has an additional impact on the imbalance of classes. In
order to overcome high imbalances of classes, resampling techniques were applied to the
input data. These techniques are as follows:

• Random Over-Sampling (ROS).
Random Over-Sampling consists in randomly sampling new objects from the set of
available objects with replacement for each class [36].

• Random Under-Sampling (RUS).
The Random Under-Sampling method is quite similar to ROS. However, instead of
sampling new objects, a subset is formed from the existing one by randomly choosing
objects with equal probability for every sample [37].

• Synthetic Minority Over-Sampling Technique (SMOTE).
SMOTE [38] is a more advanced technique for dataset resampling, where, in contrast
to ROS and RUS, only new samples are created. For a randomly picked sample from
the dataset xbase, a set of k-nearest neighbors is considered. Then, a corresponding
sample xcorr is chosen from the set of these neighbors’ objects. The new sample is
generated according to xnew = xbase + λ (xcorr − xbase), where λ ∈ [0, 1] and is sampled
using uniform distribution.

Resampling techniques to overcome unbalanced classes used with ML models, such
as ROS, RUS and SMOTE are not suitable for convolutional neural networks. Instead of
resampling techniques, it is a common practice to assign the weights for each class and
use them in the loss function [39]. It allows to reduce the effect of majority class gradient
direction dominance in the backpropagation process during training.

The weighted loss is calculated according to the formula:

Lw(D) =
1
|D| ∑

(x,y)∈D
wy L(x, y) , (5)

where L is a certain loss function, D is a dataset, (x, y) is a sample–label pair and wy is the
weight for class y.

3.5. Data Augmentation

A data augmentation technique was used to artificially increase the dataset by trans-
forming the initial dataset samples to prevent model overfitting and even the imbalances
between classes. Augmentation methods were applied for classification tasks using multi-
spectral images [40,41]. The Python library Albumentations was used to build the augmen-
tation pipeline [42]. In the framework here, 100 by 100 pixel images we used. The following
augmentation pipeline was used:

1. Pad the image with reflection mode by 50 pixels on each side;
2. Rotate the image by a random angle in the (−60, 60) degree range;
3. Apply affine transformation with random parameters in the (0.75, 1) range;
4. Shift image by a random number of pixels in the (−20, 20) range along both axes;
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5. Crop in the center down to the size of 100 by 100 pixels.

In all image transforms, bilinear interpolation was used; in label transforms, 0-order
transformations were used. Both satellite images and labels were transformed using this
pipeline. Output augmented images were fed to the neural network after that.

3.6. Classical Pixel Aggregation Methods

We used a pixel-wise approach to train the model, with probabilities p(k|x) of a certain
pixel being represented by the feature vector x to the class k. However, the results of
field classification may contain more valuable data for farmers and decision-makers than
those generated by pixel-based classification; for this reason, we focused on this type of
crop classification. As the classification method has a certain degree of misclassification, a
number of pixels within fields were assigned to the wrong classes. At the same time, there
is prior information that all pixels from a particular field belong to one class; therefore, we
decided to remove misclassified pixels by assigning all pixels within one field to a single
class. The classical methods applied for this purpose are average voting and majority voting.

3.6.1. Majority Voting

In machine learning, majority voting is a primary type of aggregation, which enables
algorithms to make decisions about the best classifications. For our case, it is formulated
as follows: for each pixel xi, we deduce its prediction ci by taking a class with maximum
probability and then choosing for the whole field the class c with the maximum number of
classified pixels. Here, xi—features of the i-th pixel of the field, p(class = k| xi)—probability
of the i-th pixel being classified to class k, and #cn is the number of pixels classified to class
cn. Formulae for this rule:

ci = arg max
k

p(class = k| xi) , (6)

c = arg max
n

#cn (7)

The main disadvantage of this aggregation rule is that it does not take into account the
confidence of prediction for each pixel. In a situation where the majority class has fewer
pixels but with a more confident prediction than the minority class, the less confident class
will be chosen.

3.6.2. Average Voting

Averaging is another popular machine learning strategy. It takes the mean predicted
probability p̄(class = k) of each pixel’s class c among all crops in a field F and uses that as
the final class for that field:

p̄(class = k) =
1
|F| ∑i∈F

p(class = k| xi) , (8)

c = arg max
k

p̄(class = k) . (9)

Average voting is a useful technique; however, the result of this aggregation method
can be misleading. Usually, each pixel is treated as a new source of information about
the whole field, especially when one has a field with quite a few pixels. Each new pixel
that predicts some class with positive probability (greater than 0.5) should increase the
confidence of the overall prediction of that class. However, that does not necessarily happen
when using average aggregation. For example, consecutive pixels with ’positive’ (higher
than 0.5) probabilities—0.6, 0.7, 0.8—will obtain 0.7 as the overall probability of some class
(here, the pixel with probability 0.6 canceled out the one with a high probability of 0.8),
although they all are ’positive’ and final confidence should be higher than 0.8.
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3.7. Bayesian Aggregation

The natural way of incorporating prior information about a pixel’s class into a decision
is to use Bayes’ theorem. Let F be the set of pixel features from some field: xi ∈ F. Summing
up the log-odds of predictions from every pixel (10), the final decision is obtained using (11):

I(k) = ∑
x∈F

log
1− p(k | xi)

p(k | xi)
, (10)

c = arg max
k

1
1 + exp(I(k))

. (11)

Before applying Bayesian aggregation, it may be useful to perform smoothing of raw
predictions in the following way:

p̂α(k | xi) = αp(k | xi) +
1− α

N − 1
(1− p(k | xi)) , (12)

where α ∈ (0, 1) is a smoothing factor and N is the number of classes for classification. The
choice of factor α depends on the methods used. A grid search was conducted here, which
revealed that for N = 7 as in the present case, values α ∈ (0.3, 0.4) perform best. Figure 1
presents the process of pixel aggregation.

Figure 1. Theoretical visualization of pixel aggregation for the classification model output. Average
voting, majority voting and Bayesian voting produce different classes for fields with some pixels
assigned to the wrong class.

3.8. Crop Classification Pipeline

Using preprocessed bands and generated features, ML models and U-Net were trained
and pixels were classified into classes according to the field dataset. First, satellite data
were preprocessed and SVIs were computed as additional features. Second, the initial
dataset with crop labels was divided into the training and test sets. After that, ML models
and U-Net were trained using different resampling techniques and pixel-wise classified
results were obtained. The following machine learning and deep learning methods were
applied:

• k-nearest neighbors (kNN) [43];
• Random Forest (RF) [44,45];
• Gradient Boosting Decision Trees (GB) [46];
• U-Net architecture with SE-blocks [47].

The architecture of the U-Net and SE-blocks network is shown in the Figure 2. Finally,
pixel aggregation techniques were used to forecast crop types on a field-scale level. To
evaluate the performance of the ML pipeline, overall accuracy and Macro F1-score were
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used [48]. Hyperparameters and other technical details of the applied machine learning
models are presented in Appendix A.

Figure 2. Architecture of U-Net with SE-blocks used for crop classification.

4. Results and Discussion

In this section, we present the results of our experiments on crop classification, as well
as the comparison of various resampling techniques and pixel aggregation methods.

Table 2 shows the main results of pixel-wise crop classification before applying the
aggregation procedure. It provides the assessment of ML models and U-Net neural network
performance using overall accuracy and F1 score. The table also compares the results of
different resampling techniques: ROS, RUS, SMOTE and weighting.

Table 2. Comparison of resampling techniques and pixel-wise classification results for ML models
and U-net before pixel aggregation. The table does not contain metrics for resampling methods
incompatible with some algorithms. For example, ROS, RUS, and SMOTE methods are not applicable
for CNN, and weighting is not for kNN.

Classifier
ROS RUS SMOTE Weighting

OA Macro F1 OA Macro F1 OA Macro F1 OA Macro F1

kNN 53.0 0.39 43.5 0.33 53.3 0.40 — —
RF 62.7 0.46 50.3 0.37 62.4 0.46 62.5 0.46
GB 68.5 0.51 55.3 0.42 65.7 0.50 68.7 0.50
U-Net+SE — — — — — — 70.1 0.57

Table 2 demonstrates the differences in the performances between ML models and U-
Net. The U-Net neural network with SE-blocks (U-Net+SE) outperformed all other methods,
namely, GB, kNN classifier and RF. Its OA was as high as 70.1 and Macro F1 score as high
as 0.57. When classical machine learning models were compared, GB showed the best
result (OA 68.7, Macro F1 0.50). The comparison of resampling techniques demonstrated
that all the techniques used give more or less similar results in terms of the Macro F1 score.
However, the choice of resampling technique greatly affected the OA metric. Weighting
resampling outperforms the RUS technique by more than 10% in the case of gradient
boosting (GB). Generally, Weighting resampling appears to be a better choice than ROS,
RUS and SMOTE to tackle the unbalanced classes problem.

Figure 3 presents the result of crop classification using the U-Net neural network.
Different classes of crops on the map are marked with different colors. As we can see
on the map, there are fields containing almost equal numbers of pixels assigned to dif-
ferent classes. Such cases pose challenges in field-wise classification, as it is unclear how
to make a final decision about the crop class. To address this issue, we tested various
aggregation techniques.
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Figure 3. Classification map produced by U-Net+SE setup (left) and correct crop labels (right).

Table 3 presents the comparison of different aggregation techniques performance
towards field-based crop classification. The effect of aggregation on the results is promis-
ing: we applied three different aggregation approaches, and all of them led to a marked
improvement in crop recognition results at field scale. Bayesian aggregation showed the
best OA among the tested methods. The U-Net neural network shows similar OA metrics
for both pixel-wise and field-wise crop classifications, probably because U-net considers
particular contextual information.

Table 3. Comparison of different aggregation techniques and resampling techniques for field-based
crop classification by ML models and U-Net. The table does not contain metrics for resampling
methods incompatible with some algorithms. For example, ROS, RUS, and SMOTE methods are
not applicable for CNN, and weighting is not for kNN. Bold text indicates the best overall accuracy
for each of the resampling methods. For all methods, the Bayesian strategy of pixel aggregation
improved overall accuracy.

Overall Accuracy (%)

Aggregation kNN RF GB U-Net+SE

ROS
Bayesian 72.66 73.61 77.44 —
Averaging 72.28 73.42 77.25 —
Majority 72.08 72.08 76.67 —

RUS
Bayesian 61.41 60.11 70.44 —
Averaging 61.41 59.92 70.08 —
Majority 58.62 58.48 69.69 —

SMOTE
Bayesian 72.85 73.23 77.44 —
Averaging 73.04 73.04 77.44 —
Majority 72.66 71.70 75.72 —

Weighting
Bayesian — 72.85 77.44 71.58
Majority — 72.47 77.06 71.34
Averaging — 71.13 75.91 71.22

According to our results, RF, kNN and GB performed sufficiently well in the case of
crop classification based on a single satellite image. It also appears that ROS and weighting
techniques produce the best overall accuracy and Macro F1 score among the tested methods.
To the best of our knowledge, this is the first study where the Bayesian aggregation approach
was successfully applied to improve crop classification at the field scale.

5. Conclusions

We compared the performances of classical machine learning methods and the U-Net
neural network for the crop classification task in South Africa and achieved reasonable
performance using aggregation strategy. We assessed and compared the performance of



Sensors 2022, 22, 8600 10 of 13

different classical aggregation strategies and suggested a new one based on Bayes theorem,
which has never been tested in applied tasks. Bayesian aggregation outperformed other
aggregation strategies—namely, majority voting by 1.5% and averaging approach by 0.6%.
Consequently, crop classification with Bayesian aggregation is a promising approach for
industrial use in agriculture. Moreover, it could be used in other geospatial applications for
classification goals, such as forest taxation, land use and land types recognition and others.
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Abbreviations
The following abbreviations are used in this manuscript:

OA Overall Accuracy
ROS Random Over-Sampling
RUS Random Under-Sampling
SMOTE Synthetic Minority Over-Sampling Technique
NDVI Normalized Difference Vegetation Index
EVI Enhanced Vegetation Index
NDRE Normalized Difference Red Edge Index
MSAVI Modified Soil-Adjusted Vegetation Index
kNN k-Nearest Neighbors
RF Random Forest
GB Gradient Boosting Decision Trees
DL Deep Learning
ML Machine Learning
NNs Neural Networks

Appendix A. Technical Details

General information
All parts of the project were implemented using Python 3.7 programming language

and Jupyter Notebook. For the implementation of the neural networks, PyTorch 1.5.0
package was used. Models were trained using an NVidia GTX 970 GPU. Models such
as k-nearest neighbors and Random Forest were imported from the Sci-Kit Learn Python
package. For the gradient boosting machine, the XGBoost library was used. For all image
transforms used in the data augmentation part of the data preparation pipeline, functions
implemented in the Albumentations Python package were imported.

SMOTE
Number of neighbors: 8
k-Nearest Neighbors
Number of neighbors: 8
Points are weighted by the inverse of their distance
Random Forest:

https://zindi.africa/competitions/farm-pin-crop-detection-challenge/
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Number of estimators: 200
Minimal number of samples in the leaf: 10
Maximum depth of tree: 15
Class weights are inversely proportional to class frequencies
Gradient Boosting Decision Trees:
Number of estimators: 250
Maximum depth of tree: 10
Subsample rate: 0.5
Learning rate: 0.05
Class weights are inversely proportional to class frequencies
U-Net with Squeeze and Excitation Blocks
Training (2 heads):
Optimization algorithm: Adam
Learning rate: 0.01
Batch size: 8
Shuffling when training: True
Learning rates were decreased by the factor of 0.977 every epoch
Number of epochs: 350
Fine-tuning:
Learning rate: 0.000002
Learning rates were decreased by the factor of 0.984 every epoch
Number of epochs: 100
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