
����������
�������

Citation: Popovici, A.-T.; Dosoftei,

C.-C.; Budaciu, C. Kinematics

Calibration and Validation Approach

Using Indoor Positioning System for

an Omnidirectional Mobile Robot.

Sensors 2022, 22, 8590. https://

doi.org/10.3390/s22228590

Academic Editor: Jordi Palacín Roca

Received: 3 October 2022

Accepted: 3 November 2022

Published: 8 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Kinematics Calibration and Validation Approach Using Indoor
Positioning System for an Omnidirectional Mobile Robot

Alexandru-Tudor Popovici 1,* , Constantin-Catalin Dosoftei 2 and Cristina Budaciu 2

1 Department of Computer Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
2 Department of Automatic Control and Applied Informatics, “Gheorghe Asachi” Technical University of Iasi,

700050 Iasi, Romania
* Correspondence: alexandru-tudor.popovici@academic.tuiasi.ro

Abstract: Monitoring and tracking issues related to autonomous mobile robots are currently inten-
sively debated in order to ensure a more fluent functionality in supply chain management. The
interest arises from both theoretical and practical concerns about providing accurate information
about the current and past position of systems involved in the logistics chain, based on specialized
sensors and Global Positioning System (GPS). The localization demands are more challenging as the
need to monitor the autonomous robot’s ongoing activities is more stringent indoors and benefit
from accurate motion response, which requires calibration. This practical research study proposes an
extended calibration approach for improving Omnidirectional Mobile Robot (OMR) motion response
in the context of mechanical build imperfections (misalignment). A precise indoor positioning system
is required to obtain accurate data for calculating the calibration parameters and validating the
implementation response. An ultrasound-based commercial solution was considered for tracking the
OMR, but the practical observed errors of the readily available position solutions requires special
processing of the raw acquired measurements. The approach uses a multilateration technique based
on the point-to-point distances measured between the mobile ultrasound beacon and a current subset
of fixed (reference) beacons, in order to obtain an improved position estimation characterized by
a confidence coefficient. Therefore, the proposed method managed to reduce the motion error by
up to seven-times. Reference trajectories were generated, and robot motion response accuracy was
evaluated using a Robot Operating System (ROS) node developed in Matlab-Simulink that was
wireless interconnected with the other ROS nodes hosted on the robot navigation controller.

Keywords: OMR; indoor positioning system; accurate localization; calibration; validation

1. Introduction

The high interest in the analysis of the performances of Omnidirectional Mobile Robot
(OMR) navigation platforms is increasing in the scientific community [1–3], as well as in
the industry field for different types of applications, starting from monitoring and mapping
of the area of interest towards the transportation, intelligent manufacturing [4], and logistic
activities [5,6]. In this context, the OMR vehicle performs movement in any direction under
any orientation; therefore, it has great advantages over conventional platforms (i.e., car-
like Ackermann steering or differential drive system) in warehouse management, where
complex trajectory planning associated with task assignment is a demanding requirement.

Currently, the main attention in the advanced mobile robots research field is paid
towards transitioning from automated guided vehicles to autonomous mobile robots. This
technological challenge is sustained by developing complex sensors and computational
processing power, which offer new navigation capabilities in a dynamic environment with
predefined or variable constraints [2,3,7].

The prediction is that over four million logistical robots will be developed and placed
in approximately 50 K warehouses by 2025 [8]. The favorable factor for this assumption
that will have a big impact on performance in the operational logistic domain is represented

Sensors 2022, 22, 8590. https://doi.org/10.3390/s22228590 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228590
https://doi.org/10.3390/s22228590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7127-8841
https://orcid.org/0000-0001-6095-3944
https://orcid.org/0000-0002-8479-771X
https://doi.org/10.3390/s22228590
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228590?type=check_update&version=1


Sensors 2022, 22, 8590 2 of 22

by the migration of e-commerce to digital commerce. Many parallel research, both from
various academic communities and industrial companies, is closely related to the develop-
ment of a handling and transport solution in a complex logistic environment, the testing
and validation of the experimental OMR localization being an important step in the further
development of algorithms [9]. The increased interest in omnidirectional systems is primar-
ily due to their maneuverability in logistics and assembly applications [4,6]. Robot pose
estimation is based on odometry, which is defined as a simple positioning method based
on the wheel velocity measurements and is usually used in real-time experiments.

Path performance evaluation based on odometry is inconclusive due to the mechanical
shortcomings of the experimental OMR, even if the control action is well defined. Further-
more, the main concern related to the errors that appear in the localization of the robot
is also justified by the fact that the OMR is intended to work in a dynamic warehouse
environment. Even if the improvement of odometry by proper calibration reduces the
position errors, the accurate knowledge of the current location can be ensured by an Indoor
Positioning System (IPS).

In this research study, the data acquisition from the IPS was exploited in order to mon-
itor the motion response of the OMR and calculate the calibration parameters. Experiments
involving typical motion paths for the OMR were performed, so that the longitudinal,
lateral, rotational, and composed motions were studied in order to establish the calibration
requirements for the kinematic transformations used for commanding the motion of the
OMR and monitoring its actual execution.

Tracking performance evaluation scenarios for composed motion reference trajectories
having Lissajous curve shapes are comparatively analyzed both from the IPS and estimated
odometry position [10]. In the current research, a plurality of sets of data was obtained from
multiple experimental scenarios, which were carried out starting from simple orthogonal
movements towards to complex trajectories.

The architectural concepts together with the basic description of an omnidirectional
embedded real-time robotics system was developed by the authors in the current research
project, ROSY-LOGISTIC, and the main results were published in previous articles [11–13].
With the development of many open-source technologies, an OMR can be used on almost
any scenario due to the availability of software libraries and tools, among which is the
Robot Operating System (ROS).

This research tries to capture as comprehensively as possible, in a first phase, the nec-
essary steps for the IPS ROS node integration in the Matlab environment, since these steps
are not completely described in the technical literature; thus, for anyone, this can be a
time-consuming step. Further in Section 2, the motivation of the paper is more pronounced
due to the lack of position accuracy in the experimental path recorded. Section 3 attempts
to develop a calibration approach starting from measurements of the motion and odometry
errors. Section 4 focuses on the experimental scenarios together with the open-loop motion
tracking and performance evaluation. The last section concludes the research and discusses
the perspective for the future work.

1.1. Related Work on Trajectory Validation for OMRs in Logistic Areas

The accurate knowledge of the current localization and orientation of the mobile
robot can benefit largely from a well-calibrated odometry. In outdoor applications, Global
Positioning System (GPS) technology offers good positioning accuracy and is used in many
automated driving applications. Unfortunately, for indoor localization, GPS technology
cannot offer similar reliability because the signals of the satellites lose much strength when
penetrating a building.

Low-cost technologies such as WiFi, ZigBee, and Bluetooth Low-Energy (BLE) are
radio-frequency-based systems and are widely used in in mobile robots for indoor localiza-
tion [14,15]. Although they are very popular due to the availability of the hardware, the
accuracy of static measurements is in the order of 1 to 4 m [16].



Sensors 2022, 22, 8590 3 of 22

Ultra-Wideband (UWB) has gained interest in indoor positioning of robots, the system
relying on the signal travel time for the distance between the mobile robot and static anchors.
The mobile robot location is estimated by exploiting approaches such as multilateration
and trilateration [17]. In the paper [14], the authors benchmarked the accuracy of different
types of indoor positioning systems including the Marvelmind robot. The experimental
results demonstrated that, in larger spaces, there are situations where the Marvelmind
system cannot not perform measurements because of corrupted packets identified using
CRC methods, even if there are not any apparent sources of interference present. This
phenomenon became more pronounced for higher data traffic. Obviously, in recent years,
considerable progress has been made in terms of positioning systems for mobile robots
through the use of the latest sensors and signal processing techniques.

There are several approaches for IPSs with their own advantages and limitations [18].
Usually, a data fusion algorithm is used in the localization system to combine the pose
estimates from the two different sources. Several methods exist, such as inertial, visual, laser,
LiDAR, or wheel odometry, and any of the methods can be applied in a multisensor fusion
algorithm, e.g., visual–inertial odometry [15,19]. Though multisensor fusion approaches
are usually used, there is a real benefit in increasing the confidence in the odometry.

The mobile robots’ cost increases significantly with the addition of advanced sensors,
but odometry and calibration methods can definitely mitigate the positioning error.

1.2. Contributions of the Paper

This work comes as a natural continuation of the previous work [12] of the ongoing re-
search project, which aims to develop transport solutions in complex logistic environments
using a fleet of autonomous omnidirectional mobile robots coordinated by a warehouse
management system. In our previous work [12,13], we provided baseline experimental
results starting from orthogonal movements and continuing with more complex trajectories.

The main contribution of this paper concerns the OMR localization accuracy analysis
and proposing a new offline method for the OMR kinematics experimental calibration.
In this regard, the effectiveness of the method was verified by comparing the performances
between the reference trajectory and the estimated position.

The position provided by Marvelmind was compared to a separately implemented
position calculation based on raw point-to-point distances reported by the IPS to evaluate
its reliability. The initial OMR trajectory tracking was evaluated, and in addition to the
translation velocity correction coefficients [20], the need for translation–rotation cross-talk
compensation coefficients was established.

2. The OMR’s Hardware and Software Architecture

The OMR consists of a chassis that contains the set of mechanical elements including
the propulsion system, made up of four motor–planetary gearbox assemblies, coupled
to the chassis through eight shock-absorbing suspensions, which ensure contact with
the ground, at any time, for the four Mecanum wheels, which have a diameter of 6′′, as
shown in Figure 1. The movement is facilitated by the electrical energy provided with
the Li ion batteries, having a nominal DC voltage of 22.2 V. The OMR acts in a working
environment to perform different tasks, according to the software component, represented
by the implemented control algorithms, which take into account the information received
from the perception system. The complexity of the perception system is closely related to
the specifics of the operations performed by the robotic platform. The main components
with the characteristics of the perception system [21] are presented in Table 1. Last but not
least is the control system of the robot.

The driving structure was implemented hierarchically, with a top-down approach,
with two controllers: vehicle controller (executive-level) and navigation controller (high-
level). The vehicle controller was implemented with an STM32F103RC micro-controller,
while the navigation controller was implemented with an NVIDIA Jetson Nano B02 em-
bedded system. The two control systems are directly connected to various components of



Sensors 2022, 22, 8590 4 of 22

the robot, as represented in Figure 2, and exchange information through specific control in-
structions, receiving through the communication protocol both information related to work
possibilities and information on the activity and the current state; information analyzed at
this decision level allows the robot to further establish the action strategy.

Table 1. Components of the perception system.

Component Model Specifications

RP LIDAR A2M8 360 2D LiDAR, resolution: 0.5 mm–1.5 m at a maximum range: 12 m
ASTRA PRO Depth 3D camera stereo, distance: 0.6 m–8 m 1280 × 720 @30 fps
MPU6050 IMU 3-axis accelerometer and gyroscope module
EI 500P/R Quadrature Optical Encoder 500 ppr
HW v4.9-IMU-NIA MARVELMIND “GPS” indoor system with beacons

Figure 1. The OMR used in the experiments.

Figure 2. Layered hardware architecture of the OMR.

Given the complexity of the software needed in a dynamic environment, a certain
degree of computational resources is required. The path-planning algorithms need to be
implemented in order to be executed completely on the OMR platform, without the help of
external or remote control.

On the low-level controller runs a customized implementation of FreeRTOS. The
firmware includes the inverse and direct kinematics models with all specific OMR parame-



Sensors 2022, 22, 8590 5 of 22

ters. As was demonstrated and detailed in [12], the matrix representation of the inverse
kinematics is depicted in Equation (1):

ω1
ω2
ω3
ω4

 = J

vx
vy
Ω

 (1)

where (ωi, i = 1, 4) represents the angular speed of each wheel, vx/vy are the instantaneous
longitudinal/lateral velocities component of the OMR, Ω is the rotational speed, and J is
the inverse kinematic Jacobian matrix of the OMR—expressed in relation to the notational
conventions of the OMR elements:

J =
1
R


1 1 −(lx + ly)
1 −1 −(lx + ly)
1 1 (lx + ly)
1 −1 (lx + ly)

 (2)

All variables and their numerical values for the experimental platform from
Equations (1)–(3) below are highlighted in Figure 3.

The way to determine the lateral/longitudinal and rotation velocities of the OMR
starting from each wheel’s velocity is known as forwarding kinematics and is used in
odometry calculation—Equation (3):

vx
vy
Ω

 =
R
4

 1 1 1 1
1 −1 1 −1
−1

lx+ly
−1

lx+ly
1

lx+ly
1

lx+ly




ω1
ω2
ω3
ω4

 (3)

In an Ubuntu environment with popular programming languages and libraries such as
C++, Python, OpenGL, and ROS, the navigation level of the OMR developed on the Jetson
Nano, which comes with a Quad-core ARM A57 @ 1.43 GHz and 128-core Maxwell GPU,
providing enough resources to cater to the computation for mapping and motion planning.

Figure 3. The robot coordinate system and dimensions.



Sensors 2022, 22, 8590 6 of 22

2.1. The Indoor Positioning System—Marvelmind Ultrasound Beacons

The IPS used with the OMR platform was developed by Marvelmind Robotics (Starter
Set HW v4.9-IMU-NIA), with a promised accuracy of 20 mm [22], and can be configured to
obtain 3D or 2D position solutions. The working principle is based on a network composed
of fixed ultrasonic beacons and a mobile beacon, called the hedgehog, installed on the
target, which must be localized, in our case, on the OMR. All the beacons are linked by
radio interfaces operating in the license-free Industrial, Scientific, and Medical (ISM) band.
The mobile beacon on the OMR integrates an Inertial Measurement Unit (IMU) having an
accelerometer, a gyroscope, and compass module, which can be used for sensor fusion.
The ultrasonic sensor network is completed by a modem having the role of the central
controller for the system, which communicates with all the beacons through radio, in the
case of the equipment using the ISM 433 MHz band, specific to the European region.
Messages with localization information can be received from the hedgehog, but also from
the modem, by several communication interfaces (USB Virtual COM Port, I2C, SPI, serial
TTL, and others).

There are two operation modes possible for the system, which are called the Inverse
Architecture (IA) and Non-Inverse Architecture (NIA). In the IA, the stationary beacons emit
ultrasonic signals, while multiple hedgehogs can receive them, the mode being more useful
for small areas requiring a minimal number of fixed beacons in order to avoid the reduction
of the localization rate. In the NIA, the mode used in the current research, the hedgehogs
emit the ultrasonic signals and the stationary beacons receive the propagated wave, and if
more hedgehogs are to be monitored in the same area, either Time Division Multiple Access
(TDMA) or Multi-Frequency (MF) ultrasonic signals using Frequency Division Multiple
Access (FDMA) can be configured for quasi-simultaneous and, respectively, simultaneous
tracking. Using TDMA, multiple targets take turns in being localized. Using FDMA, the
targets emit simultaneously, but on different ultrasonic frequencies. TDMA implies a
reduction of the localization rate, while for FDMA, there is a limited number of frequencies
that can be effectively identified using digital filters [23,24] implemented on embedded
systems such as the ultrasonic beacons and the coordinating modem.

The location of the OMR is calculated using a proprietary, undisclosed, trilateration
algorithm based on the propagation delay, also named Time of Flight (ToF), of the acoustic
signal between the hedgehog and up to four nearby stationary beacons of the reference
network. The distances between beacons is recommended to be up to 30 m, achieving with
just four stationary beacons a coverage area of up to 1000 m2. Larger or more complex
areas can be covered using more stationary beacons in the reference network.

The performance of the localization system depends on many aspects, and a proper
configuration of the fixed beacon network is essential for achieving the promised accuracy.
In real-world scenarios, it can be difficult to achieve the ideal conditions needed for proper
operation. Based on the acquired experience, the localization rate decreases on so-called
submaps (subareas covered by up to four fixed beacons), where the maximum distance
between the beacons is larger. In a 2D configuration for a maximum distance of 5 m between
any two beacons, localization rates of around and more than 25 Hz can be achieved. On
the other had, 2D localization precision in systems using multilateration is subject to the
Horizontal Dilution of Precision (HDoP) [25], which depends on the relative position of
the target regarding the available reference beacons. For this reason, even in spaces where
there are no obvious issues (propagation path occlusion, multiple/indirect propagation,
interference, or other), the accuracy will vary, generally becoming worse when the target is
closer to the periphery of the submap in which it is being tracked.

The experimental OMR platform was equipped with the Marvelmind IPS in 2021, and
since, then there have been roughly monthly updates of the firmware and software on
the producer website, which keeps improving the solution. The latest version used in this
study was 7.202 from the beginning of September 2022.



Sensors 2022, 22, 8590 7 of 22

2.2. IPS ROS Node for Matlab-Simulink Integration

The Marvelmind company offers as an open-source component, the marvelmind_nav
Robot Operating System (ROS) package, in order to facilitate the usage of their IPS solutions
in industrial and robotics applications. Since it is not yet a standard ROS package, it needs
to be manually installed to be used on the OMR. A short summary of the installation
steps [26] is presented below:

• Open a command line on the target embedded computer;
• Change the directory to the sources folder (src) of the used ROS workspace;
• Make a new directory named marvelmind_nav in the src folder;
• Download manually the latest ROS package from the Marvelmind repository [22] or

use git clone;
• Execute catkin_make -only-pkg-with-depts marvelmind_nav to build the package;
• Run the node with the command rosrun marvelmind_nav hedge_rcv_bin /dev/ttyACMx;

in the previous command, the x in ttyACMx must be replaced with the device number
(usually 1) of the USB virtual serial port that appears in the /dev/ directory when the
hedgehog is connected using the USB cable to the embedded computer.

The ROS node named (hedge_rcv_bin) publishes the position data through the topics:
hedge_pos, hedge_pos_ang and hedge_pos_a. Marvelmind decided to use custom message
types for their published topics, most likely because of the specificity of the IPS application.
As a result, until official standard support is offered from ROS and Matlab-Simulink,
the following steps will be required for Matlab-Simulink version R2021a in a Windows 10
environment in order to successfully configure the ROS Subscriber blocks for receiving
data from the Marvelmind ROS node:

• Check if the message type is available by running in the Matlab Console (MC): rosmsg
list; if no message name starting with marvel appears, than the next steps need to be
executed; otherwise, it means that the Simulink model can already subscribe to the
position information topics;

• Install CMake 3.15.5 or newer [27];
• Install Microsoft Visual Studio 2017 (VS17), especially the C/C++ development tools

and the CMake support (note that, currently, only VS17 is supported for the Matlab
ROS toolbox [28]);

• Install Python 2.7 [29] (note that, currently, the Matlab ROS toolbox does not support
any other Python version [30]);

• Configure the Python version by executing in the MC (recommended immediately
after restarting Matlab): pyenv(‘Version’,‘2.7’);

• Add to the Matlab path the binary installation folder of CMake, by executing in the
MC: addpath(‘C:\Program Files\CMake\bin’);

• Set up the Matlab compiler for building the mex file type shared libraries with VS17
by executing in the MC (the path depends on the actual MATLAB installation folder):
mex -setup:‘C:\Program Files\MATLAB\R2021a\win64\mexopts\ msvcpp2017.xml’ C++;

• Copy in Matlab’s current path the folder msg from the root of the ROS Marvelmind
package [31] that contains .msg files;

• Rename the locally copied folder to marvelmind_ros_messages;
• Build the needed Matlab .mex files for supporting Marvelmind ROS messages by

executing in the MC: rosgenmsg(‘./marvelmind_ros_messages’);
• Include the folder containing the support files for custom Marvelmind ROS messages

in the Matlab path by executing in the MC: addpath(‘./marvelmind_ros_messages’);
• Save the Matlab path for future restarts by executing in the MC: savepath;
• Clear the Matlab workspace classes by executing in the MC: clear classes;
• Refresh the Matlab toolbox cache in order to load the new message types by executing

in the MC: rehash toolboxcache;
• Run the first step again to check that the new message types are now available

to Matlab.



Sensors 2022, 22, 8590 8 of 22

Considering that the installation steps have been successfully completed, it should be
possible to generate in Simulink the ROS Subscriber blocks to obtain the position of the
hedgehog, which can be used to track the OMR for odometry validation. The previous steps
are shared in detail because the diversity and the compatibility of the software components
needed made it difficult to obtain the complete working solution.

Alternatively, to avoid the cumbersome steps enumerated, the open-source code of
the ROS package for Marvelmind can be adapted to generate, in place of the custom
Marvelmind message, some standard ROS messages (e.g., point type) that do not need
special support, but this path can be challenging also.

2.3. Rapid Control Prototyping Using the ROS Node for Matlab-Simulink Integration

In the initial investigation [13], a simple rapid control prototyping environment was
developed using an ROS node designed in Matlab-Simulink, and later, it was developed
into the model depicted in Figure 4, where the three main components can be identified: the
position acquisition from the odometry and IPS, the position controller used to follow the
trajectory described by the waypoint vector, and finally, the ROS blocks used for sending
the requested velocity references to the execution layer of the OMR.

The central part of the node is the position controller implemented as a Matlab function
block. It was designed to steer the OMR to the prescribed pose received from the waypoint
selector block, which keeps track of the current and next target waypoint on the trajectory
path. Velocity saturation and acceleration limitation were applied to keep the OMR within
nominal parameters and to minimize the risk of damaging collisions.

In the command output stage, manual switches were included so that simple motions
and emergency pauses could be requested when the node was executed remotely from a
PC, connected through the WiFi network to the rest of ROS nodes running on the OMR.
This approach allowed for accelerated testing and improved debugging of the developed
node by using Matlab-specific tools such as signal probes and data recordings.

Path

STOP!
Position	Sensing Velocity	Command

Position	Control

Constant

BusIn

BusOut

Bu
sI
n

Bu
sO

ut

Reached	Dest	Index

xyt

dest

empty

idx

done_idx_prev

wz

vLonLat

done_idx

Position	Controller

Bu
s

Bu
s
:=
	L
in
ea

r.X

:=
	L
in
ea

r.Y

:=
	A
ng

ul
ar
.Z

geometry_msgs/Twist

/robot_pose_ekf/odom_combined

IsNew

Msg path

done_idx

idx

dest

empty

idx_next

Waypoint	Selector

Current	Dest	Index

BusIn

BusOut

Bu
sI
n

Bu
sO

ut
Qx
Qy
Qz
Qw

theta

Get	Angle	
fromQuat

/hedge_pos

IsNew

Msg

1

Initial	Pose	Setter

<=	1

/cmd_vel

<X>
<Y>
<Z>
<W>

<X>
<Y>

<XM>

<YM>

<TimestampMs>

Figure 4. ROS application node implemented in Matlab with odometry initialization from the IPS.

2.4. Initial Tracking Results Using the ROS-Matlab Simulink Approach

With a setup similar to the one described in the previous subsection, some initial exper-
iments were carried out using simple trajectories, such as a square shape [13], to investigate
the performance of the odometry calculated by the integration of the raw relative speed to
the ground based on the direct kinematics described in Equation (3), and the necessity of
applying velocity compensations [20] to improve the results became apparent.

In Figure 5 are illustrated the recorded paths, as measured using the odometry and
IPS, against the reference desired path. Since the trajectory controller was configured to
work in closed-loop based on the position estimated using odometry, it can be noticed



Sensors 2022, 22, 8590 9 of 22

that, although the odometry was tracking the reference, the validation performed with
the IPS revealed systematic deviations. Other inconveniences that can be noticed in the
path recorded with the IPS, but that were not visible in reality, were the position estimation
jitters of the IPS, which appeared especially in certain locations of the experimental area.

Figure 5. Initial experiments without odometry calibration (the numbered icons indicate the direction
and the order of travel on the trajectory segments).

At that moment, the quality stream of the Marvelmind IPS localization was not used;
however, it became obvious that the configuration of the IPS beacons was not ideal, and in
certain areas, some of the stationary beacons missed the direct signal from the hedgehog and
received only indirect propagation reflected on nearby walls. This observations motivated
a more careful approach to the placement of the IPS stationary beacons, but also the interest
in monitoring the reported position quality and attempting an independent trilateration
implementation based on the raw beacon-to-beacon measurements, which can be received
from the IPS after each localization in order to obtain a quantitative assessment of the
position accuracy.

After implementing support for velocity reference compensations [20] at the execution
level of the OMR based on the recorded systematic errors, the results from Figure 6 were
obtained which showed a significant improvement, especially for the lateral direction. In
Figure 6 also, it is visible that the OMR used a higher reference speed since the IPS position
samples were more spread out and the overshoot of the trajectory controller was more
obvious in the first direction change when starting to follow the actual Lissajous curve
shape. By applying the calibration, the significant systematic lateral translation deviation
was reduced from about 22 cm to under 5 cm.

Another issue that was identified after the initial calibration was an undesired rotation
of the OMR while following the reference track. This aspect is not visible in Figure 6
because the combined odometry provided by the specialized ROS node that also uses the



Sensors 2022, 22, 8590 10 of 22

IMU of the OMR managed to keep good track of the azimuth change, and as a result, the
trajectory controller could perform an accurate-enough tracking.

Figure 6. Initial experiments with odometry calibration (the numbered icons indicate the direction
and the order of travel on the trajectory segments).

3. OMR Indoor Navigation Improved by Calibration of the Motion and Odometry

Autonomous navigation benefits from the good accuracy of the motion and odometry.
In this process, there are three contradictory requirement concerns: high accuracy, robust-
ness for different conditions, and the application of cost-effective sensors and methods.
Good performance can be ensured with high mechanical precision for the OMR, which
implies higher costs. Better position-finding sensors can solve the positioning control using
a closed-loop approach. This also leads to a higher cost, as well as lower robustness.

In this context, a calibration method designed to compensate through software the
undesired operation of the OMR due to mechanical imperfections is of interest since it can
improve the base performance for motion- and odometry-based localization, which can
only be useful for more advanced techniques such as sensor fusion.

Considering the observed issues regarding the initial results obtained in the previous
section, which used a complex control structure made of a path planner based on waypoints
and a positioning controller, a simplified open-loop control structure was considered for
further analysis and calibration of the odometry. In this way, attention can be concentrated
on the performance of the OMR, while other possible sources of errors are limited. As
a result, a scripted environment based on Python was developed to apply sequences of
motion requests (as relative velocity vectors that the OMR platform can execute) and, at
the same time, to record the reported odometry data and the localization information from
the Marvelmind IPS for later analysis and calibration information extraction.

In order to perform the experimental calibration of the OMR kinematics, certain
practical challenges need to be taken in consideration and mitigated: mechanical accuracy
and play of the OMR components, wheel slippage during aggressive maneuvers, floor



Sensors 2022, 22, 8590 11 of 22

quality, suspension response, integration errors, initial position, and orientation estimation.
In this context, a practical approach needs to be constructed around simple operations
that can be easily reproduced systematically, which motivated a simpler open-loop motion
control solution. The entire experimental procedure followed the flowchart from Figure 7.

Figure 7. The flowchart of the experimental procedure.

3.1. Open-Loop Motion Response for Orthogonal Movements

In order to obtain good performance for complex movements, it is essential to obtain
the desired response for simple orthogonal movements, i.e., pure longitudinal, lateral, or
rotational motion, respectively, which are specific to the OMR. The research conducted on
the OMR based on four Mecanum wheels showed that the direct usage of the mechanical
parameters for solving the kinematic equations led to discrepancies, especially for the
lateral and rotational motion. The observed motion errors can be classified into scaling
errors (moving/rotating more or less than expected) and cross-talk errors (one orthogonal
motion, i.e., lateral, produces another undesired orthogonal motion, i.e., rotational).

3.2. Measurements of the Motion and Odometry Errors

Depending on the type of motion error, different methods can be applied for experi-
mental determinations. For translation scaling errors, a laser range finder was considered



Sensors 2022, 22, 8590 12 of 22

for measuring the actual motion due to its high accuracy. Alternatively, a well-set-up IPS
together with an averaging strategy in specific reference points of a test path can be used to
obtain a more complete picture of the actual motion in time. For rotational scaling error
and the motion cross-talk errors, the methods were based on localization at relevant points
from the reference trajectory using the IPS or the usage of the LiDAR to directly measure
the orientation variation relative to some available reference (e.g., a wall). Although the
IPS supports a special mode called paired mobile beacons to establish the orientation of a
target that carries them, the method was not pursued due to its additional setup complexity
and also because the starter kit used contained only four stationary beacons; converting
one of them to a paired mobile beacon meant a reduction of the fixed beacons used for the
multilateration of the position.

An important aspect can be the order in which the motion errors are determined, espe-
cially because of the noticed cross-talk from translation to rotation motions. In this context,
it is easier to first determine the scaling compensation required for the correct rotation
and then attempt the determination for translation and the cross-talk between translation
and rotation, which cannot be easily separated. By starting with the determination of
the rotation correction factor, then the proper translation–rotation cross-talk factor can be
directly determined.

3.2.1. Rotational Movement Error

Depending on the amount of inaccuracy for the kinematics involved in rotation, an
iterative practical approach may be required for easier determination. The technique for
the iterations was similar, it being necessary in all cases to establish a reference direction,
followed by a number of rotations in place, and then, after stopping, a final measurement
of the orientation direction. The in-place rotation was executed by requesting the OMR
platform to rotate at a fixed rate for the theoretical time needed to complete a specific
number of rotations. Considering a firmware implementation on the OMR that limits
the acceleration and deceleration to the same value to avoid slippage or over-currents,
the previously described requested motion should be executed as expected.

For example, in the first iteration, a single rotation was performed to obtain an initial
estimation of the correction factor, which was then applied in the inverse and direct kine-
matic transformations. In the next iterations, the number of in-place turns was increased to
benefit from averaging-out the errors, such as those affecting the measurement of the initial
and final orientation.

In the case that the IPS is to be used for determining the rotation correction factors,
a method for evaluating the initial and final orientation is necessary if the paired mobile
beacons option is not considered, as summarized in the left most (blue) column of Figure 7.
The solution is to measure (averaging is recommended to improve accuracy) the initial
position at stand-still using the IPS and then perform a longitudinal translation forward at a
fixed speed and for a specific time, followed by a stop and a second accurate measurement
of the intermediate stand-still position. The initial and first intermediate positions were
used to determine the initial orientation by using the arc-tangent trigonometric function in
both the IPS and odometry reference system. A number of in-place rotations were executed,
followed by a complete stop and then a second orientation determination (based on a second
intermediate point and a final point), this time by executing a reverse longitudinal motion.
The steps described above were performed pragmatically using a script, which made the
measurements and also applied the velocity references to the OMR while calculating in
the end the correction factor. Assuming that the translation cross-talk is similar for both
forward and reverse longitudinal motion and that the number of rotations is high enough,
the correction factor should not be significantly affected by the eventual variation of the
cross-talk effect or the imprecision of the IPS. The iterative approach is simple because the
total correction factor can be calculated as the product of all the previous correction factors
currently determined.



Sensors 2022, 22, 8590 13 of 22

To minimize the limitations of the IPS’s accuracy, the longitudinal translations are
recommended to be as large as the area in which the IPS is least affected by the HDoP or
other issues. In Figures 8 and 9 are presented captures from the web interface used for
monitoring the OMR during the rotation correction factor determination after the first and
second iterations. The grid spacing was 0.5 m, and the black and blue tracks represent the
odometry and the IPS recordings, respectively. The IPS recording is drawn as separate
points, useful for visually evaluating the dispersion of the position solutions along the
path, certain areas being more affected than others. The light red square represents the
current (final) location of the OMR according to the odometry, and the blue circle represents
the current (final) IPS reported position. It can be noticed that the odometry position was
initialized from the IPS, but no effort was made to align the initial orientation of the odom-
etry and IPS coordinate systems, since this aspect was not relevant for the determination.
Additionally, it is visible that the return path of the odometry also had a small deviation
compared to the forward path, which can be explained by the approximate method used to
execute the rotation by applying a reference rotational speed for a predetermined amount
of time. The initial deviation for three complete rotations was determined to about 25.5◦,
and after calibration, it was reduced to under 3◦.

Figure 8. Rotation correction factor determination by using the IPS in the first iteration.

Figure 9. Rotation correction factor determination by using the IPS determination in the second iteration.

In a similar way, the kinematic rotation correction factor can be determined using
LiDAR, in this case without it being necessary to perform the longitudinal motions to
identify the initial and final orientation.

3.2.2. Translation Movement Error

As mention in [20], the translation movement errors are relatively easy to determine
and then to calculate the velocity correction factors in order to compensate the undesired
effects. In the current study, the observed rotation during translation, especially in the
lateral direction, can slightly complicate the procedure, requiring a combined approach.
In the simplest form, a constant reference speed was applied for a certain amount of time,
and the initial and final position provided by the odometry and IPS were used to calculate
the correction factor. To simplify the automation of determining the correction factor for
translations, it is very useful to also perform the reverse motion so that the experiment is
reset for a new determination. This also allows for a second set of data to be extracted.

In Figure 10 are represented the captures after two experiments for determining the
longitudinal translation correction factor using the same representation conventions as in
Figures 8 and 9. It can be noticed that the return paths had a slight deviation compared to
the forward paths and were not always the same. This can be attributed to the mechanical
play of the OMR’s wheel assembly and also to the non-symmetric translation–rotation



Sensors 2022, 22, 8590 14 of 22

cross-talk effects for the forward–reverse directions, which is discussed next. In Figure 11
is presented the capture for another iteration of the experiment after the longitudinal
correction factors were applied to compensate the kinematics. Besides the longitudinal
translation correction factor, two more factors to compensate the rotation during the
forward and reverse translations were applied so that the deviations were significantly
reduced; more details follow in the next part. The longitudinal translation before calibration
was about 25 cm shorter than the 10 m recorded by the odometry, while after calibration,
only deviations under 5 cm were obtained.

Figure 10. Two experiments for longitudinal translation correction factor determination by the IPS.

Figure 11. Result after applying the longitudinal translation correction factors obtained by the IPS
(translation, forward-translation–rotation, and reverse-translation–rotation correction factors).

3.2.3. Undesired Rotational Movement during Simple Translation

Under the assumption that the coupling between the translation velocities and the
rotational velocity side effect is linear, the recording of the paths from the IPS correlated with
the odometry, as illustrated in Figure 12, can be used to establish the length and the radii
of the arcs specific for each type of translation. Since, in the practical experiments, certain
differences were identified between the motions in opposite directions (forward–reverse
and left–right), it was of interest to determine four separate translation–rotation cross-talk
correction factors, in addition to the three kinematic scaling factors described in [20].

By using the IPS, the arc radii can be determined by fitting the recorded path with an
arc and then determining its length. The method has the advantage of reducing the impact
of eventual IPS measurement errors. The ratio between the odometry displacement and
the arc length gives the inverse kinematic translation correction factor. The curvature of
the arc, defined as the reciprocal of the arc’s radius, is the translation–rotation cross-talk
correction factor used to calculate the compensation rotation velocity to obtain the desired
straight motion. In order for the odometry not to measure the injected compensations,
the direct kinematics need to be counter-compensated in reverse order with the reciprocal
of the correction factors.

As an alternative to fitting, the arc radius can be determined by obtaining three
accurate reference points along the track: the start point S, a mid-point M, and the final
point F. The disadvantage of the method is that if a mid-stop is executed to obtain an
averaged determination based on the IPS, the orientation of the OMR is likely to slightly
change and affect the determination. Using the coordinates of the three points, the center C
and the radius R of the circumscribed circle can be determined analytically. Furthermore,
using the known vertices of the triangle4SCR, the angle ∠SCR can be determined and,
then, the exact length of the arc using the radius R.

As a metric of performance, translation–rotation cross-talk deviations of up to 7 mrad m−1

for longitudinal and 38 mrad m−1 for lateral motion were recorded before calibration, while



Sensors 2022, 22, 8590 15 of 22

after calibration, the values decreased to 1.5 mrad m−1 and 5 mrad m−1, respectively, as
illustrated in Figure 13.

Figure 12. Lateral translation correction factors determination by the IPS (translation, left-
translation–rotation, and right-translation–rotation).

Figure 13. Result after applying the lateral translation and translation–rotation correction factors
obtained by the IPS.

3.2.4. Experimentally Obtained Kinematic Correction Factors

By applying the previously described approach, the kinematic correction factors listed
in Table 2 were obtained for the OMR used in the experiments. It can be noticed that the
additional translation–rotation cross-talk compensation factors were similar, but not equal
for translations in opposite directions.

Table 2. Correction factors.

Type Factor Unit of Measure

Longitudinal velocity 1.02 scaling—no unit
Lateral velocity 1.13 scaling—no unit
Rotational velocity 1.0236 scaling—no unit
Longitudinal-forward velocity to rotational 0.0072 rad m−1

Longitudinal-reverse velocity to rotational 0.00009 rad m−1

Lateral-left velocity to rotational 0.0389 rad m−1

Lateral-right velocity to rotational 0.0277 rad m−1

4. Experimental Setup and Real-Time Validation Subject to Odometry Calibration

In logistic systems and especially in the calibration phase of the OMR’s development,
it is beneficial to use an IPS, and it is also essential to measure its accuracy. Considering
the unavoidable position solution uncertainties due to the ultrasonic system setup, the
manufacturer describes qualitatively the confidence of the latest position solution as a
percentage. In the research context of OMR platforms, it can be more useful to obtain
a quantitative estimation of the uncertainty that would ensure the assessment of each
obtained positioning solution sample.

4.1. Evaluation of the IPS and Improvement Attempts

Since there is no open information given about the position solution calculation
method for the IPS used, to our knowledge, it became necessary to apply an exter-
nal/parallel method to validate the offered position solutions, because during our ex-
periments, significant deviations were observed in certain locations.

Among the useful functionalities provided by the API, there is an option for obtaining
the raw point-to-point distances between the mobile beacon (named the hedgehog) and
each of the up to four fixed beacons in the current localization zone. Thanks to a relatively
open approach regarding the parts of the communication protocols used and an extensive



Sensors 2022, 22, 8590 16 of 22

API, it is possible to develop external dedicated methods based on trilateration, methods
that can also provide a better metric for assessing the accuracy.

The mobile beacon, represented by the blue point in the configuration dashboard in
Figure 14, can be configured to provide several useful details for external position solution
calculation after each internal position measurement: the position solution calculated inter-
nally, the raw point-to-point distances between the hedgehog and up to four fixed beacons
involved in the localization, and the latest position quality percentage. The setup and
configuration presented in Figure 14 allowed for easier replication of the tracking results.

Figure 14. The Marvelmind app dashboard useful in the IPS’s configuration.

In addition, the system outputs the position information for all the configured fixed
beacons every 10 s, allowing for automatic map updating, which is useful for the external
position calculation.

The positioning error is defined as in Equation (4) using the root mean square method
over the deviations of the measured point-to-point distances, as reported by the IPS, and the
corresponding distances between the estimated position solution and each of the fixed
beacons. In Equation (4), nb is the number of beacons (up to four for this IPS) involved
in multilateration, (xi, yi) are the coordinates of the beacon i, di is the reported distance
between the hedgehog and the beacon i, and (x, y) are the coordinates of the estimated
position solution.

e =
1
n2

b

√√√√ nb

∑
i=1

(√
(xi − x)2 + (yi − y)2 − di

)2
(4)

Trilateration was performed externally using an iterative implementation that searches
for the coordinate pair (x, y), at millimeter resolution, that minimizes Equation (4), which
also quantitatively characterizes the uncertainty of the estimated position solution.

An example of the early attempts to track the calibrated lateral motion using the IPS
and the external multilateration technique is depicted in Figure 15, where it can be seen
that the unfiltered multilateration solutions were in certain regions strongly affected by



Sensors 2022, 22, 8590 17 of 22

indirect propagation of the ultrasound pulses, but the confidence circles helped point out
the lack of precision associated with that determination. Furthermore, in some of the
zoomed-in regions, especially the center one, there are areas where the multilateration
method performed better than the IPS, a fact that was confirmed by both the less-dispersed
track, but also by the very tight confidence circles, which indicate a very small RMSE for
the solution.

−3 −2 −1 0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

4

3

4 5

6

x[m]

y
[m

]

multilaterated position with confidence circles

(blue dots) original Marvelmind measurements

location of Marvelmind beacons with their ID

−3 −2 −1 0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

4

3

4 5

6

x[m]

y
[m

]

multilaterated position with confidence circles

(blue dots) original Marvelmind measurements

location of Marvelmind beacons with their ID
−3 −2 −1 0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

4

3

4 5

6

x[m]

y
[m

]

multilaterated position with confidence circles

(blue dots) original Marvelmind measurements

location of Marvelmind beacons with their ID

−3 −2 −1 0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

4

3

4 5

6

x[m]

y
[m

]

multilaterated position with confidence circles

(blue dots) original Marvelmind measurements

location of Marvelmind beacons with their ID

−3 −2 −1 0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

4

3

4 5

6

x[m]

y
[m

]

multilaterated position with confidence circles

(blue dots) original Marvelmind measurements

location of Marvelmind beacons with their ID

−3 −2 −1 0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

4

3

4 5

6

x[m]

y
[m

]

multilaterated position with confidence circles

(blue dots) original Marvelmind measurements

location of Marvelmind beacons with their ID

Figure 15. Lateral motion tracking after calibration.

4.2. Open-Loop Motion Tracking Performance Evaluation

In order to obtain smoother trajectories, in place of the generic trajectory controller
developed using the Matlab rapid prototyping environment, which uses waypoints for
navigation, a simplified open-loop trajectory generation was considered.

As a reference path for complex motion test scenario, a Lissajous-curve-shaped trajec-
tory was chosen [20], described in Equation (5), where S is a scaling factor (the value S = 1
was used in the following tests). ϕ ∈ [0, 2π] was used to generate the Cartesian coordinate
pairs (xr, yr). {

xr = S sin(2ϕ)

yr = S cos(ϕ)
(5)

The needed speed vectors that were applied to the OMR in order to obtain the de-
sired motion, without using a position controller, were calculated using the derivative of
Equation (5) with respect to ϕ as in Equation (6).{

vx(ϕ) = 2Sϕ̇ cos(2ϕ)

vy(ϕ) = −Sϕ̇ sin(ϕ)
(6)

In order to exclude the negative impact of abruptly starting and stopping the OMR
when following the Lissajous curve, the track was split into three segments: an acceleration
part for which ϕ̈ = A until ϕ̇ reached reference speed Ω, then a part executed at ϕ̇ = Ω

until ϕ = 2π − Ω2

2A
, the point from which ϕ̈ was set to −A for deceleration during the

last part.
In Figure 16 are comparatively illustrated the trajectories using the Marvelmind IPS

(blue line), the multilateration method (green line), and the odometry track (black line) with
respect to the reference trajectory (red) obtained with the OMR rotated 90◦ counterclockwise.



Sensors 2022, 22, 8590 18 of 22

Lissajous-shaped trajectory are also marked by confidence circles. The maximum deviation
of the distances between an estimated and real point was 0.2 m, in the case of uncalibrated
odometry. This misalignment is more visible in the time response on the x coordinate,
as can be observed in Figure 17. To save representation space, the positions of the IPS
stationary beacons are not covered in Figure 16, but their identification numbers, types,
and positions are listed in Table 3.

In order to evaluate the trajectory accuracy, the root-mean-squared deviation is univer-
sally used, based on pose measurements and reference values. The trajectory data used for
RMSE evaluation were the Lissajous shape illustrated in Figure 16, where the calculated
travel length based on the Euclidean distance was about 10 m. From Table 4, it can be
observed that the mean-squared error revealed greater accuracy for the calibrated data
compared to the raw values retrieved from the Marvelmind beacons.

Table 3. Map coordinates of the IPS beacons used for 2D localization.

Beacon ID Beacon Type X Position (m) Y Position (m) Z Position (m)

3 fixed 0.000 0.000 0.400
4 fixed 5.767 0.000 0.400
5 fixed 0.485 4.809 0.400
6 fixed 5.445 4.813 0.400
10 mobile - - 0.400

Table 4. Root-mean-squared trajectory tracking deviation.

RMSE Uncalibrated Kinematics Calibrated Kinematics
Odometry IPS Odometry IPS

Position (m) 83 × 10−4 1119 × 10−4 85 × 10−4 171 × 10−4

x (m) 89 × 10−4 1518 × 10−4 86 × 10−4 168 × 10−4

y (m) 76 × 10−4 445 × 10−4 83 × 10−4 173 × 10−4

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x[m]

y
[m

]

(a) - uncalibrated odometry

Multilaterated position with confidence circles

Marvelmind position with confidence circles

Odometry recorded track

Reference track

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x[m]

y
[m

]

(a) - uncalibrated odometry

Multilaterated position with confidence circles

Marvelmind position with confidence circles

Odometry recorded track

Reference track

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x[m]

y
[m

]

(a) - uncalibrated odometry

Multilaterated position with confidence circles

Marvelmind position with confidence circles

Odometry recorded track

Reference track

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x[m]

y
[m

]

(b) - calibrated odometry

Multilaterated position with confidence circles

Marvelmind position with confidence circles

Odometry recorded track

Reference track

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x[m]

y
[m

]

(b) - calibrated odometry

Multilaterated position with confidence circles

Marvelmind position with confidence circles

Odometry recorded track

Reference track

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x[m]

y
[m

]

(b) - calibrated odometry

Multilaterated position with confidence circles

Marvelmind position with confidence circles

Odometry recorded track

Reference track

Figure 16. Lissajous-curve-shaped trajectory tracking before (a) and after (b) kinematics calibration.



Sensors 2022, 22, 8590 19 of 22

Figure 17. The comparison between the estimated and real position of the OMR on the Lissajous
curve trajectory.

5. Conclusions

In this study, path performance evaluation was performed starting from orthogonal
movements to complex trajectories. The shortcomings of the experimental OMR can be
overcome by proper calibration. The initial experimental results revealed that odometry
calibration reduced the error propagation, the results being compared with the IPS data.
The experiments for calibration were carried out in open-loop with the aim of not inter-
fering with the performance of the navigation controller. The corrections that affected the
calibration factors had the role of compensating to a good extent the various constructive
imperfections of the robot, such as the wheel assembly error, uncertain wheelbase, and last
but not least, the slippage on the running surface.

The OMR was equipped with the Marvelmind IPS for indoor position validation,
the acquisition of the data being carried out by using the Matlab environment through ROS
application nodes. The evaluation of the IPS was motivated by the lack of open information
about the position solution method. Therefore, an external method based on trilateration
was proposed in order to provide a better metric, and the root-mean-squared error was used
as the performance criterion both in the odometry and the IPS for kinematics evaluation.

Experiments with the OMR showed that the trajectory of the calibrated robot was
closer to the ideal trajectory and, thus, could validate the effectiveness of the proposed
approach. The experiments were repeated for different speed values of the OMR, and
no correlation was observed between the speed and the correction parameters, under the
conditions in which the acceleration was kept within the limits, in which it did not produce
slips in the starting and stopping modes.



Sensors 2022, 22, 8590 20 of 22

To overcome the drawback of different sensors for indoor positioning and methods,
the future approach is the fusion method for the different sensors of the OMR (LiDAR,
IMU, stereo camera, encoders, and IPS) to achieve highly accurate, precise position and
navigation data.

The whole thread of the work was from the perspective of a systematic approach,
the experimental design being a well-defined research methodology, useful to have greater
trust in odometry.

The future research direction involves GPS fused with an IMU, the sensor being
slightly attached to the GPS in order to predict and update the vehicle position even in the
event of GPS signal loss.

Author Contributions: Conceptualization, C.-C.D., C.B. and A.-T.P.; methodology, A.-T.P., C.-C.D.
and C.B.; software, A.-T.P.; validation, C.B. and C.-C.D.; formal analysis, A.-T.P., C.B. and C.-C.D.;
investigation, C.-C.D. and A.-T.P.; writing—review and editing, A.-T.P., C.B. and C.-C.D.; project
administration, C.-C.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant of the Romanian National Authority for Scientific
Research and Innovation, CNCS/CCCDI – UEFISCDI, project no. PN-III-P2-2.1-PTE-2019-0731,
contract no. 19/2020, within PNCDI III, 3rd stages and by a research grant of the TUIASI, project
number GnaC2018-67/2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available upon request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

API Application Programming Interface
BTSPP Bluetooth™ Serial Port Profile
CAN Controller Area Network
FDMA Frequency Division Multiple Access
GPS Global Positioning System
HDoP Horizontal Dilution of Precision
IA Inverse Architecture
IMU Inertial Measurement Unit
IPS Indoor Positioning System
ISM Industrial, Scientific, and Medical radio band
LiDAR Light-based Detection and Ranging system
MC Matlab Console
MF Multi-Frequency
NiA Non-Inverse Architecture
o-LED organic Light-Emitting Diode
OMR Omnidirectional Mobile Robot
OS Operating System
RC Radio remote-Controlled
RMSE Root-Mean-Squared Error
ROS Robot Operating System
FreeRTOS™ Free Real-Time Operating System
TDMA Time Division Multiple Access
ToF Time of Flight
USB Universal Serial Bus
VCP Virtual Serial COM Port
VS17 Microsoft Visual Studio 2017



Sensors 2022, 22, 8590 21 of 22

References
1. Lee, H.J.; Yi, H. Development of an Onboard Robotic Platform for Embedded Programming Education. Sensors 2021, 21, 3916.

[CrossRef] [PubMed]
2. Li, Y.; Dai, S.; Zhao, L.; Yan, X.; Shi, Y. Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional

Mobile Robot. Symmetry 2019, 11, 1268. [CrossRef]
3. Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a

Model Predictive Control Strategy. Appl. Sci. 2018, 8, 231. [CrossRef]
4. Qian, J.; Zi, B.; Wang, D.; Ma, Y.; Zhang, D. The Design and Development of an Omni-Directional Mobile Robot Oriented to an

Intelligent Manufacturing System. Sensors 2017, 17, 2073. [CrossRef] [PubMed]
5. Staal, A.S.; Salvatierra, C.G.; Albertsen, D.D.; Mahendran, M.; Ravichandran, R.; Thomsen, R.F.; Hansen, E.B.; Bøgh, S. Towards

a Collaborative Omnidirectional Mobile Robot in a Smart Cyber-Physical Environment. Procedia Manuf. 2020, 51, 193–200.
[CrossRef]

6. Angerer, S.; Strassmair, C.; Staehr, M.; Roettenbacher, M.; Robertson, N. Give me a hand—The potential of mobile assistive robots
in automotive logistics and assembly applications. In Proceedings of the IEEE International Conference on Technologies for
Practical Robot Applications (TEPRA2012), Woburn, MA, USA, 23–24 April 2012. [CrossRef]

7. Doroftei, I.; Grosu, V.; Spinu, V. Omnidirectional Mobile Robot—Design and Implementation. In Bioinspiration and Robotics:
Walking and Climbing Robots; M.K. Habib: Vienna, Austria, 2007; pp. 511–528. [CrossRef]

8. ABIresearch. The Tech Intelligence Experts, Homepage. Available online: https://www.abiresearch.com/market-research/
product/7778043-commercial-and-industrial-robotics/?src=svcrecent (accessed on 22 April 2022).

9. Azizi, M.R.; Rastegarpanah, A.; Stolkin, R. Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic
Environments. Robotics 2021, 10, 48. [CrossRef]

10. Carbonell, R.; Cuenca, A.; Casanova, V.; Piza, R.; Salt Llobregat, J.J. Dual-Rate Extended Kalman Filter Based Path-Following
Motion Control for an Unmanned Ground Vehicle: Realistic Simulation. Sensors 2021, 21, 7557. [CrossRef] [PubMed]

11. Dosoftei, C.; Horga, V.; Doroftei, I.; Popovici, T.; Custura, S. Simplified Mecanum Wheel Modelling using a Reduced Omni Wheel
Model for Dynamic Simulation of an Omnidirectional Mobile Robot. In Proceedings of the 2020 International Conference and
Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 22–23 October 2020; pp. 721–726. [CrossRef]

12. Dosoftei, C.C.; Popovici, A.T.; Sacaleanu, P.R.; Gherghel, P.M.; Budaciu, C. Hardware in the Loop Topology for an Omnidirectional
Mobile Robot Using Matlab in a Robot Operating System Environment. Symmetry 2021, 13, 969. [CrossRef]

13. Dosoftei, C.C.; Popovici, A.T.; Sacaleanu, P.R.; Budaciu, C. Real-Time Motion Control of an Electric Driven OMR using a ROS to
Matlab Bridged Approach. In Proceedings of the 2021 25th International Conference on System Theory, Control and Computing
(ICSTCC), Iasi, Romania, 20–23 October 2021; pp. 160–165. [CrossRef]

14. Amsters, R.; Demeester, E.; Stevens, N.; Lauwers, Q.; Slaets, P. Evaluation of Low-Cost/High-Accuracy Indoor Positioning
Systems. In Proceedings of the 2019 The Fourth International Conference on Advances in Sensors, Actuators, Metering and
Sensing (ALLSENSORS), Athens, Greece, 24–28 February 2019; pp. 15–20.

15. He, X.; Aloi, D.N.; Li, J. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device. Sensors 2015,
15, 31464–31481. [CrossRef] [PubMed]

16. Mainetti, L.; Patrono, L.; Sergi, I. A survey on indoor positioning systems. In Proceedings of the 2014 22nd International
Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2014;
pp. 111–120. [CrossRef]

17. Onalaja, O.; Adjrad, M.; Ghavami, M. Ultra-wideband-based multilateration technique for indoor localization. IET Commun.
2014, 8, 1800–1809. [CrossRef]

18. Expósito Jiménez, V.J.; Schwarzl, C.; Martin, H. Evaluation of an indoor localization system for a mobile robot. In Proceedings of
the 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, 4–8 November 2019; pp. 1–5.
[CrossRef]

19. Glowinski, S.; Ptak, M. A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators. Acta Bioeng.
Biomech./Wroc. Univ. Technol. 2022, 24, 145–157. [CrossRef]

20. Li, Y.; Ge, S.; Dai, S.; Zhao, L.; Yan, X.; Zheng, Y.; Shi, Y. Kinematic Modeling of a Combined System of Multiple Mecanum-Wheeled
Robots with Velocity Compensation. Sensors 2020, 20, 75. [CrossRef] [PubMed]

21. Pavel, M.D.; Rosioru, S.; Arghira, N.; Stamatescu, G. Control of Open Mobile Robotic Platform using Deep Reinforcement
Learning. In Proceedings of the SOHOMA 2022, 12th International Workshop on Service Oriented, Holonic and Multi-Agent
Manufacturing Systems for Industry of the Future, Valencia, Spain, 22–23 September 2022; pp. 1–12.

22. Marvelmind Company. Precise (±2 cm) Indoor Positioning and Navigation for Autonomous Robots, Drones, Vehicles and
Humans. Available online: https://marvelmind.com/ (accessed on 29 September 2022).

23. Bârleanu, A.; Băitoiu, V.; Stan, A. Digital filter optimization for C language. Adv. Electr. Comput. Eng. 2011, 11, 111–114. [CrossRef]
24. Bârleanu, A.; Băitoiu, V.; Stan, A. FIR Filtering on ARM Cortex-M3. In Proceedings of the 6th WSEAS European Computing

Conference, Prague, Czech Republic, 24–26 September 2012; pp. 490–494.
25. Specht, M. Experimental Studies on the Relationship Between HDOP and Position Error in the GPS System. Metrol. Meas. Syst.

2022, 29, 17–36. [CrossRef]

http://doi.org/10.3390/s21113916
http://www.ncbi.nlm.nih.gov/pubmed/34204095
http://dx.doi.org/10.3390/sym11101268
http://dx.doi.org/10.3390/app8020231
http://dx.doi.org/10.3390/s17092073
http://www.ncbi.nlm.nih.gov/pubmed/28891964
http://dx.doi.org/10.1016/j.promfg.2020.10.028
http://dx.doi.org/10.1109/TePRA.2012.6215663
http://dx.doi.org/10.5772/5518
https://www.abiresearch.com/market-research/product/7778043-commercial-and-industrial-robotics/?src=svcrecent
https://www.abiresearch.com/market-research/product/7778043-commercial-and-industrial-robotics/?src=svcrecent
http://dx.doi.org/10.3390/robotics10010048
http://dx.doi.org/10.3390/s21227557
http://www.ncbi.nlm.nih.gov/pubmed/34833632
http://dx.doi.org/10.1109/EPE50722.2020.9305643
http://dx.doi.org/10.3390/sym13060969
http://dx.doi.org/10.1109/ICSTCC52150.2021.9607163
http://dx.doi.org/10.3390/s151229867
http://www.ncbi.nlm.nih.gov/pubmed/26694387
http://dx.doi.org/10.1109/SOFTCOM.2014.7039067
http://dx.doi.org/10.1049/iet-com.2013.0815
http://dx.doi.org/10.1109/ICCVE45908.2019.8965234
http://dx.doi.org/10.37190/ABB-01991-2021-05
http://dx.doi.org/10.3390/s20010075
http://www.ncbi.nlm.nih.gov/pubmed/31877752
https://marvelmind.com/
http://dx.doi.org/10.4316/aece.2011.03018
http://dx.doi.org/10.24425/mms.2022.138549


Sensors 2022, 22, 8590 22 of 22

26. Marvelmind Robotics. ROS Marvelmind Package Installation Instructions. Available online: http://marvelmind.com/pics/
marvelmind_ROS.pdf (accessed on 2 October 2022).

27. Kitware. CMake Download Page. Available online: https://cmake.org/download/ (accessed on 29 April 2021).
28. Mathworks. Matlab Supported and Compatible Compilers for R2021a—All Products. Available online: https://www.mathworks.

com/support/requirements/supported-compilers.html (accessed on 29 April 2021).
29. Python Software Foundation. Python Releases for Windows. Available online: https://www.python.org/downloads/windows/

(accessed on 29 April 2021).
30. Mathworks. Matlab—ROS System Requirements. Available online: https://www.mathworks.com/help/ros/gs/ros-system-

requirements.html (accessed on 29 April 2021).
31. Marvelmind Robotics. ROS Marvelmind Package Git Repository Page. Available online: https://bitbucket.org/marvelmind_

robotics/ros_marvelmind_package (accessed on 29 April 2021).

http://marvelmind.com/pics/marvelmind_ROS.pdf
http://marvelmind.com/pics/marvelmind_ROS.pdf
https://cmake.org/download/
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.python.org/downloads/windows/
https://www.mathworks.com/help/ros/gs/ros-system-requirements.html
https://www.mathworks.com/help/ros/gs/ros-system-requirements.html
https://bitbucket.org/marvelmind_robotics/ros_marvelmind_package
https://bitbucket.org/marvelmind_robotics/ros_marvelmind_package

	Introduction
	Related Work on Trajectory Validation for OMRs in Logistic Areas
	Contributions of the Paper

	The OMR's Hardware and Software Architecture
	The Indoor Positioning System—Marvelmind Ultrasound Beacons
	IPS ROS Node for Matlab-Simulink Integration
	Rapid Control Prototyping Using the ROS Node for Matlab-Simulink Integration
	Initial Tracking Results Using the ROS-Matlab Simulink Approach

	OMR Indoor Navigation Improved by Calibration of the Motion and Odometry
	Open-Loop Motion Response for Orthogonal Movements
	Measurements of the Motion and Odometry Errors
	Rotational Movement Error
	Translation Movement Error
	Undesired Rotational Movement during Simple Translation
	Experimentally Obtained Kinematic Correction Factors


	Experimental Setup and Real-Time Validation Subject to Odometry Calibration
	Evaluation of the IPS and Improvement Attempts
	Open-Loop Motion Tracking Performance Evaluation

	Conclusions
	References

