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Abstract: With the continuous development of artificial intelligence and computer vision technology,
autonomous vehicles have developed rapidly. Although self-driving vehicles have achieved good
results in normal environments, driving in adverse weather can still pose a challenge to driving
safety. To improve the detection ability of self-driving vehicles in harsh environments, we first
construct a new color levels offset compensation model to perform adaptive color levels correction
on images, which can effectively improve the clarity of targets in adverse weather and facilitate the
detection and recognition of targets. Then, we compare several common one-stage target detection
algorithms and improve on the best-performing YOLOv5 algorithm. We optimize the parameters
of the Backbone of the YOLOv5 algorithm by increasing the number of model parameters and
incorporating the Transformer and CBAM into the YOLOv5 algorithm. At the same time, we use the
loss function of EIOU to replace the loss function of the original CIOU. Finally, through the ablation
experiment comparison, the improved algorithm improves the detection rate of the targets, with the
mAP reaching 94.7% and the FPS being 199.86.

Keywords: adverse weather; adaptive color levels; YOLOv5; transformer; CBAM

1. Introduction

With the continuous development of artificial intelligence, self-driving vehicles have
become a popular topic in people’s lives. People are increasingly concerned about the safety
of vehicle driving, especially in adverse weather such as rain, fog, snow and sandstorms [1].
Due to the low visibility, the external environment hinders the vehicle detection system,
which seriously affects the performance of computer vision algorithms and has an impact
on driving safety. At the same time, the diverse traffic environment and rich and diverse
traffic flow also pose challenges to computer vision algorithms. Therefore, the detection
of road targets by self-driving vehicles in adverse weather has become a popular topic in
current research. In self-driving vehicles, the vision system plays a major role in ensuring
the smooth driving and personnel safety of the vehicle. Accurate perception of the external
environment and obtaining information about the vehicle are of great significance for safe
vehicle driving. Image processing and target detection algorithms, as a crucial topic in
computer vision, can detect external information accurately and in real-time, which is the
primary requirement in the real world of self-driving vehicles [2,3].

Traditional target detection algorithms generally extract the gradient histogram infor-
mation of the image first and then classify and detect the target by the SVM of the machine
learning algorithm. The disadvantage of such algorithms is that they require manual extrac-
tion of image features, which is a complex process and which has low detection accuracy.
Deep learning-based target detection algorithms do not require manual feature extraction
and can be trained to extract features through neural networks autonomously. The current
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popular target detection algorithms are two-stage algorithms and single-stage algorithms.
Two-stage algorithms based on a candidate frame have high detection accuracy but slow
detection speed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN, etc. The single-stage
algorithms, such as SSD and YOLO series algorithms, are faster but less accurate due to
the end-to-end training method. Currently, YOLOv5 is increasingly used to study specific
topics, and the improved algorithm has good results [4,5].

It is necessary to study the previous results for this project. Li summarizes the develop-
ment and status of target detection algorithms [5], which gives us a deeper understanding
of target detection algorithms. Ting et al. merged the feature extraction process with the
Ghostbottlenet algorithm to improve the accuracy of the YOLOv5 algorithm to solve the
problem of insufficient feature extraction in current ship identification methods. The final
mAP was as high as 99.85%, which is a 2.18% improvement over the original network [6].
Zhu et al. used the attention mechanism and ECA-Net used to improve YOLOv5 to high-
light information that contributes to boulder detection. Experimental results showed that
the performance accuracy of the improved YOLOv5 improved by 3.4% [7]. Zhu et al. added
a transformer encoding module, CBAM and some specialized tricks to YOLOv5 for target
object detection in UAV capture scenes. The mAP was improved by 7% compared to the
baseline model [8]. Shi et al. introduced a method of channel attention mechanism in
YOLOv5 to solve the problem of insufficient information on tiny target features. Experi-
mental results show that the improved model has improved in terms of detection accuracy
and recall compared with the original YOLOv5 algorithm [9]. Zhou et al. improved the
YOLOv5s algorithm to achieve real-time detection of unmanned fishing speedboats near
ships ahead. They optimized the loss function by reclustering the targets with K-means
on the data input side and expanding the acceptance domain region on the output side.
The results show that the improved model achieves 98.6% mAP, which is 4.4% better than
before the improvement [10]. Xie et al. proposed a novel lightweight end-to-end target
detection method and fused the framework with an attention module into the YOLOv5
algorithm for ship detection. Experimental results on remote sensing images from synthetic
aperture radar (SAR) show that the method has significant improvements in efficiency
and performance [11]. Zhu et al. designed a bidirectional feature pyramid network for
feature detection fusion so that feature layers at different scales can better learn the weight
distribution and enhance the fusion capability [12]. Zhang et al. used the improved network
with the transformer for detecting multi-scale targets, ultimately improving the detection
accuracy by 1.9% [13]. Fu et al. incorporated CBAM into the target detection algorithm
and used it for marine target detection. The method can increase the weights of useful
features while suppressing the weights of invalid features as a way to improve detection
accuracy. The experimental results show that the improved algorithm has higher detection
accuracy than the original algorithm while providing better detection results for small
targets, multiple targets and overlapping targets [14].

To enhance the robustness of the model so that the model can accurately recognize
objects of all sizes is also one of our research directions. Studying the problem of multi-scale
target detection can help in the recognition rate. Walambe et al. proposed an imple-
mentation of integrated transfer learning to improve the performance of the underlying
multi-scale target detection model in UAV images and combined it with a voting strategy
to recognize targets. The method helps in the recognition of multiscale targets [15]. A
framework was proposed by Khan et al. for solving the recognition problem of high-
resolution satellite images. Khan et al. proposed a framework for solving the recognition
problem of high-resolution satellite images. The framework consists of two stages. The
first stage generates multi-scale object proposals and the second stage experimental results,
which show that this method outperforms other methods in the detection of multi-scale
objects [16]. Cheng et al. investigated a SAS-YOLOv3-Tiny algorithm that combines depth-
wise separable convolution and a channel attention mechanism for solving the detection
problem of multi-scale safety helmets. This method significantly improves all performance
metrics compared to the original algorithm [17]. Gao studied a DSS algorithm that dynam-
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ically selects samples using the shape and size of the target. DSS brings to ATSS about
0.7% mAP improvement on the MS COCO dataset [18]. A parallel-assisted multiscale
feature enhancement module MFEM was used to solve the parallel multiscale small target
detection problem by Liang et al. It was demonstrated experimentally on MS COCO that
the improved FE-RetinaNet algorithm achieved a detection accuracy (mAP) improvement
of 1.8% on MS COCO [19].

The study of current image processing methods in adverse weather has inspired
image preprocessing work in this paper. He et al. used a dark channel prior method to
directly estimate the thickness of the haze and recover it into a high-quality clear image
with good results [20]. Zhu et al. proposed a color attenuation prior method that can
effectively remove the blurred background of a single input image with high efficiency [21].
By analyzing a large number of foggy images, it was found that the fog concentration
varies with the depth of field, and the higher the fog concentration, the greater the depth of
field, and the greater the difference in brightness and saturation of the image. Based on
this, a color decay a priori fog removal algorithm was designed. The experimental results
show that the method outperforms existing fog removal algorithms in terms of efficiency
and fog removal effect. Tan et al. used the Maximizing Contrast method for automatic
image defogging and achieved a better result [22]. The chromaticity inconsistency method
of Ancuti et al. is simpler and performs faster than existing strategies while producing
comparable or even better results [23]. Manjunath et al. used the Color Attenuation Prior
method for removing the haze background from a single image. Experimental results show
that the proposed method outperforms the state-of-the-art haze removal algorithms in terms
of both efficiency and defogging effect [24]. Katiyar et al. used Color Attenuation Prior
and Multi-Scale Fusion for haze removal from a single image. The experimental results
show that the method has good results [25]. Li et al. proposed an image deblurring model
for integrated deblurring, and the method is outstanding for object detection on blurred
images [26]. Cai et al. designed an end-to-end system for individual image deblurring,
which improves the quality of recovered haze-free images. Experiments have shown that
the method has excellent performance and is simple yet efficient [27].

For this paper, the main contributions are as follows.

(1) To address the problem of difficulty in recognition of autonomous vehicles in adverse
weather, we propose a bias compensation model to perform adaptive color levels
correction on images, which can effectively improve the sharpness of adverse weather
images. Since adverse weather images have different mean values, after calculating
the image mean values, the images of different categories of weather are classified and
assigned to different channels for filtering to improve clarity of the input images.

(2) In order to have a better recognition rate in adverse weather, we choose to improve
on the YOLOv5 algorithm. By incorporating the transformer, it makes a smoother
connection from low-level features to high-level features, further integrates the features
extracted by the backbone, and focuses feature information. At the same time, CBAM
is added between Neck and Head to further gather key information and solve the
problem of invalid features affecting recognition accuracy. Finally, we adopt the
activation function of EIOU to replace the original CIOU activation function to further
improve the accuracy of the YOLOv5 model. The improved algorithm is found to
have a significant improvement over the previous one through ablation experiments.

(3) In this paper, we use SSD, YOLOv3-tiny, YOLOv4-tiny, YOLOv5 and the improved
YOLOv5 algorithm to test under the same dataset. The results show that the improved
algorithm proposed in this paper outperforms the YOLOv5 baseline algorithm in
both recognition accuracy and recognition speed, which proves the effectiveness and
advancement of the algorithm in this paper.



Sensors 2022, 22, 8577 4 of 21

2. Dataset Processing
2.1. Image Acquisition and Enhancement

Although there are various datasets in the field of autonomous driving, such as KITTI,
ApolloScape, BDD100K, etc., it is difficult for these datasets to meet the conditions of
different severe weather, different resolutions, different target scales and the different
number of targets at the same time [15]. In contrast, the DAWN [1] dataset is more suitable
for our needs in terms of severe environment diversity and sample realism; thus, we finally
based our study on the open-source dataset DAWN.

The DAWN dataset was captured and collected from people, cars, buses, trucks,
motorcycles, and bicycles in fog, rain, snow, and dust storms. This dataset is more helpful
for our study on the problem of recognition of autonomous vehicles in adverse weather.
Since the number of motorcycles in this dataset is too small, we discard it and study only
the recognition problem of people, cars, buses, trucks and bicycles. The schematic diagram
of the adverse weather dataset is shown in Figure 1.

Figure 1. Schematic diagram of the adverse weather dataset.

Since the DAWN dataset has only 1027 sheets, and the dataset is full of dense small
targets with low resolution, the number of datasets is not enough to support the study.
Therefore, we perform data enhancement based on the original dataset. We used crop, pan,
rotate, mirror, cutout, change brightness and added Gaussian noise to enhance the dataset,
and the enhanced dataset is shown in Figure 2. The quality of the dataset is related to the
effectiveness of detection and model performance. Increasing the dataset can prevent the
phenomenon of overfitting caused by insufficient data during the training process and can
improve the robustness and generalization ability of the model. By randomly combining
multiple data enhancement methods, the original dataset was expanded by a factor of
4, and 4108 images were acquired, for a total of 5135 images. The breakdown of dataset
categories and quantities is shown in Table 1.
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Figure 2. Schematic diagram of the augmented dataset.

Table 1. Breakdown of dataset categories and quantities.

Classes Samples

Rain 1000
Snow 1020
Fog 1500

Sandstorm 1615
Total 5135

2.2. Traditional Auto Color Levels Algorithm

The presence of adverse weather can lead to reduced recognition of road targets by
self-driving vehicles; thus, we need to design an image processing algorithm to perform
filtering on the input side of the image. When the vehicle vision system detects outside
information, it first performs image filtering and then passes the completed results of the
processing to the target detection algorithm for recognition.

Auto color levels algorithms are commonly used for image enhancement. In the
process of image clarity restoration, the auto color levels algorithm first calculates the pixel
grayscale of the image and counts the maximum and minimum grayscale and then divides
the pixels in the image into three parts by limiting the maximum and minimum grayscale.
If the pixel value is less than the minimum gray value, the pixel gray value is assigned
to 0. Conversely, if the pixel gray value is greater than the maximum gray value, the
pixel is assigned to 255. If the pixel is in between, the pixel is linearly mapped or gamma
corrected to the 0–255 range, and the pixel is automatically restored by normalization;
see Equation (1). It was found that the auto color levels algorithm is very effective in
removing fog, and it has some enhancement effect when processing other background
images. However, the disadvantage is also obvious, and it tends to bring some color
distortion when processing other background images [28]. The images processed with the
auto color levels algorithm are shown in Figure 3.

F(u) = 0 u ≤ min
F(u) = 255 u ≥ max

F(u) =
(

u−min
max−min

)
· 255 min < u < max

(1)
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Figure 3. Image after auto color levels algorithm processing.

2.3. Improved Adaptive Color Levels Algorithm

As mentioned above, although there are many people working on filtering algorithms
for images, most of them are only for the processing of a specific class of background images.
Such algorithms are often not adaptable to a wide range of weather conditions. For example,
there is more literature studying the fog removal algorithm, which has achieved some
success in the fog removal effect but performs poorly in other severe weather backgrounds.
Since self-driving cars need to be adaptive when encountering different weather during
motion, we further study based on the previous literature.

Although the auto color levels algorithm can restore image sharpness to some extent,
the process is not adjustable, which leads to poor pixel differentiation and some features
turning dark black when processing images with different backgrounds. It was found
that the contrast stretching algorithm can obtain better filtering effect when processing
images with different regions. Therefore, we designed an adaptive color levels algorithm
based on the auto color levels algorithm with reference to the idea of contrast stretching
algorithm. By constructing a new bias compensation model, the different background
images are compensated with differentiation. First, we used the Otsu algorithm to obtain
the difference values between image categories separately [29]. Then, we took two groups
of images with more obvious differences in the same kind of images and obtained the
difference values as light and dark control groups and used the least squares method to
obtain the corresponding equation coefficients. Finally, the constructed bias compensation
model was used to compensate for the bias of the similar images. The details are shown in
Equation (2): 

F(u) =
(

u−min
max−min

)
· 255 + U

U = a · T + b

T =
√

S1+S2+···+Sn
n

(2)

where S is the difference value between each image class; n is the number of images; and
U is the final bias compensation. The optimal formula is fitted by least squares, and the
values of a and b are found.

During the experiment, we fit the four types of background images separately. We
first selected two groups of images with more obvious difference values in each class of
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background images as the light and dark control groups. For each group, eight images
with typical features were selected as the dataset for the experiment, i.e., n is set to 8. Since
we have obtained a more suitable U value through the experiment in advance, the values
of a and b can be easily fitted. Finally, the best U value can be further obtained by the fitted
a vs. b. In order to verify whether the fitted a and b are optimal, we first selected six sets of
data greater than U and less than U to refit the values of a and b on this basis, where the
difference between each set of data is 2. This allowed us to obtain different biases. Then, the
images were refiltered using the different biases. Finally, we used these images to compare
with the original image and found the corresponding SSIM. By analyzing the trend of SSIM,
we could find the most suitable values of a and b. The experiments prove that the SSIM of
the latest obtained image is not much different from the first fitting result, which proves
that our fitting effect is desirable.

The improved adaptive color levels algorithm can control the histogram distribution
of the output image more flexibly, adjust the contrast for specific regions of interest, and
enhance the image quality. The image effect before and after the improvement is compared
with the original image as shown in Figure 4. It can be clearly seen in the figure that the
overall effect of the image corrected by the adaptive color scale algorithm is the best and the
details are more obvious. The method performs a targeted analysis of fog, rain, snow and
sandstorm weather backgrounds, fitting the corresponding bias models and performing the
corresponding image processing work. This method solves to a certain extent the challenge
of processing images with extensive severe weather backgrounds.

Figure 4. Comparison of before and after improvement of auto color levels algorithm.

3. Method
3.1. One-Stage Target Detection Algorithm

Since this research needs to be applied to self-driving vehicles, which require high real-
time performance, we choose to improve on the one-stage type algorithm. Currently, the
commonly used one-stage algorithms are mainly SSD [30] and YOLO [31]. With the devel-
opment of YOLO, the most widely used one is YOLOv5. YOLOv5 has a huge improvement
in training speed and overall performance compared to the previous versions. YOLOv5 has
the characteristics of fast detection, a high recognition rate and more lightweight. Currently,
YOLOv5 has several network models, among which YOLOv5s network model has a faster
training speed while keeping the network depth and feature map width small, without
reducing recognition accuracy too much. The model reduces the computational complexity
and is more suitable for porting to embedded devices, which meets our needs.

The CNN of YOLOv5 consists of four main parts, namely Input, Backbone, Neck
and Prediction. The input side mainly performs data pre-processing operations, including



Sensors 2022, 22, 8577 8 of 21

Mosaic data enhancement, adaptive anchor and adaptive image scaling. Mosaic data
enhancement increases the dataset by flipping and stitching to prevent overfitting caused by
insufficient data during training. Backbone is mainly used for feature extraction, consisting
of Focus, CSP, Conv and C3 modules. Neck draws on PANet’s FPN + PAN structure to
pass down high-level semantic information, making features at all scales rich in semantic
information. Neck performs multi-scale feature fusion of feature maps at different scales,
improving the perceptual field and enriching the expressiveness of feature maps. Prediction
is mainly used to predict the type and location of the target, using the features extracted
earlier to make predictions.

As an important part of the target detection algorithm, the loss function has the
function of measuring the degree of difference between the predicted and true values of
the model, which greatly determines the performance of the model. YOLOv5 has three loss
functions, namely, classification loss, localization loss, and confidence loss. Classification
loss is mainly used to calculate whether the anchor frame is correctly classified with the
corresponding calibration; localization loss is used to calculate the error between the
prediction frame and the calibration frame, and confidence loss is used to calculate the
confidence level of the network [32].

The latest version of YOLOv5 improves DIOU by replacing it with the CIOU loss
function. CIOU adds the loss of the detection frame scale to DIOU by increasing the loss
of the length and width so that the prediction frame will be more in line with the real
frame [33]. The CIOU calculation equations are given in Equations (3)–(6):

IOU =
A ∩ B
A ∪ B

(3)

LCIOU = 1− CIOU = 1− IOU +
ρ2(b, bgt)

c2 + αv (4)

α =
v

(1− IOU) + v
(5)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(6)

where the parameters A and B denote the area of Ground truth bounding box and the area
of predicted bounding box; c denotes the Euclidean distance of the diagonal vertices of
the closed box; ρ denotes the Euclidean distance of the center of mass of Ground truth
bounding box and predicted bounding box; ρ2(b, bgt) denotes the distance of the center
points of the two boxes; α is the balance parameters, and ν is the indicators to evaluate
whether the is an index to evaluate the consistency of the aspect ratio between the Ground
truth bounding box and the predicted bounding box. w, h, wgt and hgt represent the height
and width of the predicted frame and the real frame, respectively.

3.2. Transformer

The transformer is an algorithm designed based on the attention mechanism that
facilitates performance improvement [34]. Compared to deep learning models that have
residual and convolutional structures, its network structure is simpler and faster in training
and inference. The transformer first performs positional encoding of the results of the
feature extraction network, recombining the major input vectors to obtain more perfect
features. The results are then computed and output in multi-scale parallel by the decoding
process. The core formulation is given in Equation (7) [35]. By assigning different weights,
more attention can be paid to the feature map. The transformer abandons the structure
of RNN and CNN and uses only the attention mechanism, which improves the parallel
computing capability of the model and thus the training speed of the model.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (7)
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Q, K, V represent Query vector, Key vector and Value vector, respectively. For gradient
stabilization, Transformer uses score normalization, i.e., dividing by

√
dk.

We can understand the Transformer as a black box; when we perform the image
recognition task, the input information passes through this black box to extract the deep
features. The structure of the Encoder is an attention mechanism plus a feed-forward
neural network, which scores the input data and then normalizes the score by softmax
operation to extract the feature information accurately. The Encoder has six encoders, and
the Decoder has six decoders. This design can speed up the processing of information by
parallel operation.

3.3. Attention Model

Due to the good performance of attentional mechanisms, attentional mechanisms are
commonly added in current research to achieve performance improvement. The most
commonly used attention mechanisms are SE, CAM, SAM, and CBAM, among others.
The attention mechanism transforms the input into a single feature vector and obtains
significant performance gains with very little computational cost, which can focus on
important features and suppress unnecessary features [31]. Convolutional operations
extract information features by mixing cross-channel and spatial information, while CBAM
can emphasize meaningful features in two main dimensions, the channel axis and the
spatial axis. Attentional mechanisms improve accuracy by focusing on important features
and suppressing unnecessary features [36].

CBAM is actually a serial structure of CAM and SAM, combining the advantages of
both attention mechanisms, which can fully improve the representational power of CNN.
CAM generates channel attention graphs using the channel relationship between features
and uses the method of compressing the spatial dimension of input feature mapping to
calculate channel attention. CAM uses a combination of AvgPool and MaxPool, which has
more representational power; see Equation (8). SAM only considers the optimization of the
feature map in the spatial (Spatial) dimension, with maximum pooling and average pooling
in the spatial dimension, respectively, to provide more attention to task-relevant regions; see
Equation (9). The specific operation of CBAM is formulated in Equations (10) and (11) [36].

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
F

c
avg

))
+ W1

(
W0

(
F

c

max

))) (8)

Ms(F) = σ
(

f 7×7 ([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

F
s
avg; F

s
max

])) (9)

F′ = Mc(F) ⊗ F (10)

F′′ = Ms
(

F′
)
⊗ F′ (11)

where σ denotes the sigmoid function; W0 ∈ RC/r×C and W1 ∈ RC×C/r; f 7×7 represents a
convolution operation with the filter size of 7 × 7; F represents the Feature Map, F′ is the
channel attention output; the CBAM output F′′ is obtained after computing the channel
attention output F′ with the spatial attention weights.

3.4. Proposed Methodology

By studying the previous methods, we found that the improvement based on YOLOv5
has achieved good results. Although Transformer and CBAM have been widely used,
there are few cases where Transformer, CBAM and EIOU are applied to the project at
the same time. By adopting their advantages in one, we find that their detection effect
is outstanding, not only in detecting different scale targets, but also in extracting deep
features with obvious advantages.

We first dynamically adjust the number of Backbone parameters of the original CNN of
YOLOv5 to increase the model complexity and improve the network by adding Transformer
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and CBAM modules [9,10]. Then, the loss function of EIOU is used to replace the loss
function of the original CIOU to make up for the deficiency of CIOU itself and further
improve the accuracy of the model [37]. Finally, the K-means++ clustering algorithm is
used to automatically cluster the labeled target bounding anchor boxes in the dataset to
produce different numbers and sizes of a priori boxes. This approach can increase the
matching degree between the a priori frames and the actual target frames, thus further
improving the detection accuracy. The specific details are as follows.

We add Transformer and CBAM, respectively, to the CNN of YOLOv5 and improve
the CNN by ablation experiments. We add the Transformer module at the tail of the
feature extraction network to make it adjacent to the SPP module. This design allows the
Transformer to process the features extracted by the CNN more adequately and enhance
the global nature of the network feature extraction. The Transformer can divide the deep
semantic features into multiple branches and assign weights to the feature perceptual fields
to extract key features and enhance the semantic representation on multiple scales [38]. It
was found that by adding Transformer to the feature extraction network, image features can
be extracted efficiently. This can improve the parallel computing capability of the model
to a certain extent, which in turn improves the training speed and recognition accuracy
of the model. Meanwhile, we add a CBAM module to each prediction channel before the
output side. This method allows CBAM to further focus on the features extracted by the C3
module and further enhance the attention of the perceptual field. In the third channel, two
deep feature extraction modules, Transformer and CBAM, exist, and this channel mainly
predicts the targets with smaller size. Since the effective features extracted by Transformer
and CBAM are relatively focused and complete [38], this pathway is beneficial to improve
the detection accuracy of dense small targets. The other two pathways also improve the
recognition accuracy for large targets as well as medium targets due to the presence of the
CBAM module. The network structure diagram is shown in Figure 5.

Figure 5. Improved YOLOv5 network structure diagram.

Although CIOU Loss takes into account the overlap area, centroid distance, and aspect
ratio of the bounding box regression, Equation (4) reflects the difference in aspect ratio
rather than the true difference between the width and height and their confidence levels;
thus, it sometimes prevents the model from optimizing the similarity effectively [37]. The
penalty term of EIOU is based on the penalty term of CIOU by splitting the influence
factor of the aspect ratio to calculate the length and width of target and anchor frames
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separately. The loss function contains three components: overlap loss, center distance
loss, and width–height loss. The first two parts continue the method in CIOU, but the
width–height loss directly minimizes the difference between the width and height of the
target box and the anchor box, which makes the convergence faster. The formula for the
penalty term is given in Equation (12) [37].

LEIOU = LIOU + Ldis + Lasp = 1− IOU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(12)

where Cw and Ch are the width and height of the smallest enclosing box covering the two
boxes. Namely, we divide the loss function into three parts: the IOU loss LIOU , the distance
loss Ldis and the aspect loss Lasp. C represents the area of the Ground truth bounding box
and the minimum enclosing box of the predicted bounding box [37].

We have achieved good results by adding Transformer and CBAM to the original
CNN of YOLOv5. In order to further improve the performance of the model, we replaced
the original CIOU loss function with the more accurate EIOU at the output side and found
that the replacement of the loss function can make the model more accurate in regression
frame localization and improve the detection performance of the model. In particular, the
model performs better when there are multiple targets in close proximity or when the size
of the immediate targets varies greatly. In this case, the EIOU loss function calculates the
length and width of the target frame and anchor frame separately, which makes the width
and height loss closer to the actual size, thus further improving the recognition rate of
the model.

The above improvement method improves the complexity of the original CNN and
enhances the feature extraction ability of the network. By continuously delivering clear
target features to the deep network, the problem of weak target recognition in bad weather
is solved. Meanwhile, Transformer and CBAM modules are introduced to solve the problem
of invalid features affecting recognition accuracy and mitigate the impact of bad weather
on the target detection algorithm. The robustness of the model is further enhanced by
replacing the loss function as EIOU. The algorithm pseudo-code is shown in Table 2.

Table 2. Algorithm pseudo-code.

Preliminary Work: Data Widening, Expanding the Number of Datasets and Preventing
Overfitting.

1. Input dataset;
2. An improved adaptive color levels compensation algorithm is used to obtain a series of clear

images as follows: 
F(u) = 0 u ≤ min

F(u) = 255 u ≥ max
F(u) =

(
u−min

max−min

)
· 255 + U min < u < max

3. The filtered dataset is passed to the modified YOLOv5 for training, and the final model is
trained by adjusting the Loss through EIOU. The EIOU equation is as follows:

LEIOU = LIOU + Ldis + Lasp = 1− IOU +
ρ2(b,bgt)

c2 +
ρ2(w,wgt)

C2
w

+
ρ2(h,hgt)

C2
h

4. Combined with the trained network model, the region of interest of the input image is
accurately and quickly calculated to obtain the target class.

Output: target recognition results.

4. Experimental Results and Analysis
4.1. Evaluation Criterion

Image noise is generally evaluated using MSE, PSNR and SSIM [39]. MSE is a more
convenient way to measure the mean error, and MSE can evaluate the degree of variability
of the data. The smaller the value of MSE, the better the accuracy of the prediction model
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in describing the experimental data. To measure the quality of the processed image, we
usually refer to the PSNR value to measure whether the filtering algorithm is satisfactory
or not; a higher PSNR value means less distortion. SSIM is a measure of the similarity of
two images. One of the two images used in SSIM is an uncompressed undistorted image,
and the other is a distorted image. The range of SSIM is from 0 to 1. The value of SSIM
is equal to 1 when the two images are identical. As an implementation of SSIM theory,
the SSIM index defines structural information from the perspective of image composition
as independent of luminance and contrast and reflects the properties of object structure
in the scene and models distortion as a combination of three different factors: luminance,
contrast, and structure. The mean value is used as an estimate of luminance, the standard
deviation as an estimate of contrast, and the covariance as a measure of structural similarity,
as specified in Equation (13).

MSE = 1
N

N
∑
i
(xi − yi)

2

PSNR = 10 log10
(2r−1)2

MSE = 20 log10
2r−1
MSE

SSIM =
(2µxµy+c1)(Oxy+c2)

(µ2
x+µ2

y+c1)(O2
x+O2

y+c2)

(13)

We name the original image as X and the filtered image as Y, where the elements are
noted as xi and yi; r is the number of bits of each sampled value; µx is the mean of x, µy is
the average of y; O2

x is the variance of x, O2
y is the variance of y; Oxy is the covariance of x

and y; c1 = (k1L)2 and c2 = (k2L)2 is the constant to maintain stability; k1= 0.01, k2= 0.03;
L is the dynamic range of pixel values, generally L = 255.

In this paper, we use Precision, Recall, F1-score, mAP and FPS as evaluation metrics,
and visualize and compare different algorithms using PR curves to analyze the performance
of different models. Precision represents the percentage of correctly predicted results among
all predicted positive samples. Recall represents the percentage of correctly predicted results
among all positive samples. F1-Score is used to measure the precision of the dichotomous
classification model, taking into account both the precision and recall of the classification
model. mAP represents the mean value of the precision obtained at different recall rates,
as shown in Equation (14). As we can see from the formula, AP is the integral of the
PR curve, that is, the area. The PR curve represents the relationship between precision
and recall, and generally we believe that the larger the area of the PR curve, the better
the model performance. mAP@0.5:0.95 denotes the mean average precision at different
IOU thresholds (IOU from 0.5 to 0.95 in steps of 0.05). The detection speed is generally
measured by FPS, which indicates the number of images that the target detection network
can process per second, and the larger the value of FPS, the faster the network model can
process images [40,41]: 

P = TP
TP+FP

R = TP
TP+FN

F1 = 2 · P·R
P+R

AP =
m
∑

i=1
P(i)∆R(i) =

∫ 1
0 P(R)dR

mAP = ∑M
m=1 AP(n)

M

(14)

where TP is the positive sample predicted by the model as a positive category; FP is the
negative sample predicted by the model as a positive category; and FN is the positive
sample predicted by the model as a negative category. m in the formula denotes the
category, and M denotes the total number of categories.
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4.2. Image Effect Evaluation and Analysis

In order to effectively evaluate the difference between the improved adaptive color
levels algorithm and the traditional auto color levels algorithm, three evaluation indexes,
MSE, PSNR and SSIM, are chosen to compare the original image and the image processed
by the traditional method in Figure 4 with the true value. Since the DAWN dataset does
not provide true values, the analysis in Figure 4 shows that the images processed by the
adaptive color levels algorithm proposed in this paper have better results; thus, we choose
such maps as the estimated true values. The experimental results are shown in Table 3,
from which it can be clearly seen that the difference in MSE values between the original
image and the estimated true value is larger in the case of sandstorm, rain and fog, which
indicates that the difference from the original image to the true value is greater. Similarly, it
can be seen that the PSNR and SSIM between the traditional method and the estimated
true value are relatively small, which indicates that the proposed method obtains a better
improvement than the traditional method. However, the MSE between the traditional
method and the estimated true value is larger than the MSE between the original and the
estimated true value in snowy weather. Furthermore, the PSNR between the traditional
method and the estimated true value is lower than the PSNR between the original image
and the estimated true value, and the details of the image become much darker after the
traditional auto color levels algorithm, which is different from the original image, resulting
in a lower PSNR index. At the same time, the reason for this result may also be related to
the absence of the true value image, and there is still some difference between the image
processed by the improved method of this paper as the estimated true value and the actual
effect, but in general, it can show that the improved adaptive color levels algorithm has
good effect on poor image optimization.

Table 3. Results of evaluation metrics between different images and estimated true values.

Classes

Indicator

MSE PSNR SSIM

Comparison
Results

between the
Original and

Estimated
True Values

Comparison
Results of

Traditional
Method and

Estimated
True Value

Comparison
Results

between the
Original and

Estimated
True Values

Comparison
Results of

Traditional
Method and

Estimated
True Value

Comparison
Results

between the
Original and

Estimated
True Values

Comparison
Results of

Traditional
Method and

Estimated
True Value

Sand
3785.98 1934.95 12.35 15.26 0.74 0.85

3331.59 1709.31 12.90 15.80 0.77 0.84

Rain
2187.94 1140.79 14.73 17.56 0.86 0.87

3772.33 1696.24 12.36 15.84 0.81 0.89

Fog
3779.89 1673.98 12.36 15.89 0.85 0.88

8361.95 1809.93 8.91 15.55 0.69 0.82

Snow
1890.27 2448.35 15.37 14.24 0.79 0.84

1845.99 2358.05 15.47 14.41 0.82 0.83

4.3. Algorithm Comparison and Quantitative Analysis

Since the algorithm is mainly used in self-driving vehicles, which require high real-time
performance, we conducted comparison tests under the same conditions for the commonly
used one-stage algorithm. One-stage algorithms mainly include SSD and YOLO algorithms,
and we chose the corresponding tiny version for the YOLO algorithm. We finally com-
pared the performance metrics of SSD, YOLOv3-tiny, YOLOv4-tiny, YOLOv4-mobileNetv2,
YOLOv4-mobileNetv3, YOLOv4-ghostNet and YOLOv5 with the same dataset.

In the training process, we divided the dataset into training set, validation set and test
set in the ratio of 7:2:1. The K-means++ algorithm is used to recluster the dataset before
training to automatically obtain the best anchor size to replace the anchor box size in the
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original COCO dataset. In the training process of YOLOv5, we chose YOLOv5s as the
pre-training model for YOLOv5, which reduces the time to train a large number of datasets
and improves performance. We also used the warm-up approach to pre-warm up the
learning rate. In the warm-up phase, the learning rate is updated using one-dimensional
linear interpolation, and the learning rate is updated using cosine annealing at the end of
the warm-up [42]. The main development platforms and hyperparameters information are
shown in Table 4.

Table 4. Development platform information.

Category Name Parameters

Hardware
configuration

CPU
GPU

Memory

I7-11700F
RTX3060 Dual Graphics Card

32G

Software
configuration

Operating System
Frameworks

Python
CUDA

Ubuntu20.04
Pytorch

3.8
11.1

Hyperparameter
setting

Input image
Epoch

Batch Size
Initial learning rate
Cyclic learning rate

momentum
Weight decay

640 × 640
500
64

0.01
0.1

0.937
0.0005

To make the experimental comparison more rigorous, we first tested the original
dataset using the above algorithm. In Table 5, we can see that SSD, YOLOv3-tiny, YOLOv4-
tiny, YOLOv4-mobileNetv2, YOLOv4-mobileNetv3 and YOLOv4-ghostNet all have lower
mAP when the IOU is 0.5 or 0.75. In contrast, the YOLOv5 algorithm achieves better results.

Table 5. Comparison of evaluation indicators under the original dataset.

Methods IOU Precision Recall F1 mAP FPS

SSD
0.5 0.91 0.24 0.39 37.54%

87.91
0.75 0.60 0.19 0.29 23.28%

YOLOv3-tiny
0.5 0.80 0.59 0.68 51.29%

169.03
0.75 0.50 0.37 0.43 25.37%

YOLOv4-tiny
0.5 0.82 0.52 0.64 49.90%

207.21
0.75 0.55 0.35 0.43 29.05%

YOLOv4-mobileNetv2
0.5 0.83 0.36 0.50 46.46%

86.20
0.75 0.59 0.25 0.35 22.66%

YOLOv4-mobileNetv3
0.5 0.80 0.28 0.42 40.48%

73.39
0.75 0.53 0.19 0.27 16.72%

YOLOv4-ghostNet
0.5 0.77 0.28 0.41 35.95%

63.12
0.75 0.49 0.17 0.26 14.82%

YOLOv5-baseline
0.5

0.91 0.82 0.90
mAP@.5: 84.7%

199.74
0.5:0.95 mAP@.5:.95: 65.1%

We used the adaptive color levels algorithm to enhance the original dataset to obtain
images with clearer backgrounds. Then, the enhanced dataset was retrained again using the
above algorithm, and the specific data are shown in Table 6. It can be seen in the data that
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the recognition accuracy of the dataset after image processing was improved to some extent,
but the overall performance of SSD, YOLOv3-tiny, YOLOv4-tiny and their corresponding
lightweight models still failed to meet our requirements. On the contrary, the model
performance of the YOLOv5 algorithm still performs well, which proves the superiority of
the YOLOv5 algorithm. It also shows that the relatively deep feature extraction network
plays a crucial role in the process of target mention detection in bad weather. Therefore, it
is necessary for us to improve the YOLOv5 algorithm.

Table 6. Comparison of evaluation indexes after image filtering.

Methods IOU Precision Recall F1 mAP FPS

SSD
0.5 0.90 0.27 0.42 39.79%

84.97
0.75 0.81 0.25 0.38 26.33%

YOLOv3-tiny
0.5 0.81 0.57 0.67 59.26%

159.82
0.75 0.49 0.35 0.41 35.36%

YOLOv4-tiny
0.5 0.92 0.56 0.70 53.57%

209.13
0.75 0.76 0.47 0.58 37.30%

YOLOv4-mobileNetv2
0.5 0.85 0.47 0.60 51.32%

90.77
0.75 0.61 0.27 0.38 23.74%

YOLOv4-mobileNetv3
0.5 0.82 0.32 0.46 44.21%

76.60
0.75 0.54 0.21 0.31 18.57%

YOLOv4-ghostNet
0.5 0.80 0.28 0.42 37.35%

63.41
0.75 0.52 0.19 0.27 15.70%

YOLOv5- enhance
0.5

0.94 0.91 0.92
mAP@.5: 92.9%

200.33
0.5:0.95 mAP@.5:.95: 72.4%

During the improvement of the YOLOv5 algorithm, we mainly made parameter
adjustments in the original CNN as well as add modules such as SE, CBAM and Transformer.
To better improve the network, we selected and optimized the algorithm utilizing ablation
experiments, as shown in Table 7. By continuously comparing the positions of tuning SE,
CBAM and Transformer and the parameter values, we found that adding the Transformer
and CBAM to the original feature extraction network and modifying the loss function to
EIOU had the greatest effect on the improvement of detection accuracy.

Since the target detection task in the field of autonomous driving requires faster
computing speed, we chose the algorithm with better effect of one-stage for comparison
experiments and quantitatively evaluated the improved YOLOv5 algorithm before and after.
In order to verify the effectiveness of the proposed algorithm, we compared it with some
lightweight detection algorithms and mainstream one-stage target detection algorithms,
and the experimental results are shown in Tables 5–7. In Table 5, it can be seen that the
YOLOv5 algorithm performs the best among the commonly used one-stage algorithms
with a mAP of 84.7 percentage points, which is the reason why we choose to improve on
this basis. In Table 6, it can be seen that the original YOLOv5 algorithm performs well
in the enhanced dataset, with a mAP of 92.9 percentage points. In Table 7, we can see
that the improved YOLOv5 algorithm achieves a mAP of 94.7 percentage points in the
enhanced dataset, which is another 1.8 percentage points improvement compared to the
previous one. By analyzing the differences between the two algorithms, we can see that the
original YOLOv5 algorithm performs well but does not add the attention mechanism, while
the improved algorithm incorporates the Transformer and CBAM modules, resulting in a
further improvement in overall performance. In the “B-T” experiments in Table 7, it can be
seen that by adding the Transformer mAP improved by 0.5 percentage points compared to
92.9 percentage points before the improvement. Similarly, in the “B-CBAM” experiment, it
can be seen that by adding CBAM, the overall mAP also increases by 0.5 percentage points.
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This shows that adding Transformer and CBAM to the YOLOv5 algorithm helps to improve
the recognition accuracy. In addition, we compared the performance parameters when the
loss functions were CIOU and EIOU after adding Transformer and CBAM, respectively.
The results show that the mAP improves again when the improved algorithm selects EIOU
as the loss function. In general, YOLOv5-improve performs better among many models in
the image recognition task for severe weather.

Table 7. Trick ablation experiment.

Methods IOU Precision Recall F1
mAP@.5

FPS
mAP@.5:.95

B-SE
0.5

0.96 0.87 0.91
93.2%

198.73
0.5:0.95 64.8%

B-CBAM
0.5

0.95 0.93 0.94
93.4%

206.39
0.5:0.95 72.9%

B-T
0.5

0.97 0.91 0.94
93.4%

197.62
0.5:0.95 73.8%

B-CBAM-N-CBAM
0.5

0.94 0.91 0.92
92.9%

197.33
0.5:0.95 72.4%

B-T-N-SE
0.5

0.94 0.92 0.93
93.3%

202.21
0.5:0.95 71.4%

B-T-N-CBAM
0.5

0.93 0.93 0.93
94.1%

200.35
0.5:0.95 72.2%

B-T(5)-N-CBAM
(CIOU)

0.5
0.90 0.92 0.91

94.3%
201.03

0.5:0.95 71.0%

B-T(5)-N-CBAM
(EIOU)

0.5
0.97 0.92 0.94

94.7%
199.86

0.5:0.95 72.3%
B stands for Backbone, N stands for Neck, T stands for Transformer, and T(5) stands for Transformer parameter
set to 5. We name the improved algorithm YOLOv5-improve.

4.4. Visualization Comparison and Analysis

The corresponding PR curves were obtained using the improved YOLOv5 algorithm
before and after training on the original and enhanced datasets. The PR curves are mainly
the area composed of P and R. In Figure 6, it can be clearly seen that the area of the three
plots in general becomes larger in turn. Meanwhile, analyzing the AP and mAP of the
three algorithms also shows that YOLOv5-improve has a 10% improvement compared to
the mAP of YOLOv5-baseline. It can be concluded that the improved YOLOv5-improve
algorithm has the best recognition effect on the severe weather images processed by the
adaptive color scale algorithm, and the target recognition accuracy is greatly improved.

We used TensorBoard to monitor the metric curves of the model training data (mAP@0.5,
mAP@0.5:0.95, Precision, Recall) in real time during the model training, and we performed
a real-time visual inspection of the main performance metrics of the algorithm before
and after the improvement, as shown in Figure 7. With the increase in epoch, the model
performance metrics keep changing. Among them, mAP@0.5, Precision and Recall basically
level off at epoch of 400, but the mAP@0.5:0.95 index still has an increasing trend. To
extract as many features as possible and achieve better performance, we finally set Epoch
to 500 for comprehensive consideration. Compared with normal images, it is more difficult
to train images in bad weather, and in Figure 7, we can see that the YOLOv5-improve
algorithm has the best results in all four metrics, which also proves the superiority of our
improved algorithm.
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4.5. Comparison of Detection Effects and Qualitative Analysis

The recognition of the image targets in adverse weather is a more difficult problem
that poses a challenge in the field of computer vision. Specifically, the background of
bad weather poses difficulties for target detection. In this case, targets of various scales
(humans, bicycles, cars and trucks, etc.) are equally difficult to detect, which further cause
a reduction in recognition accuracy [16].

We qualitatively evaluated the detection effect of YOLOv5-baseline and YOLOv5-
improve using six sets of images of the scene. We used the same parameters to detect
the images, and the experimental results are shown in Figure 8. In the detection results
of the original image, it can be seen that there are problems of missed detection, false
detection or low recognition rate for large-sized trucks and small-sized humans. However,
the YOLOv5-improve algorithm has significantly better detection results for the filtered
images, making up for the shortcomings of the original algorithm.

Figure 8. Graph of recognition results before and after image filtering.

Analyzing the reasons, we can see that Transformer has a self-attention mechanism,
which can effectively obtain global information, and multiple heads can map it to multiple
spaces, making the model expressive. CBAM focuses attention on important points among
many information points, selecting key information and ignoring other unimportant infor-
mation. We have extracted the depth of object features by adding Transformer with the
CBAM module, which is beneficial to the detection effect of the final target. At the same
time, replacing the loss function with a more accurate EIOU is also beneficial to the recogni-
tion rate. Finally, the algorithm is more accurate for feature extraction and is more adaptable
to multi-size image detection. Overall, the images processed by the adaptive color scale
algorithm are more easily recognized by the improved YOLOv5-improve algorithm.

4.6. Failure Case Study

During the test, we found that the original image processed by the adaptive color
levels algorithm has good results, but there are also problems of recognition errors in
special cases, as shown in Figure 9. For example, the morphologically transformed images
have problems such as flip and noise, resulting in missed detection and low recognition
rate. At the same time, due to the low resolution of the original image, after the image
processing, some details are not processed well, which also causes the occurrence of false
detection and low recognition rate.
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Figure 9. Comparison of test results of failed cases.

5. Conclusions

In summary, we focused on the problem of how to improve the recognition rate of
self-driving vehicles for road targets in adverse weather conditions. In this paper, we
first used Gaussian noise addition, rotation angle adjustment, mirroring and cutout to
pre-process the dataset to increase the number and diversity of the dataset. Then, a new
bias compensation model was constructed to perform adaptive color levels correction on
the images. The algorithm can automatically assign preprocessing channels according to
different types of input images, and perform rain removal, fog removal, snow removal
and dust storm removal operations on the images. Finally, the algorithm was improved
by adding Transformer and CBAM modules to the original YOLOv5 algorithm, while
the loss function of YOLOv5 was changed to the EIOU function. By comparing SSD,
YOLOv3-tiny, YOLOv4-tiny, YOLOv5-baseline, YOLOv5-enhance and YOLOv5-improve,
it is obvious in the evaluation index comparison table and PR curve comparison graph that
the improved model of this paper has the best performance with mAP reaching 94.7% and
FPS of 199.86. In Figure 8, it can also be clearly seen that the recognition capability of the
improved algorithm is greatly improved under the severe weather images processed by the
adaptive color levels algorithm. Overall, the research content of this paper has improved
the recognition ability of self-driving cars in bad weather to a certain extent and achieved
the research objective.
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Abbreviations

SVM Support vector machine
UAV Unmanned aerial vehicle
CNN Convolutional neural network
mAP Mean average precision
MSE Mean Square Error
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity
CAM Channel attention module
SE Squeeze and Excitation
PR Precision–recall
SSD Single-shot detection

References
1. Kenk, M.A.; Hassaballah, M. DAWN: Vehicle detection in adverse weather nature dataset. arXiv 2020, arXiv:2008.05402.
2. Liu, W.; Ren, G.; Yu, R.; Guo, S.; Zhu, J.; Zhang, L. Image-adaptive YOLO for object detection in adverse weather conditions. In

Proceedings of the AAAI Conference on Artificial Intelligence, Pomona, CA, USA, 24–28 October 2022; Volume 36, pp. 1792–1800.
3. Wang, G.; Guo, J.; Chen, Y.; Li, Y.; Xu, Q. A PSO and BFO-based learning strategy applied to faster R-CNN for object detection in

autonomous driving. IEEE Access 2019, 7, 18840–18859. [CrossRef]
4. Zhang, S.; Tuo, H.; Hu, J.; Jing, Z. Domain Adaptive YOLO for One-Stage Cross-Domain Detection. arXiv 2021, arXiv:2106.13939.
5. Li, W.; Feng, X.; Zha, K.; Li, S.; Zhu, H. Summary of Target Detection Algorithms. J. Phys. Conf. Ser. 2021, 1757, 012003. [CrossRef]
6. Ting, L.; Baijun, Z.; Yongsheng, Z.; Shun, Y. Ship detection algorithm based on improved YOLO V5. In Proceedings of the

2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 15–17 July 2021;
pp. 483–487.

7. Zhu, L.; Geng, X.; Li, Z.; Liu, C. Improving YOLOv5 with Attention Mechanism for Detecting Boulders from Planetary Images.
Remote Sens. 2021, 13, 3776. [CrossRef]

8. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection
on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN,
USA, 20–25 June 2021; pp. 2778–2788.

9. Shi, X.; Hu, J.; Lei, X.; Xu, S. Detection of flying birds in airport monitoring based on improved YOLOv5. In Proceedings of
the 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021;
pp. 1446–1451.

10. Zhou, J.; Jiang, P.; Zou, A.; Chen, X.; Hu, W. Ship Target Detection Algorithm Based on Improved YOLOv5. J. Mar. Sci. Eng. 2021,
9, 908. [CrossRef]

11. Xie, F.; Lin, B.; Liu, Y. Research on the Coordinate Attention Mechanism Fuse in a YOLOv5 Deep Learning Detector for the SAR
Ship Detection Task. Sensors 2022, 22, 3370. [CrossRef]

12. Zhu, W.; Shu, Y.; Liu, S. Power Grid Field Violation Recognition Algorithm Based on Enhanced YOLOv5. J. Phys. Conf. Ser. 2022,
2209, 012033. [CrossRef]

13. Zhang, C.; Liu, L.; Zang, X.; Liu, F.; Zhang, H.; Song, X.; Chen, J. DETR++: Taming Your Multi-Scale Detection Transformer. arXiv
2022, arXiv:abs/2206.02977.

14. Fu, H.; Song, G.; Wang, Y. Improved YOLOv4 Marine Target Detection Combined with CBAM. Symmetry 2021, 13, 623. [CrossRef]
15. Walambe, R.; Marathe, A.; Kotecha, K. Multiscale object detection from drone imagery using ensemble transfer learning. Drones

2021, 5, 66. [CrossRef]
16. Khan, S.D.; Alarabi, L.; Basalamah, S. A unified deep learning framework of multi-scale detectors for geo-spatial object detection

in high-resolution satellite images. Arab. J. Sci. Eng. 2022, 47, 9489–9504. [CrossRef]
17. Cheng, R.; He, X.; Zheng, Z.; Wang, Z. Multi-Scale Safety Helmet Detection Based on SAS-YOLOv3-Tiny. Appl. Sci. 2021, 11, 3652.

[CrossRef]
18. Gao, Y.; Li, Y. DSS: Dynamic Sample Selection by Utilizing Object Shape and Scale. In Proceedings of the 2022 the 5th International

Conference on Image and Graphics Processing (ICIGP), Beijing, China, 7–9 January 2022.

http://doi.org/10.1109/ACCESS.2019.2897283
http://doi.org/10.1088/1742-6596/1757/1/012003
http://doi.org/10.3390/rs13183776
http://doi.org/10.3390/jmse9080908
http://doi.org/10.3390/s22093370
http://doi.org/10.1088/1742-6596/2209/1/012033
http://doi.org/10.3390/sym13040623
http://doi.org/10.3390/drones5030066
http://doi.org/10.1007/s13369-021-06288-x
http://doi.org/10.3390/app11083652


Sensors 2022, 22, 8577 21 of 21

19. Liang, H.; Yang, J.; Shao, M. FE-RetinaNet: Small Target Detection with Parallel Multi-Scale Feature Enhancement. Symmetry
2021, 13, 950. [CrossRef]

20. He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010,
33, 2341–2353.

21. Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Processing
2015, 24, 3522–3533.

22. Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the 2008 IEEE Conference on Computer Vision and
Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

23. Ancuti, C.O.; Ancuti, C.; Hermans, C.; Bekaert, P. A fast semi-inverse approach to detect and remove the haze from a single image.
In Asian Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010; pp. 501–514.

24. Manjunath, V.; Phatate, R. A Single Image Haze Removal Algorithm Using Color Attenuation Prior. Int. J. Sci. Res. Publ. 2016,
6, 291–297.

25. Katiyar, K.; Verma, N. Single Image Haze Removal Algorithm using Color Attenuation Prior and Multi-Scale Fusion. Int. J.
Comput. Appl. 2016, 141, 37–42. [CrossRef]

26. Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-One Dehazing Network. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: New York, NY, USA, 2017; pp. 4780–4788.

27. Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image
Processing 2016, 25, 5187–5198. [CrossRef]

28. Zhuang, X.; Tan, F.; Li, Z.; Li, L. Image defogging algorithm based on dark channel a priori and optimized automatic color
gradation. Comput. Appl. Softw. 2021, 38, 190–195.

29. Rajinikanth, V.; Dey, N.; Raj, A.N.; Hassanien, A.E.; Santosh, K.C.; Raja, N. Harmony-search and otsu based system for coronavirus
disease (COVID-19) detection using lung CT scan images. arXiv 2020, arXiv:2004.03431.

30. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.

31. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

32. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. Proc.
AAAI Conf. Artif. Intell. 2020, 34, 12993–13000. [CrossRef]

33. Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for
autonomous vehicles. arXiv 2022, arXiv:2206.02424.

34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Processing Syst. 2017, 30, 6000–6010.

35. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.

36. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

37. Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient IOU loss for accurate bounding box regression. arXiv
2021, arXiv:2101.08158. [CrossRef]

38. Yu, H.; Zheng, J.; Zhang, S.; Zhou, W.; Kong, L.; Ding, Z.; Yang, S. An improved YOLOv5-based method for detecting the number
of logs in a whole truck. J. For. Eng. 2022, 7, 135–143.

39. Premaratne, P.; Premaratne, M. Image matching using moment invariants. Neurocomputing 2014, 137, 65–70. [CrossRef]
40. Yang, K.; Song, Z. Deep Learning-Based Object Detection Improvement for Fine-Grained Birds. IEEE Access 2021, 9, 67901–67915.

[CrossRef]
41. Hao, W.; Xiao, N. Research on Underwater Object Detection Based on Improved YOLOv4. In Proceedings of the 2021 8th

International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Beijing, China, 10–12 December
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 166–171.

42. Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y.; Wang, L.; Liu, T. On layer normalization in the
transformer architecture[EB/OL]. arXiv 2020, arXiv:2002.04745.

http://doi.org/10.3390/sym13060950
http://doi.org/10.5120/ijca2016909827
http://doi.org/10.1109/TIP.2016.2598681
http://doi.org/10.1609/aaai.v34i07.6999
http://doi.org/10.1016/j.neucom.2022.07.042
http://doi.org/10.1016/j.neucom.2013.02.058
http://doi.org/10.1109/ACCESS.2021.3076429

	Introduction 
	Dataset Processing 
	Image Acquisition and Enhancement 
	Traditional Auto Color Levels Algorithm 
	Improved Adaptive Color Levels Algorithm 

	Method 
	One-Stage Target Detection Algorithm 
	Transformer 
	Attention Model 
	Proposed Methodology 

	Experimental Results and Analysis 
	Evaluation Criterion 
	Image Effect Evaluation and Analysis 
	Algorithm Comparison and Quantitative Analysis 
	Visualization Comparison and Analysis 
	Comparison of Detection Effects and Qualitative Analysis 
	Failure Case Study 

	Conclusions 
	References

