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Abstract: Rice is one of the vital foods consumed in most countries throughout the world. To estimate
the yield, crop counting is used to indicate improper growth, identification of loam land, and control
of weeds. It is becoming necessary to grow crops healthy, precisely, and proficiently as the demand
increases for food supplies. Traditional counting methods have numerous disadvantages, such as
long delay times and high sensitivity, and they are easily disturbed by noise. In this research, the
detection and counting of rice plants using an unmanned aerial vehicle (UAV) and aerial images
with a geographic information system (GIS) are used. The technique is implemented in the area
of forty acres of rice crop in Tando Adam, Sindh, Pakistan. To validate the performance of the
proposed system, the obtained results are compared with the standard plant count techniques as
well as approved by the agronomist after testing soil and monitoring the rice crop count in each acre
of land of rice crops. From the results, it is found that the proposed system is precise and detects
rice crops accurately, differentiates from other objects, and estimates the soil health based on plant
counting data; however, in the case of clusters, the counting is performed in semi-automated mode.

Keywords: aerial imaginary; GIS; rice crop; soil testing; UAV; yield estimation

1. Introduction

Precision farming is observing, measuring, and responding to a system that sustains
the structure used for managing the farm and producing the extreme yield in existing
resources [1]. Outdated approaches such as combined pest management used in farming
are inadequate, and the utilization of synthetic pesticides affects animals, human beings,
and also the environment [2]. As a society of the third millennium, humankind has started
to master every aspect of its day-to-day life, making it more efficient in terms of time and
resources. One of the most critical aspects of human life is nutrition, and we can notice
severe advancements in the agricultural sector that satisfies these human needs. Especially
within developing countries, over seventieth of agricultural individuals depend upon the
agriculture fields [3].
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Improvements such as precision farming, fertilizers, etc., are helping to utilize the
earth’s resources most efficiently, but there is still much room for advancement. Con-
sequently, in the present era, there are several developments in agriculture for growing
crop productivity.

Among several other important crops, over half of the world’s population uses rice as
their main source of energy because it is a complex carb. No other crop provides as much
food, as much employment for farmers, or as much support for the environment. For 70%
of the impoverished in Asia, for whom rice is frequently the only source of income, it is
much more than just a food crop [4]. The amount of protein, iron, manganese, fiber, and
vitamin B in rice varies depending on the strain. It can thus be quite important in the fight
against malnutrition. Therefore, monitoring and counting rice crop helps us to increase
yield, identify soil health, and save the crop from diseases.

While the number of rice seedlings within the field is one of the most agronomical
elements for defining rice yield, this investigating task, however, remains chiefly performed
manually. It includes the exploitation of human vision instead of computer vision and is
so cumbersome and long [5]. Therefore, a quick and correct technique is needed for the
observation of the potency of crop supervision practices. Furthermore, it should include the
pre-estimations for the yield of rice crops and can be employed as a phenotyping feature in
breeding plans.

Developed countries have already started the use of unmanned aerial vehicles (UAVs)
in their precision agriculture. Automation pilotless aeronautical vehicles (UAVs) [3,6],
normally referred to as automatons, work as driverless airplane frameworks. The UAVs are
utilized in various applications such as mechanical checking, photography, reconnaissance,
air emergency vehicles, conveyance, and many more [7–9]. In other words, the agricultural
sector has a well-defined task for this new progress in the computer vision sphere—Crop
counting for better yield prediction, segmentation of problematic crop areas such as plants
beaten down due to weather activity, flooded regions of the fields, detection of plant
diseases, etc. Solving described tasks allows farmers to better prepare for upcoming
dangers to their yield, minimize their losses and maximize harvest and profits.

Farmers face many problems during the crop cycle as they do not have sufficient water,
lesser use of modern equipment, dependencies on traditional farming techniques, poor stor-
age facilities, transportation problems, high-interest rates, and government schemes [10].
The solutions to the problems are, adopting modern farming, educating farmers, crop insur-
ance, and better water management. One of the probable solutions to these challenges can
be crop counting to increase crop yield and identify soil health. Identification of soil health
helps to indicate fertile and barren land, which affects crop productivity. Furthermore, the
crop counting solution should be easily adaptable, cost-effective, and reliable. In other
words, there is a need for a system that can identify the crop count and may indicate the
soil fertility by comparing its expected yield according to the land capacity.

In this research, there is a tendency to propose an associated economical technique
that uses computer vision to accurately count rice seedlings during a digital image. First,
an associate UAV equipped with red–green–blue (RGB) cameras acquires field pictures at
the phanerogam stage. The UAV flies over the rice fields for approximately 10 min and
captures imagery data. It takes a total of 8 flights. Next, it employs an ArcGIS to regress the
density map and estimate the number of rice seedlings for a given UAV image. ArcGIS is a
geographical information system (GIS) application that enables the handling and analysis of
geographic data by visualizing geographic statistics through layer-building maps, such as
climate data or trade movements. Subsequently, rice crop counting is performed to identify
soil health and indicate fertile or barren land. The area planted with rice is classified by
employing the Iso cluster unsupervised classification technique using the ArcGIS program.

This research contributes a novel data set with a customized technique of using a
combination of UAV and ArcGIS. It is based on a deep learning model to estimate crop
yield. Furthermore, it indicates soil health based on productivity. In this context, we have
monitored two different regions of rice crops. In the first region, the monitoring of rice
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crops is performed after 1 week of sprouting. The region is 4 acres (1 acre of mechanical
planting and 3 acres of manual planting). In the second region, the monitoring of 35 acres
(mechanical planting) is performed. The monitoring of the field is performed using a UAV.
The aerial imagery, captured by UAV, is processed with ArcGIS for plant counting. The
ArcGIS is used for pointing the coordinates to map the data on the image.

The proposed solution helps to identify the crop count and indicate soil health. This
research also helps to indicate fertile and barren land. Consequently, it helps to take all
the necessary steps to make barren land fertile for the next agriculture cycle. The result
aids farmers or landmen in taking safety precautions for increasing yield and treating land
according to its health. The research is based on identifying crop yield and identifying soil
health. The output of the proposed system is 0.99 percent efficient (in terms of accuracy).

This article comprises six sections. Section 1 provides the introductory information
and its importance in today’s world. Section 2 is the literature review that provides the
background of the study work and related work. Section 3 illustrates the material and
methods used in the research. The experimental evaluation is presented in Section 4.
Section 5 presents the result and discussion, and finally, the article is concluded in Section 6.

2. Literature Review

This section comprises two sections. In Section 2.1, the background of the research is
presented, and Section 2.2 provides details of the work related to the research.

2.1. Background

Each touchpoint in our life today is being etched with a new deoxyribonucleic acid
(DNA), thanks to the data and technology. The barriers between the physical, digital, and
biological domains are disappearing as we live and breathe, thanks to the fourth industrial
revolution and its convergence of technology.

The fourth industrial revolution [11] is preparing the way for huge changes across all
industries, but more especially in healthcare and life sciences, with its storm of big data
and digital technologies. The four key pillars that life sciences organizations must adhere
to in order to succeed in the fourth industrial revolution in terms of patient centricity,
commercial efficiency, and overcoming regulatory obstacles.

• Industrialization Analytics
• Data Integration
• Collaborative Cross-functional
• Augmented Intelligence

By increasing the efficiency of farming operations by increasing agricultural produc-
tion, reducing environmental impact, and automating farmers’ work, they contribute to the
growing body of knowledge about the potential role of blockchain technology in promoting
the idea of smart farming [12] UAVs [13] natural environments and Artificial Intelligence
(AI). In [14], look for water resources in places where a satellite would not typically be able
to acquire photographs, and the utility of such an autonomous flying IoT is proven.

The experimental work satisfies the demands of automatic and real-time environmen-
tal parameter monitoring by employing both above- and below-ground sensors [15]. In
this article, the fourth industrial revolution technologies, such as smart farming, natural
environments, and UAV, along with their AI applications, emerged to produce a sustainable
solution for soil health and crop count.

2.1.1. Smart Farming

The term “smart farming” refers to the management of farms using the Internet of
Things (IoT), robotics, drones, and AI to improve product quantity and quality while
minimizing the amount of human labor needed for production. A growing number of
people are becoming interested in smart farming technologies and precision agriculture [16]
because of their potential to satisfy this rising demand and meet the needs of the world’s
food supply. To improve crop productivity and food product quality, smart farming
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technologies integrate technology and data-driven agriculture applications. Globally, there
are many examples of smart farming use cases [17] to [18] that show the effects of this new
way of doing agriculture.

2.1.2. Unmanned Aerial Vehicle (UAV)

Another ground-breaking innovation with enormous promise in precision agriculture
is the use of unmanned aircraft systems (UAS) as sensing and/or communication plat-
forms [19]. It was developed as a low-cost alternative technology for acquiring images,
monitoring the environment, and achieving high spatial and temporal resolution. UAV
use in agriculture is growing at the moment to help farmers with monitoring and decision
making on the farm [20]. UAS are used in a variety of agricultural applications, including
weed control, pesticide application, fertilizing, and irrigation. Additionally, the integration
of UAS technology with cutting-edge 3D reconstruction modeling methods has made it
possible to monitor the crop’s growth metrics at the plant level. A new and exciting era
of agriculture-food production is being ushered in by the integration of several major
emerging technologies into the agricultural sector.

2.1.3. Artificial Intelligence (AI)

In agriculture, there is a quick adaptation to AI in its various farming techniques. The
concept of cognitive computing is one that imitates human thought processes as a model in
the computer. This results in turbulent technology in AI-powered agriculture, rendering its
service in interpreting, acquiring, and reacting to different situations (based on the learning
acquired) to enhance efficiency. To harvest benefits in the field by catching up with the
recent advancements in the farming sector [21].

Recent improvements in the accessibility of pertinent data, processing, and algorithms
have enabled AI to start delivering on its promise of creating real value. In this essay, by
enhancing what is being detected and monitored, the most immediate application will be
to increase the accuracy of information about what is happenning on the farm. This has the
effect of providing farmers with more precise warnings [22].

2.2. Related Work

One of the typical employments for UAVs in precision farming is found in [23], where
aerial images were collected during the survey over four days in the test field. Consequently,
the convolution neural network (CNN) was designed and trained to identify the three-
dimensional location of cotton. Finally, the cotton was detected from random pictures. In
comparison with manually, the model counts faults 3–4 flowers for the field with a solitary
plant in each plot. The proposed technique in [24] is actualized on a 10-week-old spinach
plant utilizing computer vision—Excess Green Index and Otsu’s strategy—and move to
get the hang of utilizing convolutional neural systems to distinguish and tally plants, but it
is not able to distinguish accurately due to object confusion.

The calculations dependent on deep neural systems are proposed to recognize tobacco
plants [25], corn plants [26,27], and banana plants [28] in pictures caught by automated
aerial vehicles (UAVs). These UAV pictures are portrayed by a high spatial goal. The
profound learning-based methodology can precisely include plant seedlings in the field.
Seedling recognition models prepared in this investigation and the commented-on pic-
tures can be utilized by the exploration network and the cotton business to advance the
improvement of answers for the seedling outcome and count [29].

The work in [30] presents an approach dependent on otherworldly lists and advanced
picture examination to perform populace, including in sunflower plants. Results demon-
strate that it is conceivable to gauge the number of plants in the picture with an error of 10%.
The relationship between the ground cowl and carefully checked plants was horrendously
low. The work of UAVs and picture processes can improve ranch executives and help
field experimentation for science and rearing functions [31]. Their investigation was to
create and approve vigorous field-developed apple nursery plant tallying calculation that
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depends just on height pixel estimations of little UAS-based low elevation RGB symbol-
ism information. The nursery field pictures were acquired from exploitation; little UAS
worked at thirty on the head of the base level. Picture preparation, which is acquired by
UAS, was acted in a GIS programming [32] and [33] presents a data frame structure that is
made for automatic plant count and for increasing plant phenotyping datasets that utilize
delivered pictures of engineered plants is proposed in [34]. They show that genuine and
engineered plants are fundamentally exchangeable when preparing a neural system for the
leaf count task [34].

The technique used in this article indicates the health of land according to the density
of growing seedlings, and the gaps show the ungrown area of land. The research in the
same area is presented below in Table 1.

Table 1. Competitive analysis.

Reference Crop Type Technique Limitation

[35] Rice Yolo v4 Low speed of target detection

[36] Citrus trees CNN Less efficient for the densely
populated region

[37] Mango Deep learning
network Less accurate

[34] Rosette plants L-system modelling Confused with other objects
required more data

[38] Olive trees U2 net- deep learning
network

Complex model, error rate
approx. 15%

Proposed Work Rice ARC-GIS,
deep learning

Require good quality image for
better object detection

In [35], the authors have used the UAV and YOLOv4 model for the quick detection of
rice ear, which can detect rice fields in different states of health with the achievement of
Map 95%. In their research, rice ears overlapping leads to missed identification. In [36],
authors used CNN and multispectral images from UAV for quantity estimation of citrus
trees, which is capable of counting and geolocation, but it compromises efficiency in the
land of the highly populated region. In [37] combination of UAV and YOLOv2 models
was used for the quick detection of green mangoes, and the average mean precision of the
model is 86.4%, with an error rate of 1.1%.

In [34], L-system modeling (Deep learning) is used for the identification of rosette
plants, and their system identifies the rosette plants with the accuracy of %, but the model
is confused with other objects due to less data size. In [38], Olive trees are monitored and
identified using U2 net-deep learning network. The model is accurate with an error rate of
approx. 15% due to the complex model. The technique proposed in this article is based on
a deep learning model which utilizes the imageries from UAV and is further processed on
ArcGIS software which is a very user-friendly, cheap, and easy way to estimate the crop
yield and indicate the soil health based on production rate. It requires good-quality images
for better detection of crops.

3. Materials and Methods

This section is divided into two sections. In Section 3.1, the details of the experimental
site and imaging device specifications are presented. Section 3.2 explains the rice seedling
counting dataset.

3.1. Experimental Site and Imaging Devices

The study was carried out in Tando Muhammad Khan, Sindh, Pakistan, in June
2020. A total area of 40 acres was chosen for the study and divided into two regions.
Region 1 (5 acres) (25◦08′16.4′′ N, 68◦35′26.5′′ E) and region 2 (35 acres) (25◦08′12.9′′ N,
68◦36′08.9′′ E). For the acquisition of images, a DJI Phantom 4 Pro drone was used. The
UAV, flight assignment, and specifications of the camera are shown in Tables 1 and 2.
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A predefined flight plan was developed using a mission planner Map Pilot for DJI software.
The UAV flew autonomously over the rice field at 35 m. To eliminate the chance of
data distortion and to stabilize the flight during image acquisition, the experiment was
performed in June 2020 on a sunny day in considerably low winds. The images were
acquired with the overlap of 70% Along Track and 60% Across Track to fulfill the total
coverage of the study area.

Table 2. UAV and aerial inspection specifications.

Parameters Specifications

UAV weight 1388 g
Max. flight time 10 min (approx.)

Battery 5870 mAh LiPo 4S
Flying altitude 35 m
Mission time 80 min (approx.)
Total flights 8

Figure 1 explains the flow of data collection. After hovering, the composed images
were processed in the Agisoft Metashape Professional software ver. 1.5.4 (2019), which,
through its algorithms, allowed to orient of the images and generated the ortho mo-
saic, digital terrain, and surface models (DSM). These models were later analyzed in a
GIS environment.
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Figure 1. Preparation of dataset.

The UAV used in the experiments has a 1388 g weight with a LiPo battery capacity
of 5870 mAh. It can fly for approximately 10 min at an altitude of 35 m. The total eight
flights of the UAV are used for data collection for the duration of 80 min, as shown in
Table 2 below.

The camera specification for monitoring fields for estimating yield and indication
of soil health is represented in Table 2. The Sensor has a 1′′ CMOS effective pixel with
mechanical and electronic shutter speeds of 8–1/2000 s and 8–1/8000 s, respectively, and
supports JPEG and DNG(raw) photo formats, as mentioned in Table 3.

Table 3. UAV camera specifications.

Parameters Specifications

Sensor 1′′ CMOS effective pixels
Mechanical shutter speed 8–1/2000 s
Electronic shutter speed 8–1/8000 s

Photo JPEG, DNG (raw)
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3.2. Rice Seedling Data Set

The imagery data set of rice seedlings is about 1200 RGB images using an unmanned
aerial vehicle. The imagery data set consists of images of rice seedlings that are manually
and mechanically planted over 40 acres of land. Table 4 shows the details of the imagery
data set.

Table 4. Imagery data set.

Agricultural Land Region in Acres Plantation Type No. of Images

Region 1 35 Mechanical and manual 997
Region 2 5 Mechanical 203

Total 40 Mechanical and manual 1200

Region 1 (35 acres) (25◦08′16.4′′ N, 68◦35′26.5′′ E) and region 2 (approx. 5 acres)
(25◦08′12.9′′ N, 68◦36′08.9′′ E) are shown in Figure 2.
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Figure 2. Seedling plantation in region 1 and region 2.

Figure 3 illustrates the training samples for extracting features. The red bounding
boxes show the rice training sample based on the system detecting rice crops. Once
the image is captured, the next step is to prepare a test and translate the image into the
configuration of a deep learning model that has to be given descriptions of images of rice
plants or seedlings so that it can identify comparable pixels in order to understand what
it is supposed to be detecting. Creating realistic training assessments is essential when
teaching a profound learning model or any picture grouping approach. Additionally, it is
typically the longest advancement overall. To give a deep learning model the information it
requires, rice plants or seedlings must be highlighted to show the algorithm their potential
sizes, shapes, and marks, as shown in Figure 3.
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These highlights enhanced a certain organization called picture chips’ deep learning
methodology. Picture chips are tiny symbolism-filled squares that were sliced from the
original image. It will be easy to trade them as image chips with metadata once they have
achieved a sufficient number of highlights in the image classification board. The detection
objects using a deep learning device in ArcGIS Pro 2.5, which relies on well-established
learning structures, can be prepared using these preparatory tests.

The aim of this research is to provide a sustainable and easy method of identification of
crop yield and soil health in terms of productive or barren lands. The use of aerial vehicles
provided ease in monitoring and capturing the data for the identification of soil health and
crop yield by counting them and estimating the results by mapping according to acres. This
research is carried out in the area where mechanical plantation and manual plantation are
both carried out, and it has to find out the number of crops and estimation of soil health.

In Figure 4, the research is presented as data collection is carried out in rice fields. The
area of the rice field is about 40 acres, where the mechanical and manual plantations both
are carried out. The experimental site is at Tando Muhammad Khan, where the UAV flew
to collect imagery data of the field. The data are the optical images that are processed to
remove outliers and garbage data for image processing. Training Samples Are created, and
image classification is performed to train the model for selecting individual plant locations
and counting plants as well.
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Figure 4. Block diagram of the research work.

Inventorying each rice plant on the field manor would take a great deal of time and an
enormous workforce. To improve the procedure, you′ll utilize a profound (deep) learning
model in aeronautical reconnaissance coverage geographic information system (ArcGIS)
programming to distinguish rice plants. The principal step is to discover symbolism
that has a fine enough spatial and unearthly goal to distinguish plants and seedlings.
The plantation is carried out mechanically and manually. Firstly, in region 1, point out
mechanical plantation and manual plantation areas, as shown in Figure 5.
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After discrimination of mechanical and manual plantation areas, the next step is to
perform point demarcation of plants or crops, which indicates the growing rice crop as
shown in the figure below. Figure 6 shows the point demarcation of the mechanical and
manual of region 1.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 19 
 

 

(ArcGIS) programming to distinguish rice plants. The principal step is to discover sym-

bolism that has a fine enough spatial and unearthly goal to distinguish plants and seed-

lings. The plantation is carried out mechanically and manually. Firstly, in region 1, point 

out mechanical plantation and manual plantation areas, as shown in Figure 5. 

 

Figure 5. Mechanical and manual plantation in region 1. 

After discrimination of mechanical and manual plantation areas, the next step is to 

perform point demarcation of plants or crops, which indicates the growing rice crop as 

shown in the figure below. Figure 6 shows the point demarcation of the mechanical and 

manual of region 1. 

 

Figure 6. Point demarcation of region 1. 

Ortho-amended pictures were produced utilizing the boundaries that appeared in 

Table 3 with a tagged image file format (TIF) augmentation: 10 mm/pixel picture for the 

35 m flying stature. Plant point demarcation helps us to identify live plants and dead 

plants, which help to estimate the rice yield and indicates the land or soil health as to 

whether it is productive or barren. To clarify further, below are the separate images of 

mechanical and manual images of region 1. Figure 6 shows the mechanical plantation, and 

Figure 7 shows the point demarcation of region 4. 

Figure 6. Point demarcation of region 1.

Ortho-amended pictures were produced utilizing the boundaries that appeared in
Table 3 with a tagged image file format (TIF) augmentation: 10 mm/pixel picture for the
35 m flying stature. Plant point demarcation helps us to identify live plants and dead plants,
which help to estimate the rice yield and indicates the land or soil health as to whether it is
productive or barren. To clarify further, below are the separate images of mechanical and
manual images of region 1. Figure 6 shows the mechanical plantation, and Figure 7 shows
the point demarcation of region 4.
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Figure 7. Image shows the mechanical plantation of region 2.

Region 2, which is approx. 5 acres and is geolocated at 25◦08′12.9′′ N, 68◦36′08.9′′ E,
carried only mechanical plantation, and below is the point demarcation of region 2 to point
out live plants for estimating yield according to acers and indicate soil health concerning
dead plants either the soil is productive or barren. Figure 8 shows the point demarcation
of region 2.
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Figure 8. Point demarcation of region 2.

Once having the imagery, at that point, prepare tests and convert them to a configu-
ration that can be utilized by a profound learning model. For the model to perceive what
it’s entrusted with finding, it has to characterize pictures of rice plants/seedlings so it can
recognize comparative pixels. Making reasonable training tests is vital once instructing a
profound learning model or any picture grouping model. It is additionally frequently the
most tedious advance all the while. To furnish a profound learning model with the data, it
needs to extricate all the rice plants or seedlings in the picture and make the highlights for
various rice plants or seedlings to show the model the size, shape, and mark of rice plants
or seedlings. These preparation tests are made and overseen through the Label Objects for
Deep Learning instrument.
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While capturing samples of plants in the territory, highlights were digitized all through
the picture. These highlights added something extra to the profound learning model in a
particular organization called picture chips. Picture chips are little squares of symbolism
cut from the source picture. When they have made an adequate number of highlights in
the Image Classification board, it will be anything but difficult to trade them as picture
chips with metadata. These preparation tests can be utilized to prepare a model utilizing
the Detect Objects utilizing a Deep Learning device in ArcGIS Pro 2.5, which depends
on profound learning structures, for example, TensorFlow, Keras, or CNTK. To introduce
these profound learning libraries, clone the default Python condition utilizing the Python
Command Prompt.

The Train Deep Learning Model geoprocessing apparatus utilizes the picture chips
that are marked to figure out what blends of pixels in a given picture speak to rice plants.
Figure 9 shows the deep learning architecture. The preparation procedure delivers an Esri
model definition (.emd) record that can be utilized by other profound learning instruments
inside ArcGIS. At that point, the populated of (.emd) record and utilize the Detect Objects
Using Deep Learning instrument to recognize rice plants or seedlings in the picture.
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Figure 9. Deep learning architecture.

Geospatial software called ArcGIS is used to view, edit, manage, and analyze geo-
graphic data. For mapping on PC, mobile, and the web, Esri creates ArcGIS. The science of
where is their slogan. As a result, location intelligence and analytics are the main focus of
ArcGIS. Professional software called Agisoft Metashape analyses digital photos, generates
digital models and point clouds for 3D spatial data, and combines snapshots to produce
orthogonal images. Additionally, the software’s features include the ability to create visual
effects and take indirect measurements of things at different scales.
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Agisoft Metashape Professional Software is based on a deep learning architecture. The
background of their inputs and producing output depends on deep learning. The input
image is integrated with a set of K kernels.

Mk ∈ DV×V , k = 1, 2, . . . , K (1)

then biased
ak ∈ D, k = 1, 2, . . . , K (2)

are applied
Each of these operations creates a new feature map ak through an element-wise non-

linear transform σ(·). For hidden layers, the same procedure is conducted.

Plk = σ(Mlk ⊗ Pl − 1 + alk) (3)

where the symbol ⊗ stands for the discrete convolution operator, and its particular type
of operation can take several other forms, including “valid”, “same”, “extra”, “strided”,
“fractional-strided”, and others.

The system block diagram explains the working model adopted in this work. In
Figure 10, the workflow chart of this research is presented as images captured using UAV,
and then the images are processed with AgiSoft Metashape Professional Software (AMPS).
In AMPS, ortho rectification is generated by 3D point and DSM generation. After ortho
rectification, training samples are created through which image classification is performed,
which extracts features for the training model. Plant location and plant count are identified
by the analysis of location. This flow of work helps to identify the location-based plant count
from which the highly populated, less populated, and barren land can be identified easily.
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4. Experimental Evaluation

The experiment is carried out in Tando Muhammad Khan in an area of 40 acres where
both mechanical and manual plantation is carried out. Drone DJI is used for monitoring
and capturing images from fields of rice. A predefined flight plan was developed using a
mission planner Map Pilot for DJI software. The UAV flew autonomously over the rice field
at 35 m and captured images, and monitored fields to identify the land condition and health.
The experimental findings and the outcomes of the proposed technologies are explained in
this section. The plant count of mechanical and manual plantation is presented below in
region 1. Figure 11 shows the identification of gaps in the mechanical plantation of region
1. The gaps shown in Figure 10 show that there is no plantation of rice in the gap area.
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Figure 11. Identification of gaps in the mechanical plantation at scale 1:30 in region 1.

Figure 12 shows the selected areas labeled as 1, 2, and 3 for counting plants. These are
the areas where monitoring of rice fields is carried out, and it is considered region 2. The
mechanical plantation is carried out in region 2, and the rice seedling is well organized in
this region which helps to identify the gap more accurately.
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Figure 12. Areas of interest are labeled as (1, 2, and 3) in region 2.

Figure 13 shows the sowing pattern of plants in areas (1, 2, and 3) of region 2. These
plants are mechanically grown, and a dotted pattern shows the growing areas, and empty
spaces indicate the problematic area. The images in Figure 11 show the point demarcation
of red color dots on the field, which shows the fertile and barren region of land.
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Figures 14–16 show the identification of gaps in the plantation of areas (1, 2, and 3). At
this stage, the pattern of plantation can be identified by estimating crop yields by counting
them and also indicating the problematic areas where plants are not growing. Figure 12
shows that the plantation is uniform in area 1 of region 2.
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The mediocre gapping in the plantation in area 2 is visible in Figure 15. The gaps are
identified precisely, and counts are verified according to the per acre land grown density.

Finally, Figure 16 shows the extreme gapping at area 3 of region 2, which is the most
problematic region where many gaps can be visualized easily. This highlights the infertility
of the land, which is needed to be treated before farming in the next session, which can
save assets and time.

5. Results and Discussion

The rice crop originates in tropical lowlands and needs an extended heat season.
Moreover, it is grown up where the night-time temperatures keep on the top of sixty degrees
for a minimum of 3 months of the year. Furthermore, it is grown in water. Therefore, there
is always water on land where the rice is growing. Consequently, to avoid reflection, early
photography before the sun and after 1:30 pm is carried out for the data collection. If
the data are required to collect at any time, the reflector camera (FLIR Vue Pro, Arduino
Camera OV7670, 5MP Raspberry pi camera module, etc.) is placed with the drone camera,
which avoids the reflections in the image. A drone camera is used for collecting images of
rice fields which is processed for learning and labeling rice crops, and then ArcGIS is used
for counting them

The maximum yield per acre rice field is from 80,000 to 150,000 plants. The amount
of rice calculated is shown in Tables 4 and 5, which is below the per-acre yield because
the soil is loam. This research is to identify soil health by crop counting. The Arc GIS is
used to estimate the crop yield, which leads to identifying soil health. The model is 0.99%
accurate and capable of distinguishing crops from other objects, as it is also verified by an
agronomist. The total plant counts of mechanical and manual plantation are presented
in Table 5.

Table 5. Plant counting mechanically and manually.

Parameter Value

Total Area 5 acres
Total Count 120,292 * plants

Mechanical Count 39,367 * plants
Manual Count 80,926 * plants

Total per Acre Count 27,488 plants
Mechanical per Acre Count 29,823 plants

Manual per Acre count 26,466 plants
Total Covered Area 4.38 acres

Mechanical Plantation 1.32 acres
Manual Plantation 3.06 acres

* Represents the approximation in Table 5.

To obtain maximum paddy yield, from 80,000 to 150,000 plants are recommended per
acre. This can be accomplished by preserving a plant-to-plant and row-to-row separation
of 22.5 cm or 9 inches. However, in farmer’s fields plant populace of 60,000–65,000 has been
detected [39]. Table 6 (plant counting mechanically) presents the total and per-acre count.

Table 6. Plant counting mechanically.

Parameter Value

Total area 35 acres
Total count 2,325,254 * plants

Per acre count 66,435 plants
* Represents the approximation in Table 6.
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The aim of this research is to provide a sustainable and easy method of identification
of crop yield and soil health in terms of productive or barren lands. The use of aerial
vehicles provided ease in monitoring and capturing the data for the identification of soil
health and crop yield by counting them and estimating the results by mapping according
to acres. Table 7 provides a detailed comparative analysis of results obtained utilizing the
existing techniques.

Table 7. Comparative analysis.

Reference Technique Efficiency

[34] L-system modelling 95.00%
[35] Yolo v4 98.84%
[36] CNN 97.00%
[37] Deep learning network 96.10%
[38] U2 net- deep learning network 93.00%

Proposed Work ArcGIS, Deep Learning 99.00%

In [35], with the growing availability of RGB data with extremely high spatial res-
olution, this study demonstrated the efficiency of a deep convolutional neural network
technique for producing rice density prescription maps using UAV-based imagery. For
counting and geolocation, their solution in [36] performs noticeably better than competing
object detection techniques. The outcome showed in [37] how well the algorithm detected
green mangoes and offered a methodological guide for an instantaneous calculation of the
number of green mango fruits in plantations. The modeling of complete crop plots is one
possible area of significance [34]. The results of this study [38] show that the method of
UVA RGB pictures and the U2-Net model may offer a very accurate and robust extraction
result for olive tree tops and is useful in the dynamic monitoring and management of
orchard trees. Techniques. Table 8 provides the outcome of the proposed technique.

Table 8. Proposed work outcome.

Technique Study Area Land Area Experimental
Count Expected Count Reason

UAV, Agisoft Metashape
Professional software, ArcGIS,

and Deep Learning
Rice 40 Acres 2,445,546

3,200,000
to

60,000,000

Soil is loam
and baren

The technique used in this article is a combination of UAV, AgiSoft Metashape Profes-
sional, and ArcGIS with deep learning. The UAV is used to gather imagery data, which
are then processed to extract features on AgiSoft Metashape Professional software. Sub-
sequently, ArcGIS is capable of counting the rice crop based on deep learning. Table 8
shows that the proposed technique is implemented on rice crops over an area of 40 acres
where both plantations (manually and mechanically) exist. The total experimental count is
2,445,546, which is below the expected outcome of 3,200,000–6,000,000 because the land
is loam or baren. The result is further verified by agronomists who declared that the
soil is infertile.

This outcome helps the farmer to treat the affected area of land, which in turn saves
assets. The assets include the sprays of medicines required to treat the land or water. These
sprays only apply to the area of land where the crop is not grown and minimum growing
areas. Therefore, the proposed system is cost-effective, saves assets, and reduces human
efforts. To summarize, the agricultural sector has a well-defined task for this new progress
in the computer vision sphere—crop counting for better yield prediction, segmentation of
problematic crop areas such as plants beaten down due to weather activity, flooded regions
of the fields, detection of plant diseases, etc. Solving described tasks allows farmers to
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better prepare for upcoming dangers to their yield, minimize their losses and maximize
harvest and profits.

6. Conclusions

In this research, the counting of rice crops using aerial imagery was performed to
increase the yield. Aerial images of the rice crop were captured in the area of 40 acres of
rice crop in Tando Adam, Sindh, Pakistan, using a UAV equipped with a GIS system. The
results show that the per acre count is less than the standard count of rice per acre in some
areas due to the soil, not loam which affects the seeds. The findings are that mechanical
plantation is an effective way of growing plants and increasing yield count. The results are
due to improper soil that affects the overall count of regions. The software identifies the
plant based on specified width and height, which is later checked via manual quality control.
In the quality control process, visual interpretation is conducted based on the pattern, the
cluster size, and the shadows that are present in between the plants. The proposed system
detects rice crops accurately, differentiates from other objects, and estimates the soil health
based on plant counting data, which are approved by the aggrotech. The capability of the
software is limited to a specified pattern; however, in the case of clusters, the count is semi-
automated. Several attention-grabbing directions might be explored by future analysis in
this domain. First, efforts could also be created to deploy our technique into an Associate in
Nursing embedded system on a UAV for online yield estimation and exactitude agriculture
applications. Second, the precise location of rice seedlings and, therefore, the practicability
of rising investigation performance from the angle of object detection needs exploring; as a
result, the precise location of crops may be a key step in exactitude agriculture. Third, since
coaching knowledge square measure invariably the key to smart performance, particularly
the range of such knowledge, it might be attention-grabbing to still enrich the RSC dataset
as a precursor to more modeling work. Finally, the matter of object investigation in large-
scale associations in nursing high-density environments continues to be an open issue, with
lots of scope for exploring the practicability of rising investigation performance during
this context.
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