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Abstract: The segmentation of pulmonary lobes is important in clinical assessment, lesion location,
and surgical planning. Automatic lobe segmentation is challenging, mainly due to the incomplete
fissures or the morphological variation resulting from lung disease. In this work, we propose a
learning-based approach that incorporates information from the local fissures, the whole lung, and
priori pulmonary anatomy knowledge to separate the lobes robustly and accurately. The prior
pulmonary atlas is registered to the test CT images with the aid of the detected fissures. The result
of the lobe segmentation is obtained by mapping the deformation function on the lobes-annotated
atlas. The proposed method is evaluated in a custom dataset with COPD. Twenty-four CT scans
randomly selected from the custom dataset were segmented manually and are available to the
public. The experiments showed that the average dice coefficients were 0.95, 0.90, 0.97, 0.97, and
0.97, respectively, for the right upper, right middle, right lower, left upper, and left lower lobes.
Moreover, the comparison of the performance with a former learning-based segmentation approach
suggests that the presented method could achieve comparable segmentation accuracy and behave
more robustly in cases with morphological specificity.

Keywords: medical imaging; image processing; segmentation

1. Introduction

Human lungs are generally divided into five lobes. The pulmonary fissure is an
important anatomic landmark of the lung. The right lung is separated into an upper lobe,
middle lobe, and lower lobe by the horizontal fissure and oblique fissure, respectively, while
the left lung is separated into an upper lobe and lower lobe by the oblique fissure. Each lobe
is supplied by its own bronchial tree, which is subdivided from the main bronchi. Vascular,
lymphatic vessels, and autonomic nerves in each lobe are also largely isolated. Additionally,
the influence of gravity leads to differences in ventilation and perfusion in these relatively
independent functional lobes. Therefore, there are several types of lung diseases that
affect the pulmonary lobes differently. Generally, pulmonary fibrosis and tuberculosis
predominantly involve the upper lobe [1]. Pulmonary edema and interstitial pneumonias
have a lower lobe predominance [2]. As for the right middle lobe, the syndrome occurs
frequently [3]. Hence, segmentation of the pulmonary lobes based on CT scans is important
in clinical practice. It contributes to physiological status assessment, lesion location, and
surgical planning. For example, pre-interventional lobe segmentation and quantitative
evaluation facilitate the treatment planning of lung volume reduction (LVR), which is an
invasive therapy for emphysema [4].

In today’s human living conditions, environmental pollution is getting worse and
worse. Diseases, such as those of the lung and respiratory tract, have become the main
factors leading to premature human deaths due to their high incidence rate and mortality.
Computed tomography (CT) is the standard modality to detect, diagnose, and prognosticate

Sensors 2022, 22, 8560. https://doi.org/10.3390/s22218560 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1739-9201
https://doi.org/10.3390/s22218560
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218560?type=check_update&version=1


Sensors 2022, 22, 8560 2 of 12

the lung diseases in clinical settings. CT images could provide high spatial resolution and
very detailed anatomical information. CT is currently the most sensitive imaging modality
for detecting the fine structure of the lungs, and it is also the preferred modality for detecting
pulmonary pathology. Moreover, the scan is rapid and noninvasive.

Although an experienced radiologist is able to segment the lung lobes by tracing the
pulmonary fissures from the CT scans, the task is rarely performed in clinical practice.
Manual segmentation is time-consuming and labor-intensive due to the large number of
images. Moreover, the result of segmentation is prone to subjective bias and variance. Thus,
there is a need for a robust automatic lobe segmentation scheme in clinical practice.

Over the past decades, many authors have proposed methods for pulmonary lobe
segmentation from CT scans [5–7]. Since the task of pulmonary lobe segmentation is not
difficult to achieve if the fissures can be accurately delineated, early methods show great
interest in fissure detection [8–11]. Most of these methods are based on the anatomical
characteristics of the pulmonary fissure, which is represented as a curved line in a 2D image
space and a thin planar structure in a 3D image space.

However, studies have shown that the fissures are frequently incomplete, making
lobe segmentation a challenging task. Methods vary according to how the incomplete
problem is handled. As radiologists utilize information from the bronchi and vascular trees
when inferring the incomplete fissures, some methods propose to segment other auxiliary
structures as cues for the lobe border determination. Kuhnigk et al. [12] made use of the
absence of major vessels at the lobar boundaries. They calculated the Euclidean distance
from the nearest vessel for each voxel to quantify the absence. The resulting distance
map and original density map constructed a cost map, guiding the watershed algorithm
to separate the lobes. Lassen et al. [13] improved the fissure accuracy by extending the
work of Kuhnigk et al. [12]. The extended method took additional lobar fissures and
airway information into consideration when constructing the cost image and is shown
to outperform the method by Kuhnigk et al. Different from Lassen et al., who directly
included detected fissures in the watershed segmentation [13], Ukil and Reinhardt [14]
treated the resulting watershed basins as a region of interest, incorporating the fissures.
They also developed an incomplete fissure detection method, using a 3D graph search to
extrapolate the optimal fissure surface.

Other kinds of methods indirectly segment the lung lobe by registering the image to
be segmented with the atlas annotated with lung lobes. Zhang et al. [15] constructed a
pulmonary atlas and deformed it to match the target data for coarse initialization of the
fissure surfaces [16]. Then fissure surfaces were refined by a fuzzy reasoning system based
on the ridgeness map, the anatomic smoothness constraint, and the fissure initialization [17].
Van Rikxoort et al. [18] introduced a multi-atlas-based registration to overcome the de-
formation limitations due to the large anatomical variation in the shape of lobes among
different subjects. They emphasized the lobar borders and the fissures in the registration.
Information from the bronchial trees was only used where fissures were incomplete to
guide the registration.

Recently, deep learning methods have been rapidly applied in the field of medical
image processing and analysis [19]. U-Net [20], consisting of a contracting path and a
symmetric expanding path, outperformed many previous deep network approaches in 2D
medical image segmentation. Milletari et al. [21] extended the U-Net architecture to 3D
scenarios, called the V-Net. Ferreira et al. [22] added advanced regularization techniques to
the V-Net and used the resulting model, the FRV-Net, in lobe segmentation to overcome the
lack of annotated training data. Deep learning methods were also explored to address the
difficulties encountered in traditional lung lobe segmentation algorithms. Gerard et al. [23]
designed the FissureNet, a coarse-to-fine cascade of two SegNet [24] for thin structure
segmentation. It made good use of local structure and contextual information to accurately
segment the pulmonary fissures.

In this work, we propose an automatic lobe segmentation method that incorporates
knowledge from the local pulmonary boundaries, global context, and priori pulmonary
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anatomy to separate the lobes robustly and accurately. It applies a learning-based regis-
tration approach to fuse local fissure and lung context information. A comparison with
FRV-Net, a learning-based segmentation method, is created to evaluate the performance
of the proposed method. We also release our 24 CT scans and corresponding manual
annotations as a reference for further study.

2. Method

An automatic lobe segmentation method is developed employing the fissures, the
lungs, and the atlas-based guidance. Figure 1 presents an overview of our method. The
process starts by affinely aligning the test CT images to the atlas, so that the remaining
source resulting in misalignment is nonrigid. Then, the fissures are segmented from the
aligned CT images (Section 2.1). Directly registering the aligned CT images and the atlas can
only yield an acceptable match of the lung volume. A pulmonary fissure is helpful for the
localization of pulmonary lobes. The important role that the fissure plays in the description
of the lobe specificity cannot be ignored. Hence, in this work, the prior lobe knowledge
is introduced to infer the lobar border against the incomplete fissure by registering the
aligned CT images and the atlas together with their fissures.
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Figure 1. Overview of the fissure-aided lung registration method for lobe segmentation.

A learning-based registration method is used for the nonrigid transformation (see
Figure 2), which is accurate and operates faster. The lobe segmentation of the test CT
images is implemented by mapping the deformation field information generated from
the registration step to the lobe-annotated atlas. Additionally, the final result of the lobe
segmentation is obtained through a post-processing step to further classify the voxels with
unreasonable deformation after mapping.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 2. Illustration of the fissure-based registration method. 

2.1. Prerequisite Segmentations 
(1) Lung Segmentation 

Lung segmentation is a preprocessing step for subsequent lung fissure extraction. 
The lung is segmented with an automatic method based on previous work [25]. Briefly, 
the method includes three steps: airspace segmentation, bronchial separation, and lung 
closure. 

First, a 3D fixed-threshold region-growing algorithm is performed to segment the 
pulmonary airspace. The two seed points from the left and right lung are detected by 
scanning for the airspace points around the chosen fixed points in the affinely registered 
CT images. Second, the bronchial tree is separated by using an optimal threshold region 
that grows with seeds in the main stem bronchi and is automatically detected from top to 
bottom. Last, a morphological closing operation is applied in the remaining airspaces to 
close pulmonary vessels and pathological changes. 
(2) Fissure Segmentation 

The pulmonary fissure is segmented according to its bright, thin sheet-like feature in 
3D CT images [13,26]. Since the relationship among eigenvalues in the Hessian matrix 
discriminates the sheet, tube, and blob structures, the pulmonary fissure is first enhanced 
by calculating a sheet similarity derived from the Hessian matrix for each voxel to filter 
the candidate fissure voxels. As for a local sheet-like fissure, one eigenvalue is large 
( 𝜆 , ≫ 0) and the other two eigenvalues are small ( 𝜆 , , 𝜆 , 0). Lassen et al. [13] in-
troduced structure and sheet feature functions and took them into a fissure similarity 
model 𝑆 ,  defined as follows: 𝑆 , =  𝐹 , 𝐹 ,  (1)

𝐹 , = 𝛩 −𝜆 , 𝑒 ,  , 𝛩 −𝜆 , =  0, 𝜆 , 0 1,  𝜆 , 0  (2)

𝐹 , =  𝑒 , /  (3)

where 𝐹 ,  rates the gray scale in the ith voxel, 𝐹 ,  rates the sheet structure 
possibility for the ith voxel. This model defines high fissure probability for the bright sheet 
structure on a dark background. Empirically, 𝛼 is set to 50; 𝛽 is set to 35; 𝛾 is set to 25; 
and a voxel with 𝑆 , 0.1 is considered a potential fissure voxel. 

Then, a three-dimensionally connected component analysis based on the inner prod-
uct of the orientation eigenvectors from two neighboring voxels is applied to extract the 
continuous fissures from the potential fissure voxels. The largest eigenvalue of a sheet 

Figure 2. Illustration of the fissure-based registration method.



Sensors 2022, 22, 8560 4 of 12

2.1. Prerequisite Segmentations

(1) Lung Segmentation

Lung segmentation is a preprocessing step for subsequent lung fissure extraction. The
lung is segmented with an automatic method based on previous work [25]. Briefly, the
method includes three steps: airspace segmentation, bronchial separation, and lung closure.

First, a 3D fixed-threshold region-growing algorithm is performed to segment the
pulmonary airspace. The two seed points from the left and right lung are detected by
scanning for the airspace points around the chosen fixed points in the affinely registered
CT images. Second, the bronchial tree is separated by using an optimal threshold region
that grows with seeds in the main stem bronchi and is automatically detected from top to
bottom. Last, a morphological closing operation is applied in the remaining airspaces to
close pulmonary vessels and pathological changes.

(2) Fissure Segmentation

The pulmonary fissure is segmented according to its bright, thin sheet-like feature
in 3D CT images [13,26]. Since the relationship among eigenvalues in the Hessian matrix
discriminates the sheet, tube, and blob structures, the pulmonary fissure is first enhanced
by calculating a sheet similarity derived from the Hessian matrix for each voxel to filter the
candidate fissure voxels. As for a local sheet-like fissure, one eigenvalue is large (|λ3,i| � 0)
and the other two eigenvalues are small (|λ1,i|, |λ2,i| ≈ 0). Lassen et al. [13] introduced
structure and sheet feature functions and took them into a fissure similarity model S f issure,i
defined as follows:

S f issure,i = Fstructure,iFsheet,i (1)

Fstructure,i = Θ(−λ3,i)e
−

(λ3,i−α)6

β6 , Θ(−λ3,i) =

{
0, λ3,i ≥ 0
1, λ3,i < 0

(2)

Fsheet,i = e−λ2,i
6/γ6

(3)

where Fstructure,i rates the gray scale in the ith voxel, Fsheet,i rates the sheet structure pos-
sibility for the ith voxel. This model defines high fissure probability for the bright sheet
structure on a dark background. Empirically, α is set to 50; β is set to 35; γ is set to 25; and a
voxel with S f issure,i > 0.1 is considered a potential fissure voxel.

Then, a three-dimensionally connected component analysis based on the inner product
of the orientation eigenvectors from two neighboring voxels is applied to extract the
continuous fissures from the potential fissure voxels. The largest eigenvalue of a sheet
structure of the Hessian matrix corresponds to the eigenvectors directing the plane. As the
pulmonary fissures are smooth and flat, two adjacent potential fissure voxels are labeled
as the same connected component, if their directions are similar (inner product ≥ 0.95).
Finally, connected components with a number of counts greater than a fixed value are
filtered as the fissure segmentation result. In all our instances, we successfully identified
single connected components as fissures. An example of fissure segmentation is shown
in Figure 3.
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The first frame shows the original sagittal slice. In the second frame the corresponding
segmented lung is shown. The third frame shows the result of fissure enhancement
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by calculating the fissure similarity. The last frame shows the extracted fissure on the
original slice.

2.2. Learning-Based Registration

Compared with traditional nonlearning-based registration methods that optimize the
objective function for each image pair, learning-based approaches treat registration as a
mapping function from the fixed and moving images to the deformation field. Balakrishnan
et al. proposed VoxelMorph [27,28], an unsupervised learning-based registration method
that could rapidly predict a deformation field by evaluating the learned global function.

VoxelMorph has an encoder-decoder structure and skips the connections added be-
tween the down-sampling and up-sampling parts, which is similar to the classical U-
net [20,29] architecture. VoxelMorph uses spatial transformer networks (STN) [30] to
produce moved images (m ◦ φ), and the loss function is designed to maximize the similarity
between the fixed image ( f ) and the moved image. Furthermore, smoothness regularization
is introduced to penalize irregular local variations of the deformation field (φ), and λ is a
parameter that adjusts the strength of the penalty term.

Spatial transformer networks have three parts, which are respectively responsible for
parameter prediction, coordinate mapping, and pixel acquisition. The mapping relationship
is from the target image to the original image. Here, it refers to moving from the fixed
image ( f ) to the moving image (m). The function of coordinate mapping is actually to
sample the target image of the original image, collect pixels from different coordinates of
the original image to the target image every time, and paste the target image fully. The
coordinates of the target image must be traversed every time, and are fixed, while the
coordinates of the collected original image are not fixed.

Only the input volume and the generated registration field were used to evaluate the
unsupervised loss of the model. The unsupervised loss LVM consists of two components:
Lsimilarity that penalizes differences in appearance, and Lsmooth that penalizes local spatial
variations in ϕ:

LVM = Lsimilarity( f , m ◦ φ) + λLsmooth(φ) (4)

where λ is a regularization parameter.

2.3. Pulmonary Lobe Segmentation

In this experiment, we train VoxelMorph for atlas-based registration. Through our
preliminary experiments, we found that direct application of VoxelMorph to chest CT scans
to achieve lobe segmentation does not work well. Although the chest CT lung volume
could precisely match the atlas lung volume, which provides useful information about
morphological constraints for lobe segmentation, the fissures are not deformed to the
corresponding positions.

In this study, we propose a fissure-aided lung registration method to segment pul-
monary lobes. We combined the affine-aligned CT images and the extracted fissure images,
and the same method was also used in the atlas images and the atlas fissure. Then, these
two sets of images are used as the input of VoxelMorph, that is, one is the moving image
(m) and the other is the fixed image ( f ). To enhance the robustness of the fissure-aided
registration method, the similarity of fissures is given equal weight to that of the lungs. The
loss function is defined as follows:

LLS = Lsimilarity,CT( fCT , mCT ◦ φ) + Lsimilarity, f

(
f f , m f ◦ φ

)
+ λLsmooth(φ) (5)

where fCT indicates the chest CT images that have already been affinely aligned to the
atlas images and f f indicates the fissures extracted from fCT by the automatic fissure
segmentation method. mCT and m f represent the atlas images and the corresponding
fissure images, respectively. mCT ◦ φ, m f ◦ φ means the deformed CT images and fissure
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images. Lsimilarity is the similarity measure. Lsmooth(φ) is the regularization term of the
deformation field and λ is the weight value.

MSE
(

I, Î
)
=

1
N

N

∑
i=1

[
I(i)− Î(i)

]2 (6)

Reg(φ) =
1
3

(
1
N ∑N

i=1 G2
x[φ(i)] +

1
N ∑N

i=1 G2
y [φ(i)] +

1
N ∑N

i=1 G2
z [φ(i)]

)
(7)

where Gx expresses the image gradient along the x-axis as follows, and the expression can
be extended to Gy and Gz.

Gx[φ(i)] = φ
(
ix + 1, iy, iz

)
− φ

(
ix, iy, iz

)
(8)

To avoid insufficient deformation, the warp field is not strictly forced to be flat. The
abrupt changes in the deformation field lead to coarseness at the lobar border. A post-
processing step is necessary, which is designed to cope with the unreasonable segmentation.
The voxels near the lobar border are reassigned to the label of their closet voxel. Moreover,
the result of the former lung segmentation is used to refine the lung border.

3. Results
3.1. Experiment

We compare the performance of the proposed method with the FRV-Net method
published in [22]. The FRV-Net method separates the lobes by using a 3D fully con-
volutional neural network with regularization. The FRV-Net method was trained with
14 CT scans (consistent with the original method) randomly selected from our custom
data. The training data and test data were obtained by making manual adjustments after
automatic lobe segmentation using the Pulmonary Toolkit (available in a Github repos-
itory: https://github.com/tomdoel/pulmonarytoolkit, accessed on 1 September 2022).
The manual lobe segmentation results were visually checked and edited by a radiologist.
The CT scan data needs to be resized to 256 × 256 × 256 and then randomly sampled in
128 × 128 × 128 before input to the FRV-Net for training.

The proposed network and the FRV-Net method were implemented on an Ubuntu
server with a NVIDIA Tesla V100 GPU. Training and testing are performed in Python using
the Keras framework with a Tensorflow backend.

(1) Image data

The atlas with complete pulmonary lobe segmentation results was taken from the
Chinese multisubject statistical human model. The atlas image size is 358 × 358 × 325
and the pixel size is 1.0 × 1.0 × 1.0 mm3. To test the robustness of our method, data
from patients with different COPD status were used in this paper. Cases with COPD
may change the morphology of the lobar borders or result in some confusing fissure-like
structures. The data were scanned at the Department of Radiology, Binzhou Medical
University Hospital. The information about the enrolled CT scans is summarized in Table 1.
It covers different degrees of pathological data. At the same time, all the bits of data we got
were manually marked.

Table 1. Statistics of the enrolled CT scans.

Training Recon Matrix Slice Thickness Test

GE Optima CT660
GE LightSpeed VCT
GE Revolution CT
GE Optima CT670

512 × 512 0.625 mm Optima CT660
GE LightSpeed VCT

Philips Brilliance 64 768 × 768 0.7 mm

Ratio 90:42:18:11:10 8:2

https://github.com/tomdoel/pulmonarytoolkit
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In addition, there were 181 groups of precious data, including 171 groups for training
and 10 groups for testing, and all of them were manually segmented labels.

(2) Data preprocessing

The CT test images were first affinely aligned to the atlas using the Elastix Toolbox [31]
version 4.8 in Windows. In order to facilitate the registration of CT images with the atlas
after affine alignment, the images after affine alignment should also be resized to the
atlas image size. The detail settings could be specified in the parameter file. In the affine
registration, mutual information (MI) was used to measure the similarity, and the adaptive
stochastic gradient descent optimizer worked in each of the 250 iterations for a 4-level
multiresolution registration strategy. With the pre-alignment, data was relocated to the
atlas images’ origin and resampled to the same matrix and voxel size as the atlas images.

The values of the affinely aligned images were clamped to the range between −1000
and −200 Hounsfield units (HU) for better visualization of fissures. It allows the network
to learn the relationship between the whole lung and the local fissures. After clamping, the
images were linearly normalized to [0, 1].

The detected fissures are filtered by a Gaussian function. A clear, enhanced image of
the pulmonary fissure was obtained by filtering. Since the registration is an optimization
problem to minimize the cost function, a new image with fissures added could guide the
search in the right direction.

(3) Experiments

The prediction of our proposed method was evaluated by the dice coefficient, defined
in Equation (9). X and GT are the result of the lobe segmentation and the ground truth,
respectively. ∩ represents the intersection of two sets. | | means the number of elements
in the given set.

Dice(X, GT) =
2× |X∩GT|
|X|+ |GT| (9)

In the next section, the proposed method’s performance is verified from two aspects,
including visual and quantitative evaluation.

3.2. Results

The performance comparison of the lobe segmentation methods is provided in the
form of qualitative visualization and quantitative assessment.

We chose the direct application of Voxelmorph as the baseline, and the experimental
results are shown in Table 2.

Table 2. Quantitative summary of the direct application of Voxelmorph and the proposed method.

Method

Voxelmorph Proposed Method

Mean ± SD

RU 0.652 ± 0.042 0.956 ± 0.023
RM 0.404 ± 0.042 0.904 ± 0.044
RL 0.592 ± 0.067 0.968 ± 0.011
LU 0.667 ± 0.035 0.971 ± 0.011
LL 0.640 ± 0.075 0.967 ± 0.015

Overall 0.582 ± 0.113 0.953 ± 0.035

Examples of pulmonary lobe segmentation are shown in Figures 4 and 5 for qualitative
visualization. In Figure 4, a case with a general morphology of the lung is presented. In
Figure 5, a case with morphological specificity is selected.
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From Figures 4 and 5, it is easy to observe that the results of the FRV-Net are interfered
with by the false identification in the background. Additionally, there are irrational holes
in the segmented lobe of the FRV-Net. Figure 4 shows that the proposed method could
obtain a comparable segmentation result with the FRV-Net method. While in cases with
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large anatomical differences in the training dataset, the proposed method could avoid a
wide range of misclassifications, owning to the aid of the fissures (see Figure 5).

The quantitative evaluation is expressed in Table 3. The results of the FRV-Net are
further processed by masking the background voxels for a fair comparison, which is
recorded as the revised FRV-Net method.

Table 3. Quantitative summary of the dice coefficient for the lobe segmentation methods. RU: right
upper lobe, RM: right middle lobe, RL: right lower lobe, LU: left upper lobe, LL: left lower lobe, SD:
standard deviation.

Method

FRV-Net FRV-Net-Revised Proposed Method

Mean ± SD

RU 0.973 ± 0.008 0.975 ± 0.005 0.956 ± 0.023
RM 0.947 ± 0.021 0.948 ± 0.021 0.904 ± 0.044
RL 0.975 ± 0.008 0.975 ± 0.008 0.968 ± 0.011
LU 0.597 ± 0.095 0.968 ± 0.024 0.971 ± 0.011
LL 0.962 ± 0.024 0.962 ± 0.024 0.967 ± 0.015

Overall 0.891 ± 0.154 0.966 ± 0.021 0.953 ± 0.035

The dice coefficient of the revised FRV-Net method is significantly improved for the left
upper lobe. Even compared with the revised FRV-Net method, the result of the proposed
method is competitive. Furthermore, the proposed method could prevent interference from
the pathological changes in morphology and avoid unreasonable holes in the segmented
lobes. Generally, the proposed method could segment the pulmonary lobes accurately
and robustly.

4. Discussion

In view of the low accuracy and instability of lung lobe segmentation in CT data
with uneven image quality, this work presented an automatic lobe segmentation method
that integrated the information from the fissures, the entire lung, and the prior atlas. The
results show that the proposed method is valid for the segmentation of the pulmonary
lobes, with an overall dice coefficient of 0.953. Compared with the FRV-Net, the proposed
method outperforms it in robustness (refer to Figure 5). A shortcoming of the comparison
is that test cases are limited due to the lack of manually lobe-labeled data. In further
research, the effectiveness of the proposed method is expected to be verified by another
annotated dataset.

The lobe segmentation approach proposed in this work has the aid of the fissure,
a physical border. The success of the detection of the fissures affects the performance
of the proposed segmentation method. It requires the test CT images to have a certain
resolution, which allows the visualization of the fissures in computer vision. However,
there will be cases in which the lung fissure cannot be detected or the detected lung fissure is
incomplete. We also need to think of measures to deal with such problems. Simultaneously,
the extent of the lesion-induced changes in the lung parenchyma is limited to guarantee
the region-growing-based lung segmentation. Inspired by the fact that radiologists infer
the incomplete fissures utilizing composite information from the surrounding structures,
the airways and vascular trees will have to be taken into consideration in future studies. It
would help to segment the pulmonary lobes robustly when the fissures failed to be detected.

The registration-based segmentation method could make use of the prior knowledge
of the atlas. However, restricted by the unitary information of the applied atlas, the accuracy
of the registration between the various lobes and the atlas lobes varied in different subjects.
In further research, it is necessary to take advantage of the Chinese multisubject statistical
human model. The statistical model is desired to be registered to the test CT images and
deformed by adjusting the parameters of the morphology to generate a customized atlas.
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A congruent atlas contributes to enhancing the accuracy of lobe registration and alleviating
the coarseness at the lobe border.

The input of the learning-based registration used in this work needs to be affinely
aligned via the Elastix Toolbox, which makes the processing of the data complex. An
end-to-end registration network, including rigid and nonrigid alignment, would attract
much interest in the future. Furthermore, an automatic segmentation of the fissures using a
deep learning approach also contributes to the simplification of data processing.

The atlas fissure was combined with an atlas image, and the sample fissure was
combined with the affinely aligned CT image. These two sets of data are used as the
input to VoxelMorph to obtain the deformation field information. Finally, the lung lobe
annotation atlas is mapped to the deformation field from the registration to obtain the
results of lung lobe segmentation.

5. Conclusions

In this paper, a learning-based registration method is presented for automatic lobe
segmentation. A fissure-aided registration network is designed to strengthen the role of
fissures in registering the test CT images to the prior atlas. The result of lobe segmentation is
obtained by mapping the deformation field from the registration on the lobe-annotated atlas.
When we add registration after fissure extraction, we can fuse the fissure and registration
information, and improve the accuracy of lung lobe segmentation, so that our method has
the advantages of both registration and fissure extraction. The evaluation suggests that
the proposed method could perform comparably with other learning-based segmentation
methods in accuracy, while outperforming them in robustness, especially in new cases that
differ significantly from the training data.
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