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Abstract: Wireless sensor networks (WSNs) have been developed recently to support several appli-
cations, including environmental monitoring, traffic control, smart battlefield, home automation,
etc. WSNs include numerous sensors that can be dispersed around a specific node to achieve the
computing process. In WSNs, routing becomes a very significant task that should be managed
prudently. The main purpose of a routing algorithm is to send data between sensor nodes (SNs) and
base stations (BS) to accomplish communication. A good routing protocol should be adaptive and
scalable to the variations in network topologies. Therefore, a scalable protocol has to execute well
when the workload increases or the network grows larger. Many complexities in routing involve
security, energy consumption, scalability, connectivity, node deployment, and coverage. This article
introduces a wavelet mutation with Aquila optimization-based routing (WMAO-EAR) protocol for
wireless communication. The presented WMAO-EAR technique aims to accomplish an energy-aware
routing process in WSNs. To do this, the WMAO-EAR technique initially derives the WMAO al-
gorithm for the integration of wavelet mutation with the Aquila optimization (AO) algorithm. A
fitness function is derived using distinct constraints, such as delay, energy, distance, and security.
By setting a mutation probability P, every individual next to the exploitation and exploration phase
process has the probability of mutation using the wavelet mutation process. For demonstrating
the enhanced performance of the WMAO-EAR technique, a comprehensive simulation analysis is
made. The experimental outcomes establish the betterment of the WMAO-EAR method over other
recent approaches.

Keywords: wireless communication; routing protocol; wavelet mutation; Aquila optimizer; wireless
sensor networks

1. Introduction

With the rapid advancement in Future Internet technologies, the mobile Internet, the
Internet of Things (IoT), the physical world, and the sensor cloud are regularly getting more
connected and moving faster toward the always-connected model [1]. In this model, easily
configurable, wirelessly connected, and cheap sensors can sense and gather environmental
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information anywhere and anytime [2]. Unfortunately, the cheapness and higher avail-
ability of sensing techniques could only soften the barrier to truly supporting the level of
resilience, scalability, and reliability needed for these models to be global. Efficient software
methods and a dearth of accurate simulation models specifically intended for wireless
sensor networks (WSNs) result in a lack of reliable algorithms, whose accessibility is crucial
for setting up future deployment in better conditions [3]. For instance, systematic consider-
ation of the impacts of network dynamicity, channel interference, and node mobility are
key points not sufficiently taken into account yet, preventing or weakening the appropriate
operation of the resultant network [4]. Therefore, to smash those barriers, we need fast,
accurate, and efficient techniques, particularly to handle communication and judiciously
manage the tiny computation, memory, and battery resources of the sensor nodes (SNs) in
the network [5]. Figure 1 depicts the overview of a routing protocol for WSNs.
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Figure 1. Routing protocol for WSNs.

In WSNs, numerous types of research have involved routing strategy, corporeal
design, procedure for sensing capability, power management, and security issues of SNs.
The lifetime of SNs is the major problem for WSNs, since SNs have constrained energy
resources. The routing algorithm has played a crucial role in the SN’s lifetime [6]. Routing
in WSNs is different from other wireless networks due to unique properties of SNs, such as
processing accomplishment, energy constraints, communication of gathered data from more
than one node to a single base station, random deployment of SNs, the improbability of
global addresses, and so on [7]. To accommodate this, distinct kinds of routing approaches
have been designed. The final objective is to maximize the overall network lifetime and
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accomplish energy efficiency. The lifetime of SNs is based on the battery life that gives
power to SNs, where the lifespan of the entire network is dependent. A power resource
supplies energy to the transceiver, memory unit, and sensing unit [8]. The memory unit is
applied for the storage of application-related data and information on device identification,
the sensing unit has a sensor for capturing information from the environment, and the
transceiver takes the responsibility for the reception and transmission of information. Fast
energy dissipation in SNs making them lifeless is a crucial issue in the arena of WSNs [9].
It is noted that ineffective routing protocol causes fast dissipation of batteries. Therefore,
it is a fundamental prerequisite to use and design energy-effective routing algorithms in
WSNs that would rise their [10].

This article introduces a wavelet mutation with Aquila optimization-based routing
(WMAO-EAR) protocol for wireless communication. The presented technique aims to
accomplish energy-aware routing in WSNs. To do this, it initially derives the WMAO
algorithm for the integration of wavelet mutation with the Aquila optimization (AO)
algorithm. A fitness function (FF) is derived using distinct constraints, such as delay, energy,
distance, and security. Once the mutation probability P has been set, every individual
next to the exploitation and exploration process has the probability of mutation using the
wavelet mutation process. For establishing the enhanced performance of the WMAO-EAR
technique, a comprehensive simulation analysis is made.

2. Literature Review

Jagadeesh and Muthulakshmi [11] examined a hybrid metaheuristic (MH) algorithm-
based clustering with multihop routing (MHR) (HMA-CMHR) protocol for WSNs. The
projected method integrated data transmission, node initialization, clustering, and rout-
ing. Initially, the HMA-CMHR algorithm utilized a quantum harmony search algorithm
(QHSA)-based clustering procedure for choosing a better subset of CHs. Secondarily, the
improved cuckoo search (ICS) technique-based route approach was utilized for a better
optimum selection of routes. Gupta and Saha [12] presented a hybrid MH approach where
optimum features of ABC and differential evolution (DE) are integrated to measure an
optimum group of load-balancing (LB) CHs. Regarding energy efficiency and LB clustering,
a new objective function has been developed based on average energy, intracluster dis-
tance, and delay parameter. An ABC-based MH technique was presented to the dynamic
relocalized mobile sink in a cluster-based network structure.

Al-Otaibi et al. [13] developed a hybridization of the MH cluster-based routing (HM-
BCR) approach for WSNs. The HMBCR approach primarily contained a brainstorm opti-
mization with levy distribution (BSO-LD)-based clustering employing an FF integrating
four parameters: network load, distance to neighbors, energy, and distance to BS. The
WWO-HC-based routing method was implemented for optimum route selection. Subra-
mani et al. [14] concentrated on MH-based clustering with routing protocol for UWSNs—
MCR-UWSNs. The purpose of the aforementioned system is to choose an effectual group
of CHs and route to target. Lakshmanna et al. [15] presented an improved MH-driven
energy-aware cluster-based routing (IMD-EACBR) technique for IoT-supported WSNs.
The presented IMD-EACBR approach aimed to achieve maximal energy consumption and
network lifespan. To attain this, the IMD-EACBR technique used an improved Archimedes
optimized algorithm-based clustering (IAOAC) system for CH selective and cluster or-
ganization. The TLBO-based MHR (TLBO-MHR) approach has been applied to optimal
selective routes to targets.

Srikanth et al. [16] established an MH optimized enabled unequal clustering with
MHR protocol (MOUC-MRP) for WSNs. The MOUC-MRP system’s purpose is for selecting
CHs and optimum routes to target from WSNs. The harmony search (HS) route-selective
manner was developed to an optimum route solution. Mann and Singh [17] examined
an improved ABC (iABC) MH with an enhanced searching formula to improve their
exploitation abilities and increase the global convergence of the presented MH. An en-
hanced population-sampling approach was established with Student’s-t distribution that
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needs only one control parameter for computing and storing, then enhances the efficacy of
presented MH.

3. The Proposed Model

In this study, a new WMAO-EAR algorithm is proposed for effectual and energy-
aware wireless communication. The presented WMAO-EAR technique aims to accomplish
energy-aware routing in WSNs.

3.1. System Model

Approaches utilized to carry out the presented routing protocol were the network
model, energy model, and energy-dissipation model [18]. In the following section, a
detailed description of all the models is given.

3.1.1. Energy Model

WSNs involve link heterogeneity, energy heterogeneity, and computational hetero-
geneity. Energy heterogeneity is regarded as the most important to ensure optimal network
performance. In the study, we discussed three levels of energy heterogeneity: advanced,
normal, and intermediate nodes. Intermediate node initial energy is between advanced
and normal node initial energy, given that m and b represent the percentage of advanced
nodes and intermediate nodes correspondingly. Advanced node energy is α times more
than that of the intermediate and normal node energy is β times more than normal node
energy. Now, the β is connected with α via β = α/2. With EN , EI , and EA signifying the
initial energy of normal, intermediate, and advanced nodes, then energy relationships are
formulated, using:

EN = E0 (1)

EI = E0(1 + β) (2)

EA = E0(1 + α) (3)

3.1.2. Energy-Dissipation Model

Reception and data transmission are two fundamental functions in WSNs. Usually,
the data-communication method expends lots of energy when compared to data reception.
Now, energy cost during k-bit data transmission over distance d is formulated as follows.

ETx(k, d) ,

{
k
(

Eelec + ε f sd2
)

, i f d ≤ d0

k
(
Eelec + εmpd4), i f d > d0

(4)

In Equation (4), d0 indicates the reference distance and d0 ,
√

ε f s/εmp. Elec shows
the per bit energy cost for running the receiver or transmitter circuits, and ε f s and εmp
indicate amplification parameters of the transmitter for free space and multipath fading,
correspondingly.

Furthermore, energy costs during k-bit data reception are formulated as follows:

ERx(k) , kEelec (5)

3.1.3. Network Model

Consider that the n sensor is positioned in the region of M size and the sensor is static.
Every sensor is regarded as being aware of the identification and location of other SNs.
Also, consider that the advanced node’s location is predetermined, while the normal and
intermediate nodes are placed randomly. All the nodes transmit information to neighboring
CH for data aggregation. The distance between the BS and nodes is ds ≥ dr

s, where d
indicates a predetermined range (dr

s = 10 m).
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3.2. Design of WMAO Algorithm

Abualigah et al. [19] introduced the fundamental formula of the Aquila optimizer
(AO). Usually, the AO algorithm mimics the natural behavior of Aquila for catching the
prey. Like other metaheuristic (MH) models, AO was a population-based optimization
algorithm that takes place by creating an early population X that has N agents. In Equation
(6), the mathematical modeling of the algorithm is given.

Xij = r1 ×
(
UBj − LBj

)
+ LBj, i = 1, 2, . . . Nj = 1, 2, . . . , Dim (6)

UBj and LBj indicate parameters of the searching space, r1 ∈ [0, 1] denotes a random
number, and Dim shows the dimension of the agent. Next, exploration and exploitation
are performed until the optimal solution is found. To perform exploration and exploitation,
two strategies are employed. The initial strategy performs the exploration based on the
average of agents (XM) and the finest agent Xb, as follows:

Xi(t + 1) = Xb(t)×
(

1− t
T

)
+ (XM(t)− Xb(t)× rand), (7)

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, . . . , Dim (8)

where
(
1− t

T
)

controls the search in the exploration stage, T indicates the maximal amount
of iterations, and rand shows a random number within [0, 1]. Figure 2 showcases the
flowchart of the AO method.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17 
 

 

neighboring CH for data aggregation. The distance between the BS and nodes is �� ≥

��
�, where d indicates a predetermined range (��

�  =  10 �). 

3.2. Design of WMAO Algorithm 

Abualigah et al. [19] introduced the fundamental formula of the Aquila optimizer 

(AO). Usually, the AO algorithm mimics the natural behavior of Aquila for catching the 

prey. Like other metaheuristic (MH) models, AO was a population-based optimization 

algorithm that takes place by creating an early population � that has � agents. In Equa-

tion (6), the mathematical modeling of the algorithm is given. 

��� = �� × (��� − ���) + ���, � = 1,2, … �� = 1,2, … , ��� (6)

��� and ��� indicate parameters of the searching space, �� ∈ [0, 1] denotes a ran-

dom number, and ��� shows the dimension of the agent. Next, exploration and exploi-

tation are performed until the optimal solution is found. To perform exploration and ex-

ploitation, two strategies are employed. The initial strategy performs the exploration 

based on the average of agents (��) and the finest agent ��, as follows: 

��(� + 1) = ��(�) × �1 −
�

�
� + (��(�) − ��(�) × ����),  (7)

��(�) =
1

�
� �

�

���

(�), ∀� = 1,2, … , ��� (8)

where (1 −
�

�
) controls the search in the exploration stage, � indicates the maximal 

amount of iterations, and ���� shows a random number within [0, 1]. Figure 2 showcases 

the flowchart of the AO method. 

 

Figure 2. Flowchart of AO. 

The next strategy used to perform the Levy flight (����(�)) distribution and �� for 

updating the exploration capability of the solution is: 

��(� + 1) = ��(�) × ����(�) + ��(�) + (� − �) × ���� (9)

Figure 2. Flowchart of AO.

The next strategy used to perform the Levy flight (Leνy(D)) distribution and Xb for
updating the exploration capability of the solution is:

Xi(t + 1) = Xb(t)× Levy(D) + XR(t) + (y− x)× rand (9)
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Levy (D) = s× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sine
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2

(
β−1

2

)
 (10)

where s = 0.01 and β = 1.5, u and v denote random numbers, and Γ indicates a constant
number. In Equation (9), XR indicates an arbitrarily selected agent. Furthermore, y and x
imitate the spiral shape, as given below:

y = r× cos θ, x = r× sin θ (11)

r = r2 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
(12)

where ω = 0.005, U = 0.00565, r2 ∈ [0, 20] represents a random number, and Dl indicates
integer numbers from 1 to the length of the search domain.

An initial strategy is used to upgrade agents inside the exploitation stage based on Xb
and XM, like exploration as follows:

Xi(t + 1) = (Xb(t)− XM(t))× α− rand + ((UB− LB)× rand + LB)× δ (13)

where α and δ signify the exploitation adjustment parameter and rand ∈ [0, 1] denotes a
random number. In the next strategy of exploitation, the agent gets upgraded based on Xb,
Levy, and the quality function QF:

Xi(t + 1) = QF× Xb(t)− (G1 × X(t)× rand)− G2 × Levy(D) + rand× G1 (14)

QF(t) = t
2× rand()− 1

(1− T)2 (15)

where rand () denotes a function that produces a random number and G1 specifies distinct
motions that are used to track the best individual solution, as follows:

G1 = 2× rand()− 1, (16)

where rand shows a random number. Given that, G2 specifies reducing value from 2 to 0,
and it is evaluated by Equation (17):

G2 = 2×
(

1− t
T

)
(17)

Algorithm 1 illustrates the fundamental steps of the AO.

Algorithm 1: Aquila optimizer (AO)

Input :
Describe the number of solutions N, the overall number of iterations T, and the dimension of
every solution Dim.
Set the initial value for the parameter of AO.
Produce early population X.
while (The ending criteria are not satisfied) do

Calculate the fitness value for every Xi.
Find the optimal individual Xb(t)
for (i = 1, 2 . . . , N) do

If t ≤
(

2
3

)
∗ T

Upgrade the Xi based on Equation (7).
If the FF (Fit)(X1(t + 1)) < Fit(X(t)) then

Xb(t) = (X1(t + 1))
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If Fit (X1(t + 1)) < Fit(Xb(t)) then
Xb(t) = X1(t + 1)

End if
End if
Upgrade the Xi based on Equation (9)
If Fit (X2(t + 1)) < Fit(X(t)) then

X(t) = (X2(t + 1))
If Fit (X2(t + 1)) < Fit(Xb(t)) then

Xb(t) = X2(t + 1)
End if

End if
Else

Upgrade the Xj based on Equation (13).
If Fit (X3(t + 1)) < Fit(X(t)) then

X(t) = (X3(t + 1))
if Fit (X3(t + 1)) < Fit(Xb(t)) then

Xb(t) = X3(t + 1)
end if

end if
Upgrade Xi based on Equation (14).
if Fit (X4(t + 1)) < Fit(X(t)) then

X(t) = (X4(t + 1))
if Fit (X4(t + 1)) < Fit(Xb(t)) then

Xb(t) = X4(t + 1)
end if

end if
End if

end for
End while
Output return (Xb).

In the WMAO algorithm, the mutation was considered a significant technique to
support the technique’s jump from local optimum [20]. In this phase, the wavelet mutating
approach for enhancing the execution of the AO method is presented. Once the mutation
probability P is set, every individual after the exploitation and exploration phase of the
method will be getting a mutation chance via wavelet mutation strategy. Where rand < P,
an individual executes Morlet wavelet mutation. The formula of mutation is:

Xnew
i (t) =

{
Xi(t) + σ(UB− Xi(t)), rand < 0.5
Xi(t) + σ(Xi(t)− LB), rand ≥ 0.5

(18)

where Xi(t)(i = 1, 2, · · · , N) denotes the i-th individual location in t-th generation, and
LB and UB are the lower and upper bounds of the present search space. Correspondingly,
σ represents the wavelet mutating coefficient. Its formula is [21]:

σ =
1√
α

ψ
( ϕ

α

)
(19)

where ψ(ϕ/α) = e−(ϕ/α)2/2· cos (5ϕ/α) is the Morlet wavelet function, and 99% of its
energy can be concentrated within −2.5 and 2.5, so ϕ signifies an arbitrary number within
−2.5α and 2.5α. The a is the scaling parameter and its expression is [22]:

α = s · (1
s
)
(1− t

t max )

(20)
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where s indicates a given constant. The mutant individual Xnew
i is gained after the wavelet

mutation function is completed, and greedy choice can be made among the original indi-
vidual Xi and mutant individual Xnew

i , i.e.,

Xi(t + 1) =

{
Xnew

i (t), f
(
Xnew

i (t)
)
≤ f (Xi(t))

Xi(t), f
(
Xnew

i (t)
)
> f (Xi(t))

(21)

This procedure assures that an individual with superior fitness will be entering the
next iteration, thereby enhancing the convergence speed and optimization capability of
the algorithm.

3.3. Process Involved in the WMAO-EAR Technique

In the presented WMAO-EAR technique, an FF is derived using distinct constraints,
such as delay, energy, distance, and security. The main concept of the proposed algorithm
is to decrease the communication distance between the selected nodes and CH [23]. It
also focuses on decreasing the delay to transmit the information from one node to another.
In contrast, network energy has to be higher, i.e., during data transmission, it needs to
employ a small amount of energy. Finally, the node must tolerate the risk attained in the
network. The objective function of the adapted CH demonstrated in Equation (22), while
the value of η needs to depend on 0 < η < 1. Now, vm and vn indicate the operation, as
demonstrated in Equations (23) and (24). The constraints on delay, energy, distance, and
security are indicated as σ1, σ2, σ3, and σ4. The condition of this constraint is indicated as
σ1 + σ2 + σ3 + σ4 = 1. In Equation (24), YZ − Ss denotes the distance between the normal
and sink nodes.

Nn = ηvn + (1− η)vm (22)

vm = σ1 ∗ vdis
i + σ2 ∗ vime + σ3 ∗ vide/ + σ4 ∗ visec (23)

vn =
1
b

b

∑
z=1
‖YK − SJ‖ (24)

Equation (25) illustrates the FF for distance, where diJ(m) is related to packet trans-
mission from the normal nodes to CH and CH to BS. Generally, vidis lies amongst [0, 1]
and the value goes high when the distance between the normal node and CH is higher.
Equations (26) and (27) demonstrate vdis

(m)
and vdis(n), where Yz indicates the normal node

in zth cluster, Gz represents the CH of Zth cluster, the distance between the BS and CH
is stated as GZ − Ss, GZ −Yy symbolizes the distance between the normal node and CH,
Yz −Yy indicates the distance between two normal nodes, and Mz and My∨ represent the
node amount that eliminates the Zth and yth clusters.

vdis
i =

vdis
(m)

vdis
(n)

(25)

vdis
(m) =

Mz

∑
z=1

[
‖Gx − Ss‖+

My

∑
y=1
‖GZ −Yy‖

]
(26)

vdis
(n) =

Mz

∑
z=1

My

∑
y=1
‖Yz −Yy‖ (27)

Equation (28) illustrates the FF of energy. The value viene is greater than 1 and the
whole CH cumulative vene

(m)
and vene

(n) concern the maximum energy value and the greater
amount of CH.

vene
i =

vene
(m)

vene
(n)

(28)
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Equation (29) shows the FF of delay vdel
i that ranges within [0, 1]. vdel

i is directly
proportional to each node inherent in the cluster. Consequently, the delay gets minimalized
when the CH has a decreased number of nodes. The numerator indicates the high amount
of CH and the denominator MM indicates the total amount of nodes in the WSN.

vdel
i =

max (‖Gz −Yz‖)Mc
z=1

MM
(29)

4. Results and Discussion

This section inspects the routing performance of the WMAO-EAR method on WSNs.
The presented WMAO-EAR model is tested under two node counts (NC) of 100 and 300.
Table 1 provides a lifetime inspection of the WMAO-EAR model with existing methods
in terms of FND, HND, and LND [24]. Figure 3 exhibits a brief lifetime assessment of the
WMAO-EAR method under NC of 100. The results implied that the WMAO-EAR model
attained an extended lifetime. For example, concerning FND, the WMAO-EAR model
offered an increased FND of 1500 rounds, whereas the LEACH, CE-EC, SEED, NEH-CP,
and HCEHUC models reached reduced FND of 466, 1000, 990, 780, and 2563 rounds,
respectively. In terms of HND, the WMAO-EAR technique presented an increased HND
of 4750 rounds, whereas the LEACH, CE-EC, SEED, NEH-CP, and HCEHUC techniques
reached a reduced HND of 531, 4328, 3269, 2251, and 4525 rounds, respectively. Finally,
in terms of LND, the WMAO-EAR algorithm provided an increased LND of 5432 rounds,
while the LEACH, CE-EC, SEED, NEH-CP, and HCEHUC techniques achieved reduced
LND of 275, 5230, 5072, 4500, and 5140 rounds, respectively.

Table 1. Lifetime analysis of WMAO-EAR approach with existing algorithms under NC of 100
and 300.

Time Steps (Rounds)

Dead Nodes LEACH CE-EC SEED NEH-CP HCEHUC WMAO-EAR

Nodes = 100

First Node Dead 466 1000 990 780 2563 1500

Half Node Dead 531 4328 3269 2251 4525 4750

Last Node Dead 575 5230 5072 4500 5140 5432

Nodes = 300

First Node Dead 528 1091 1610 1814 2651 2786

Half Node Dead 616 2088 3566 4221 4562 4647

Last Node Dead 715 2736 4327 5017 5217 5387

Figure 4 displays the detailed lifetime assessment of the WMAO-EAR approach under
NC of 300. The results denote the WMAO-EAR method obtained an extended lifetime.
For example, in terms of FND, the WMAO-EAR approach has rendered an increased FND
of 2786 rounds, whereas the LEACH, CE-EC, SEED, NEH-CP, and HCEHUC approaches
attained reduced FND of 528, 1091, 1610, 1814, and 2651 rounds, respectively. For HND, the
WMAO-EAR method and HCEHUC models reached reduced HND of 616, 2088, 3566, 4221,
and 4562 rounds, respectively. Finally, in terms of LND, the WMAO-EAR approach gave an
increased LND of 5387 rounds, where the LEACH, CE-EC, SEED, NEH-CP, and HCEHUC
methods reached reduced LND of 715, 2736, 5072, 4327, and 5017 rounds, respectively.
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Table 2 presents a detailed energy utilization (EU) examination of the WMAO-EAR
method with other approaches. Figure 5 provides the initial EU inspection of the WMAO-
EAR model with compared methods on NC of 100. The figure shows that the WMAO-EAR
model achieved EU in the latter rounds of execution. For example, with 0.25 J energy, the
WMAO-EAR method ran to 2722 rounds, whereas the LEACH, CE-EC, SEED, NEH-CP,
and HCEHUC models executed for 340, 1436, 2067, 2445, and 2649 rounds, respectively.
Concurrently, with 0.5 J energy, the WMAO-EAR approach ran to 5213 rounds, whereas the
LEACH, CE-EC, SEED, NEH-CP, and HCEHUC approaches executed for 702, 2748, 4287,
4985, and 5211 rounds, respectively.
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Table 2. EU analysis of WMAO-EAR approach with existing algorithms under NC of 100 and 300.

Time Steps (Rounds)

Initial Energy (J) LEACH CE-EC SEED NEH-CP HCEHUC WMAO-EAR

Nodes = 100

0.25 340 1436 2067 2445 2649 2722

0.5 702 2748 4287 4985 5211 5213

0.75 765 4136 5240 6101 7788 7862

1 1166 4825 7499 8211 10362 10411

Nodes = 300

0.25 558 1656 2161 2676 2661 2837

0.5 846 2815 4390 4997 5259 5423

0.75 966 4261 5439 6192 7804 8082

1 1249 5138 7570 8415 10376 10585
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Figure 6 offers the initial EU review of the WMAO-EAR technique with compared
methods on NC of 300. The figure shoes that the WMAO-EAR approach obtained EU in the
latter rounds of execution. For example, with 0.25 J energy, the WMAO-EAR algorithm runs
to 2837 rounds, whereas the LEACH, CE-EC, SEED, NEH-CP, and HCEHUC approaches
execute 558, 1656, 2161, 2676, and 2661 rounds, respectively. Concurrently, with 0.5 J
energy, the WMAO-EAR methodology runs to 5423 rounds, whereas the LEACH, CE-EC,
SEED, NEH-CP, and HCEHUC techniques execute 846, 2815, 4390, 4997, and 5259 rounds,
respectively.
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Figure 6. EU analysis of WMAO-EAR approach under NC of 300.

Table 3 provides a detailed NOAN evaluation of the WMAO-EAR model with other
existing models. Figure 7 highlights the comparative NOAN inspection of the WMAO-EAR
model. With 2000 rounds, the NOAN offered by the WMAO-EAR model is 99, whereas the
CE-EC, SEED, NEH-CP, and HCEHUC models obtained reduced NOAN of 98, 93, 79, and
56, respectively. Likewise, with 2500 rounds, the NOAN presented by the WMAO-EAR
approach is 98, whereas the CE-EC, SEED, NEH-CP, and HCEHUC techniques attained
reduced NOAN of 97, 78, 46, and 19, respectively. With 3000 rounds, the NOAN presented
by the WMAO-EAR algorithm is 95, whereas the CE-EC, SEED, NEH-CP, and HCEHUC
methodologies attained reduced NOAN of 92, 59, 29, and 0, respectively.

Table 3. NOAN analysis of WMAO-EAR approach with existing algorithms under NC of 100 and 300.

Alive Nodes

Rounds WMAO-EAR CE-EC SEED NEH-CP HCEHUC

Nodes = 100

0 100 100 100 100 100

500 100 100 100 100 99

1000 100 100 100 98 99

1500 99 99 98 94 89

2000 99 98 93 79 56

2500 98 97 78 46 19

3000 95 92 59 29 0

3500 89 85 37 15 0

4000 76 72 25 6 0

4500 52 47 10 0 0

5000 24 20 2 0 0

5500 0 0 0 0 0
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Table 3. Cont.

Alive Nodes

Rounds WMAO-EAR CE-EC SEED NEH-CP HCEHUC

Nodes = 300

0 300 300 300 300 300

500 300 300 300 297 295

1000 300 300 300 298 293

1500 300 298 286 288 258

2000 300 295 277 257 216

2500 298 282 256 203 142

3000 281 259 240 142 69

3500 266 227 215 92 30

4000 224 160 114 46 11

4500 171 108 57 14 0

5000 115 45 29 0 0

5500 0 0 0 0 0
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Figure 8 illustrates the comparative NOAN study of the WMAO-EAR approach. With
2000 rounds, the NOAN 300 rendered by the WMAO-EAR technique is 300, whereas the
CE-EC, SEED, NEH-CP, and HCEHUC methods attained reduced NOAN of 295, 277, 257,
and 216, respectively. With 2500 rounds, the NOAN granted by the WMAO-EAR model
is 298, whereas the CE-EC, SEED, NEH-CP, and HCEHUC approaches achieved reduced
NOAN of 282, 256, 203, and 142, respectively. With 3000 rounds, the NOAN offered by the
WMAO-EAR method is 281, whereas the CE-EC, SEED, NEH-CP, and HCEHUC models
attained reduced NOAN of 259, 240, 142, and 69, respectively.
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Figure 8. NOAN analysis of WMAO-EAR approach under NC of 300.

A comparative NODN assessment of the WMAO-EAR model with other models is
provided in Table 4. Figure 9 illustrates a detailed NODN investigation of the WMAO-EAR
model with other approaches. The outcomes indicated that the WMAO-EAR method
reached maximum outcome with minimal NODN values. For example, with 2000 rounds,
the WMAO-EAR model gained a lower NODN of 1, whereas the CE-EC, SEED, NEH-CP,
and HCEHUC models attained higher NODN of 2, 7, 21, and 44, respectively. Finally, with
3000 rounds, the WMAO-EAR method gained a lower NODN of 5, whereas the CE-EC,
SEED, NEH-CP, and HCEHUC approaches attained higher NODN of 8, 41, 71, and 100,
respectively.

Table 4. NODN analysis of WMAO-EAR approach with existing algorithms under NC of 100 and 300.

Dead Nodes

Rounds WMAO-EAR HCEHUC NEH-CP SEED CE-EC

Nodes = 100

0 0 0 0 0 0

500 0 0 0 0 1

1000 0 0 0 2 1

1500 1 1 2 6 11

2000 1 2 7 21 44

2500 2 3 22 54 81

3000 5 8 41 71 100

3500 11 15 63 85 100

4000 24 28 75 94 100

4500 48 53 90 100 100

5000 76 80 98 100 100

5500 100 100 100 100 100
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Table 4. Cont.

Dead Nodes

Rounds WMAO-EAR HCEHUC NEH-CP SEED CE-EC

Nodes = 300

0 0 0 0 0 0

500 0 0 0 3 5

1000 0 0 0 2 7

1500 0 2 14 12 42

2000 0 5 23 43 84

2500 2 18 44 97 158

3000 19 41 60 158 231

3500 34 73 85 208 270

4000 76 140 186 254 289

4500 129 192 243 286 300

5000 185 255 271 300 300

5500 300 300 300 300 300
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Figure 10 illustrates a comprehensive NODN investigation of the WMAO-EAR tech-
nique with other models. The outcomes show that the WMAO-EAR approach attained
maximum outcome with minimal NODN values. For instance, with 2000 rounds, the
WMAO-EAR approach gained a lower NODN of 0, whereas the CE-EC, SEED, NEH-CP,
and HCEHUC approaches attained higher NODN of 5, 23, 43, and 84, respectively.

Eventually, with 2500 rounds, the WMAO-EAR method attained a lower NODN of 2,
whereas the CE-EC, SEED, NEH-CP, and HCEHUC approaches attained higher NODN of
18, 44, 97, and 158, respectively. These experimental values show the enhancements of the
WMAO-EAR technique over other existing models.
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5. Conclusions

In this study, a new WMAO-EAR approach was devised for effective and energy-
aware wireless communication. The presented WMAO-EAR technique aims to accomplish
an energy-aware routing process in WSNs. To do this, the WMAO-EAR technique initially
derives the WMAO algorithm for the integration of wavelet mutation with the AO algo-
rithm. An FF is derived using distinct constraints, such as delay, energy, distance, and
security. Once the mutation probability P is set, every individual next to the exploitation
and exploration stage process has a probability of mutation using the wavelet mutation
process. To demonstrate the enhanced performance of the WMAO-EAR technique, a com-
prehensive simulation analysis has been presented. The experimental results establish
the superiority of the WMAO-EAR method over other recent approaches. In the future,
lightweight cryptographic solutions can be applied to boost secure communication.
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