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Abstract: When the desired signal and multiple mainlobe interferences coexist in the received data,
the performance of the current mainlobe interference suppression algorithms is severely challenged.
This paper proposes a multiple mainlobe interference suppression method based on eigen-subspace
and eigen-oblique projection to solve this problem. First, use the spatial spectrum algorithm to
calculate interference power and direction. Next, reconstruct the eigen-subspace to accurately cal-
culate the interference eigenvector, then generate the eigen-oblique projection matrix to suppress
mainlobe interference and output the desired signal without distortion. Finally, the adaptive weight
vector is calculated to suppress sidelobe interference. Through the above steps, the proposed method
solves the problem that the mainlobe interference eigenvector is difficult to select, caused by the
desired signal and the mismatch of the mainlobe interference steering vector and its eigenvector. The
simulation result proves that our method could suppress interference more successfully than the
former methods.

Keywords: mainlobe interference suppression; eigen-subspace; adaptive beamforming; eigen-oblique

1. Introduction

Adaptive beamforming is a key research area in array signal processing. It has nu-
merous uses in radar [1], sonar, navigation, electronic warfare [2], wireless communication,
and so on. In modern electronic warfare, intentional interference by the enemy makes it
difficult for radar to detect targets. Sidelobe interference can be successfully suppressed
using conventional adaptive beamformers. However, when mainlobe interference exists
in the received data, a null will be formed in the mainlobe, resulting in the distortion
of the mainlobe and reducing the output signal to interference plus noise ratio (SINR).
Therefore, when the radar is fighting against mainlobe interference, conventional adaptive
beamforming is no longer applicable [3].

To solve this problem, references [4,5] uses large aperture auxiliary arrays to suppress
mainlobe interference, but such methods require a large amount of space for antenna
array layout. In [6,7], the antenna spatial polarization characteristics are used to suppress
mainlobe interference in the polarization domain, but such methods require radar to have
the capability of polarimetric measuring. The blind source separation (BSS) method is
proposed to estimate mainlobe interference waveform and signal steering vector in [8–10];
the real-time canonical correlation analysis (RCCA) algorithm proposed by Bhowmik B on
the basis of BSS can process data in real-time [11]. However, the algorithm based on BSS is
difficult to obtain the direction of arrival (DOA) of the target signal while separating the
target signal from the interference [12]. The blocking matrix preprocessing (BMP) method
is proposed in [13], which can achieve good performance under the condition of knowing
the interference direction. However, it will reduce the array’s degrees of freedom.

The eigenprojection matrix preprocessing (EMP) method proposed in [13] can achieve
good mainlobe interference suppression without reducing array degrees of freedom. Schol-
ars have carried out a series of studies based on this method. The EMP-CMR method is
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proposed in [2] based on [13] and eliminated mainlobe offset by reconstructing the received
data’s covariance matrix. The EMP-SC method proposed in [14] can effectively suppress
multiple mainlobe interferences; Reference [15] constrains the sidelobe level based on [14],
which reduces the sidelobe level while ensuring the interference suppression capability.
However, all the above three methods require that there is no desired signal in the received
data. The Capon spatial–spectral estimation is used in [16] to reconstruct the interference
plus noise covariance matrix (INCM). However, the eigen-oblique projection changes the
eigenvector of sidelobe interference so that the processed sidelobe interference cannot be
suppressed by the adaptive weight vector. Reference [17] corrects the sidelobe interference
plus noise covariance matrix (SINCM) based on [16], but in the process of correction, the
noise is reconstructed into color noise, which reduces the suppression performance of
sidelobe interference. Reference [18] reduced the loss of the desired signal by eigen-oblique
projection. However, when there are multiple mainlobe interferences, the accurate mainlobe
interference eigenvector cannot be obtained, which reduces the suppression performance
of mainlobe interference. In [19], the iterative adaptive algorithm (IAA) is proposed to
estimate mainlobe interference DOA. This method can effectively suppress coherent in-
terference, but the Frobenius norm has to be calculated in each iteration, which leads to
high algorithm complexity. Reference [20] estimates the power of sources by compressive
sensing (CS) and reconstructs the INCM, but there is a mismatch in the estimation of the
interference eigenvector. The matrix filter is proposed in [21] to estimate the number of
mainlobe interferences, but the selection of the threshold is difficult to determine. Refer-
ence [22] constructs the blocking matrix by inverting INCM. This method improves the
robustness of desired signal mismatch but can only suppress a single mainlobe interference.

The above methods all have problems in the suppression of mainlobe interference.
Therefore, this paper proposes a multiple mainlobe interference suppression method based
on eigen-subspace and eigen-oblique projection. We improve the reconstruction method of
eigen-subspace. It can not only obtain a more accurate interference eigenvector but also
improve the accuracy of SINCM reconstruction. Based on the traditional eigen-projection
method, we further reduce the loss of the desired signal and preserve the spatial character-
istics of sidelobe interference by eigen-oblique projection. It improves the performance of
sidelobe interference suppression. The proposed method has the following advantages:

1. This method has higher interference suppression ratio (ISR) when the desired sig-
nal and multiple mainlobe interferences coexist in the received data; that is, the
interference suppression capability is better than other methods;

2. This method has low complexity and a fast convergence rate and is able to minimize
the desired signal loss while suppressing mainlobe interference.

The rest of this paper is arranged as follows. In Section 2, the array signal model
in a multiple mainlobe interference scenario is introduced. In Section 3, the mainlobe
interference suppression method based on eigen-subspace and eigen-oblique projection
is proposed. The numerical results are presented and analyzed in Section 4. Finally, the
conclusion is given in Section 5.

2. Signal Model

Suppose a uniform linear array (ULA) with N omnidirectional antennas; the received
signal satisfies far field narrowband assumption. The kth received data sample of ULA is
as follows:

x(k) = xd(k) + xMi(k) + xSi(k) + xn(k)

= a(θ0)s0(k) +
M
∑

m=1
a(θm)sm(k) +

M+S
∑

m=M+1
a(θm)sm(k) + n(k) (1)

where xd(k) = a(θ0)s0(k), xMi(k) =
M
∑

m=1
a(θm)sm(k), xSi(k) =

M+S
∑

m=M+1
a(θm)sm(k) represent

the desired signal, mainlobe interference, sidelobe interference, respectively. M represents
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the number of mainlobe interferences. S represents the number of sidelobe interferences.
xn(k) = n(k) represents independent zero-mean additive white Gaussian noise. a(θ0)
represents desired signal steering vector. a(θm) represent interference steering vector. The
signal steering vector with direction θ is:

a(θ) =
[

1, e−j 2πd
λ sin θ , . . . , e−j 2π(N−1)d

λ sin θ

]T
(2)

where ( )T represents the transpose of matrix, λ represents the signal wavelength.
After eigen-decomposition, the received data covariance matrix is as follows:

Rx = E
[
x(k)xH(k)

]
=

N
∑

i=1

∼
λi
∼
ui
∼
ui

H

=
∼
Us
∼
Λs
∼
Us

H +
∼
Un
∼
Λn
∼
Un

H
(3)

where
∼
λ1 >

∼
λ2 > . . . >

∼
λN represent the ordered eigenvalues,

∼
ui is corresponding

eigenvector, Us is signal subspace consist of
∼
u1,
∼
u2, · · · ∼uM+S+1, Un is noise subspace consist

of
∼
uM+S+1,

∼
uM+S+2, · · · ∼uN .

According to signal subspace theory, when there are multiple interferences in the
mainlobe, if the spatial difference and intensity difference between them is small, then
the mainlobe interference steering vector will be inconsistent with the corresponding
eigenbeam’s eigenvector, and the steering vectors of mainlobe interferences cannot be
approximated by eigenvectors.

The output data of array antenna is:

y(k) =
N

∑
i=1

w∗i xi(k) = wHx(k) (4)

where w = [w1, w2, . . . , wN ]
T is obtained by the minimum variance distortionless response

(MVDR) beamformer, the design criteria is [23]:

min
w

wH Ri+nw

st wHa(θ0) = 1
(5)

Ri+n represents the interference plus noise covariance matrix (INCM) that cannot be
obtained in practice. Replace Ri+n with the sample covariance matrix Rx:

Rx =
1
K

K

∑
k=1

x(k)xH(k) (6)

where K is snapshots number. Finally, the adaptive weight vector can be expressed as:

Wopt =
R−1

x a(θ0)

aH(θ0)R−1
x a(θ0)

(7)

3. Proposed Method

The proposed method will be introduced in detail in this section, and the processing
diagram is shown in Figure 1.
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Figure 1. Processing diagram of the proposed method.

3.1. The Construction of Eigen-Oblique Projection Matrix

In this section, we will introduce how to classify the interference, find the angle area
where each interference is located, and then reconstruct the eigen-subspace to obtain the
more accurate interference eigenvector to construct an eigen-oblique projection matrix.
Finally, the data received by the projection matrix is preprocessed to reduce the loss of the
desired signal while suppressing mainlobe interference.

The mainlobe width Mwid calculation formula of ULA is as follows [24]:

Mwid = 2arcsin
(

λ

Nd
+ sin θ0

)
(8)

where θ0 represents the desired signal direction, assuming that the desired signal receiving
area is:

Θ0 = [θ0 − ∆θ0, θ0 + ∆θ0] (9)

Therefore, the incident angle area of mainlobe interference can be expressed as:

Θm =

[
θ0 −

Mwid
2

, θ0 − ∆θ0

]
∪
[

θ0 + ∆θ0, θ0 +
Mwid

2

]
(10)

Calculate the signal power of each angle by using MUSIC spectrum estimation in
Θm [25]:

PMusic(θ) =
1

aH(θ)
∼
Un
∼
Un Ha(θ)

(11)

The area Θm is divided into grids, calculate the spatial spectral function PMusic(Θm) in
this area according to Equation (12), and the mainlobe interference angle ϕMi (i = 1, 2, . . . , M)
can be located by searching for the spectrum peak value. Therefore, the angle area where
the single mainlobe interference exists is:

ΘMi = [ϕMi −
δ

2
, ϕMi +

δ

2
] i = 1, 2, . . . , M (12)

where δ represents the interval width for reconstructing the interference. The grid division
will cause errors in the estimated mainlobe interference angle, the mainlobe interference
steering vector is inconsistent with the corresponding steering vector. Therefore, it is
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necessary to perform the secondary integral reconstruction to obtain a more accurate
mainlobe interference steering vector.

For each angle area of mainlobe interference, reconstruct INCM of this angle area
respectively:

RxMi =
ΘMi/∆θ

∑
j=1

a
(
θj
)
aH(

θj
)

aH
(
θj
)∼
Un
∼
Un Ha

(
θj
)∆θ i= 1, 2, . . . , M (13)

In this process, we adopt the MUSIC spectrum to estimate the source’s power and
direction. When the interference interval is greater than a quarter of the main beam, the
angle estimation result is relatively robust. The estimation accuracy of the interference
angle directly affects the spatial characteristics of the eigenvectors after the reconstruction
of INCM. Therefore, when the training data contains the desired signal, the method can
handle up to two mainlobe interferences; when the training data does not contain the
desired signal, the method can handle up to three mainlobe interferences. We adopt the
amplitude of the MUSIC spectrum as the source power to reconstruct INCM. The estimation
error of interference power mainly affects the eigenvalue corresponding to the interference.
From this point of view, the influence of the interference power estimation error is small.

After eigen-decomposition, RxMi can be expressed as:

RxMi =
N

∑
j=1

λijuijuij
H (14)

where λi1 > λi2 > . . . > λiN are the ordered eigenvalues, uij is the corresponding
eigenvector.

When the sources are incoherent, the steering vectors of the sources are stretched into
the same space as the signal subspace, and the signal subspace is orthogonal to the noise
subspace [25]. Therefore, for each RxMi containing only a single mainlobe interference,
the signal subspace contains only a single eigenvector, which is linearly related to the
main lobe interference steering vector of the angle area. Therefore, the mainlobe interfer-
ence steering vector can be equivalently replaced by the eigenvector of its corresponding
eigen-beamforming:

Pia(θi)aH(θi) = λi1ui1ui1
H (15)

Therefore, the eigenvector of the largest eigenvalue in each area is used to replace the
corresponding mainlobe interference steering vector to reconstruct the mainlobe interfer-
ence subspace:

UM = [u11, u21, . . . , uM1] (16)

The mainlobe interference subspace’s orthogonal complement space is as follows:

U⊥M = I −UM

(
UM

HUM

)−1
UM

H (17)

The incident angle area of sidelobe interference can be expressed as:

Θs =

[
−90◦, θ0 −

Mwid
2

]
∪
[

θ0 +
Mwid

2
, 90◦

]
(18)

Calculate the signal power of each angle by using capon spectrum estimation in
Θs [23]:

PCapon(θ) =
1

aH(θ)Rx−1a(θ)
(19)

The area Θs is divided into grids, calculate the spatial spectral function PCapon(Θs) in
this area according to Equation (19), and the sidelobe interference angle ϕSi (i = 1, 2, . . . , S)
can be located by searching for the spectrum peak value. Therefore, the angle area where
the single sidelobe interference exists is:
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ΘSi = [ϕSi −
δ

2
, ϕSi −

δ

2
] i = 1, 2, . . . , S (20)

For each angle area of sidelobe interference, reconstruct INCM of the angle area
respectively:

RxSi =
ΘSi/∆θ

∑
j=1

a
(
θj
)
aH(

θj
)

aH
(
θj
)

Rx−1a
(
θj
)∆θ i = 1, 2, . . . , S (21)

After eigen-decomposition, RxSi can be expressed as:

RxSi =
N

∑
j=1

γijvijvij
H (22)

where γi1 > γi2 > . . . > γiN are the ordered eigenvalues, vij represents the corresponding
eigenvector.

Therefore, the largest eigenvalue’s eigenvector in each area is used to replace the
corresponding sidelobe interference steering vector, and use it together with a(θ0) to
reconstruct the desired signal plus sidelobe interference subspace:

USa = [a(θ0), v11, v21, . . . , vS1] (23)

The eigen-oblique projection can reduce the desired signal loss while suppressing
mainlobe interference [18]. It can be expressed as:

B = USa

(
USa

HU⊥MUSa

)−1
USa

HU⊥M (24)

The product of the projection matrix B and USa is USa itself, and the product of B and
U⊥M is zero space, which satisfies BUSa = USa, BU⊥M = O.

The received signal is preprocessed by eigen-oblique projection, and the processed
signal is:

y(k) = Bx(k) (25)

By the eigen-oblique projection matrix’s nature, the mainlobe interference component
has been eliminated, the loss of the desired signal has been reduced, and the sidelobe
interference has been preserved.

3.2. The Reconstruction of SINCM

SINCM of the entire sidelobe area is as follows:

RxS =
S
∑

i=1
RxSi

=
S
∑

i=1

ΘSi/∆θ

∑
j=1

a(θj)aH(θj)
aH(θj)Rx−1a(θj)

∆θ
(26)

Since the angle area of sidelobe interference is small, noise in the covariance matrix is
negligible.

In the proposed method, the noise power can be calculated by:

σn
2 =

N
∑

n=N−M−S+2

∼
λn

N −M− S− 1
(27)

∼
λN−M−S−1, · · · ,

∼
λN represents the noise eigenvalue.

The reconstructed SINCM is expressed as follows:

∼
Rx = RxS + σn

2 I (28)
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3.3. Adaptive Weight Vector Calculation

Based on the previous discussion, replacing Rx with
∼
Rx to obtain the adaptive weight vec-

tor:

W =

∼
Rx
−1a(θ0)

aH(θ0)
∼
Rx−1a(θ0)

(29)

The ULA output data is as follows:

z(k) = WH Bx(k) (30)

3.4. Summary of Proposed Method

Finally, the steps of the proposed algorithm can be summarized as Algorithm 1:

Algorithm 1 Multiple mainlobe interferences suppression algorithm

Input: received data x
Output: output data z
1: Calculate the MUSIC spectrum PMusic(θ) of the received data x by Equation (11);
2: Reconstruct the covariance matrices RxMi and RxSi respectively by Equations (13) and (21);
3: Process RxMi and RxSi with eigen-decomposition, construct subspaces U⊥M and USa by
Equations (16), (17) and (23), calculate eigen-oblique projection matrix B according to
Equation (24);

4: Reconstruct the SINCM
∼
Rx by Equations (26) and (28);

5: Calculate the beamformer adaptive weight vector W by Equation (29), and calculate the output
data z by Equation (30).

4. Simulation Results

Consider a ULA with 64 omnidirectional antennas. The elements gap is half wave-
length. The desired signal is incident from 0◦ with the signal-to-noise ratio (SNR) 0 dB. Two
mainlobe interferences are incident from −2◦ and 5◦ with the same interference-to-noise ra-
tio (INR) of 5 dB. Two sidelobe interferences are incident from−15◦ and 10◦ with INR 25 dB
and 20 dB, respectively. The interference signal is independent of the desired signal. The
noise is additive white Gaussian noise. To analyze the experimental results, we conducted
200 Monte Carlo simulations. The proposed method is compared to SMI, EMP-SC [14],
EMP-CMR [2], EMP-CMYR [17], EMP-CMIR [16], EMP-IAA [19], and EMP-CS [20]. It is
worth noting that the received data contains no desired signal in EMP-SC and EMP-CMR.

4.1. Comparison of Beam Pattern

Figure 2 shows beam patterns of the seven methods in 200 Monte Carlo simulations.
It can be seen that mainlobe interference affects the beam pattern of the SMI method,
forming a null inside the mainlobe that causes mainlobe distortion. In contrast, other
methods obtain an ideal mainlobe beam and form a deep null at the sidelobe interference,
which effectively solves the mainlobe distortion problem and adaptively eliminates the
sidelobe interference.
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4.2. Comparison of Array Output Data

Figure 3 compares each method’s output data to the desired signal. The figure shows
that the desired signal output of EMP-CMIR is seriously distorted in the case of multi-
ple mainlobe interferences. On the one hand, the mainlobe interference eigenvector is
mismatched with the corresponding steering vector. On the other hand, the sidelobe in-
terference steering vector after preprocessing has changed. The proposed method solves
these two problems, thus improving the interference suppression capability.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 13 
 

 

  
Figure 2. Comparison of beam pattern. 

4.2. Comparison of Array Output Data 
Figure 3 compares each method’s output data to the desired signal. The figure shows 

that the desired signal output of EMP-CMIR is seriously distorted in the case of multiple 
mainlobe interferences. On the one hand, the mainlobe interference eigenvector is mis-
matched with the corresponding steering vector. On the other hand, the sidelobe interfer-
ence steering vector after preprocessing has changed. The proposed method solves these 
two problems, thus improving the interference suppression capability. 

  
Figure 3. Comparison of array output data. 

In Table 1, we compare the related coefficients between each method’s output data 
and the desired signal. The correlation coefficient is defined as follows: 

( ) ( )

( ) ( )

*

1
1/2

2 2

1 1

K

k
xz K K

k k

x k z k

x k z k
ρ =

= =

=
 
  



 
 (31)

The correlation coefficient is used to measure the correlation between the desired 
signal x  and the output signal z . Table 1 shows that EMP-SC, EMP-CMR, and the pro-
posed method have the highest correlation coefficient, which means the output data of 
the three methods are closer to the desired signal. However, the output data of the EMP-
CMYR, EMP-CMIR, EMP-IAA, and EMP-CS are quite different from the desired signal. 

Figure 3. Comparison of array output data.

In Table 1, we compare the related coefficients between each method’s output data
and the desired signal. The correlation coefficient is defined as follows:

ρxz =

K
∑

k=1
x(k)z∗(k)[

K
∑

k=1
|x(k)|2

K
∑

k=1
|z(k)|2

]1/2 (31)

The correlation coefficient is used to measure the correlation between the desired
signal x and the output signal z. Table 1 shows that EMP-SC, EMP-CMR, and the proposed
method have the highest correlation coefficient, which means the output data of the three
methods are closer to the desired signal. However, the output data of the EMP-CMYR,
EMP-CMIR, EMP-IAA, and EMP-CS are quite different from the desired signal. In the
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multiple mainlobe interference scene, the EMP-CMYR method reconstructs the covariance
matrix of the whole mainlobe angle area, which causes a mismatch between the mainlobe
interference eigenvector and steering vector. The EMP-CMIR method changes the spa-
tial characteristics of sidelobe interference after eigen-decomposition, which leads to the
weakening of its ability to suppress sidelobe interference. The IAA estimation adopted
by the EMP-IAA method can process coherent signals, but the spatial resolution is low.
It is unable to effectively distinguish multiple mainlobe interferences, which reduces the
mainlobe interference suppression effect. The EMP-CS method reconstructs the interference
covariance matrix in a sparse manner. However, this method uses traditional methods to
estimate source DOA with a fixed upper limit of spatial resolution. Moreover, this method
cannot solve the problem of mismatch of interference angle grid estimation.

Table 1. Comparison of related coefficients.

Method Related Coefficient

SMI 0.9602
EMP-SC 0.9677

EMP-CMR 0.9677
EMP-CMYR 0.8188
EMP-CMIR 0.3228
EMP-IAA 0.6030
EMP-CS 0.8660

PROPOSED 0.9680

4.3. Analysis of the Impact of Input SNR on Output SINR

Figure 4 compares each method’s output SINR when the input SNR increases from
−10 dB to 40 dB. It should be pointed out that in the simulations of EMP-SC and EMP-
CMR methods, there is no desired signal. Simulation results show that the proposed
method’s output SINR is similar to that of EMP-SC and EMP-CMR. When the input SNR
is −5 dB, the proposed method can obtain high output SINR, while other methods have
poor performance in the case of multiple mainlobe interferences. Compared with EMP-SC
and EMP-CMR, since the proposed method avoids the influence of the desired signal in the
received data through eigen-subspace reconstruction, it is more practical.
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4.4. Analysis of the Impact of Snapshots Number on Output SINR

Figure 5 compares each method’s output SINR; when the snapshots number increases
from 20 to 200, it can be seen that EMP-SC, EMP-CMR, and the proposed method can
obtain higher output SINR. When the snapshots number is 40, the proposed method’s
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output SINR has approached the optimum. It shows that the method converges faster than
other methods.
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4.5. Analysis of the Impact of Input SNR on ISR

Figure 6 compares each method’s ISR when the input SNR increases from −10 dB
to 40 dB. Simulation results show that the ISR of EMP-CMYR, EMP-CMIR, EMP-IAA,
and EMP-CS methods basically does not change with the input SNR. The reason is that
the interference suppression performance of these four methods is mainly affected by the
interference DOA accuracy. The proposed method can obtain the lowest ISR, which means
it has the best overall interference suppression effect.
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5. Conclusions

In this paper, the authors introduce a multiple mainlobe interferences suppression
method based on eigen-subspace and eigen-oblique projection. Compared to existing meth-
ods, the proposed method improves interference subspace reconstruction. The accuracy of
the mainlobe interference eigenvector obtained is better than that of similar methods, so
the eigen-oblique projection matrix has the best performance in suppressing mainlobe in-
terference. At the same time, the eigen-oblique projection retains the spatial characteristics
of sidelobe interference, which means the adaptive weight vector can suppress sidelobe
interference well. The simulation results indicate that this method can suppress multiple
mainlobe interferences and obtain higher ISR than other methods.
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