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Abstract: Taking advantage of the functional complementarity between infrared and visible light
sensors imaging, pixel-level real-time image fusion based on infrared and visible light images
of different resolutions is a promising strategy for visual enhancement, which has demonstrated
tremendous potential for autonomous driving, military reconnaissance, video surveillance, etc. Great
progress has been made in this field in recent years, but the fusion speed and quality of visual
enhancement are still not satisfactory. Herein, we propose a multi-scale FPGA-based image fusion
technology with substantially enhanced visual enhancement capability and fusion speed. Specifically,
the source images are first decomposed into three distinct layers using guided filter and saliency
detection, which are the detail layer, saliency layer and background layer. Fusion weight map
of the saliency layer is subsequently constructed using attention mechanism. Afterwards weight
fusion strategy is used for saliency layer fusion and detail layer fusion, while weight average fusion
strategy is used for the background layer fusion, followed by the incorporation of image enhancement
technology to improve the fused image contrast. Finally, high-level synthesis tool is used to design
the hardware circuit. The method in the present study is thoroughly tested on XCZU15EG board,
which could not only effectively improve the image enhancement capability in glare and smoke
environments, but also achieve fast real-time image fusion with 55FPS for infrared and visible images
with a resolution of 640 × 470.

Keywords: image fusion; saliency detection; multi-scale decomposition; FPGA

1. Introduction

Interestingly, imaging complementarity of infrared and visible light imaging has
attracted increasing interest for image fusion. It is well-established that visible light sensor
can obtain high-resolution images with abundant texture and detailed information, but
the quality of images captured by visible light sensor is strongly affected by the light
environment, as poor illumination will reduce the visual image quality such as glare,
smoke, overexposure, and so on. Compared to visible light imaging, infrared imaging is
less affected by the illumination conditions and has strong penetrability to glare, smoke, etc.
Images captured by infrared sensor could provide thermal information for the target and
offer high contrast, but they lack the texture information and sensitivity of the non-thermal
target. Therefore, it is anticipated that infrared and visible image fusion can cooperatively
combine the merits of individual imaging technologies while minimizing potential defects.

With the increasing demands of infrared and visible image fusion technology for
applications such as video surveillance, autopilot, military reconnaissance, etc., there has
been a surge in the number of fusion methods that can be roughly divided into three
categories: pixel level fusion, feature level fusion, and decision level fusion [1]. Pixel
level-based fusion is the most common fusion method at present, which can be roughly
summarized as multi-scale decomposition (MSD), sparse representation (SR), deep learning
(DL), saliency detection (SD), and hybrid methods.
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The MSD-based method is achieved through decomposing the source image into
different layers to represent the various spatial and frequency domain information of the
source image, then applying specific fusion rules to different layers to obtain the corre-
sponding fusion layer, and finally reconstructing the fused sub-layers to obtain the fused
image. To sum up, the central challenge of MSD-based methods is the decomposition and
fusion of images [2]. Pyramid transform was the earliest methodology applied for image
fusion applications, and the typical approaches of pyramid transforms are the Laplacian
pyramid [3,4], contrast pyramid [5], etc. However, the image fusion methods based on
pyramid transform will introduce halo artifacts. To reduce halo artifacts, some wave trans-
forms were recently applied to optimize infrared and visible image fusion, such as wavelet
transform [6], discrete wavelet transform [7], dual-tree discrete wavelet transform [8],
curvelet transform [9], contourlet transform [10], etc. Although the wave transform-based
method can practically reduce halo artifacts, it cannot preserve the edge of the source image
in the complex spatial structure. Consequently, edge preservation filter technique was later
proposed and applied for image processing such as bilateral preservation filter, guided
filter, rolling guided filter [11–14], etc., which can effectively preserve the edge of the source
image in the process of image decomposition. For example, Li et al. [15] proposed an image
fusion algorithm based on the guided filter. Bavirisetti et al. [16] proposed a multi-scale
decomposition rule-based guided filter to obtain the different layer sublayer by iterative.
Liu et al. [17] use guided filter combined with other methods to construct fusion weight
map, which can enhance the detail and edge information for the fused image. Shreyamsha
Kumar et al. [18] proposed an image fusion method based on cross bilateral preservation
filter combining the similarity and spatial structure of local areas. Lin et al. [19] proposed
a multi-scale decomposition method using rolling guided filter. In addition to the above
methods, anisotropic heat diffusion [20], log-Gabor transform [21], etc. have also been
successfully integrated to improve the quality of MSD-based image fusion.

Saliency is an attention mechanism that can attract human visual perception, and its
key merit is that it is more efficient to capture human visual senses than the neighborhood of
the point or the areas [22]. Saliency detection can focus on the region of interest, so it is very
suitable for the field of image fusion. The SD-based method is usually not used alone but
combined with multi-scale decomposition for image fusion. The implementation of saliency
detection is carried out sequentially: (1) decomposing source image into detail layer and
base layer and (2) using saliency detection to process detail or base layer. Durga Prasad
Bavirisetti et al. [22] use the average filter and median filter to extract saliency information
and construct a fusion weight map when performing detail layer fusion. Duan et al. [23]
use local average gradient energy to extract multiple saliency features on infrared and
visible detail layers, which can enhance the detail information performance of the fused
image. Lin et al. [24] proposed a saliency detection rule based on local brightness contrast
to extract the saliency layer which contains brightness contrast information of the source
image. Besides these methods mentioned above, some other image fusion methods [25,26]
also use saliency detection to improve the expressiveness of the fused image. These studies
collectively supported that SD-based method can maximize focus on regions of interest.

Besides the methods mentioned above, SR-based, DL-based, and hybrid methods [27–37]
are also reported for infrared and visible image fusion. Specifically, for the SR-based
methods, an over-complete dictionary is used to represent the source image, and the
correlation coefficients obtained from the over-complete dictionary are used for fused
operation. However, the over-complete dictionary is often difficult to acquire, and a single
over-complete dictionary is usually insufficient to ensure the robustness of images with
different structures. With the development of the deep learning, the DL-based method
has been a popular model in the field of image fusion. For instance, Li et al. proposed
three infrared and visible image fusion methods using different neural network models,
which is VGG19 [27], ResNet [29] and DenseFuse [30], respectively. These methods can
not only autonomously extract image features and fit suitable fusion coefficients but also
get the good quality for fused image. However, the fused image weak the thermal target
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information and lack the visual detail information. In order to improve the image details
and maintain the edge information, Lui et al. proposed a novel method based on ResNet and
rolling guided filter [31]. Although DL-based method has some advantages, the training
process requires large amount of training data and is very time-consuming, leading to low
computational efficiency. The hybrid methods [35–37] can yield fused images with good
quality by exploiting complicated compute models, but their computational efficiency is
also very low.

Because of its parallel computing capacity, FPGA has become a promising implemen-
tation carrier for computational acceleration. Currently, many researchers have done a lot
of work for image fusion based on FPGA to improve image fusion speed. For instance, var-
ious methods based on pyramid transform [38,39] and wave transform [40,41] are widely
implemented on FPGA to meet real-time requirements, but these methods can introduce the
artifacts and lack the edge structures relatively. In addition, Furkan Aydin et al. implement
an image fusion method on FPGA using high-level synthesis (HLS) tools and other tech-
nologies based on color space transformation, mean, and variance [42] to improve the
image’s color information, Ashutosh Mishra et al. implement an image fusion method
based on two-scale decomposition using average filter and fuse the detail layer using
modified Frei-Chen operator [43]. These methods can achieve image fusion and get the
good process speed on FPGA, but the performance of the fused image would be reduced
and have influence of glare, smoke, etc. restricted by the fusion model.

According to the introduction mentioned above, the time consumption of the image
fusion process for those advanced algorithm is too long to meet real-time requirements,
and the fused image is affected by glare, smoke, etc. which will reduce the performance of
the fused image. To solve these problems, this paper proposes an MSD-based image fusion
algorithm using guided filter and saliency detection that has high affinity for hardware.
This method decomposes source image into three-scale layers while preserving the edge
structure and construct the saliency layer fusion weight map using attention mechanism to
eliminate the influence of the glare, smoke, etc. on the fused image. At the same time, the
paper uses HLS to design, test and verify the method based on FPGA, which can accelerate
the processing of the fusion method to meet the real-time requirements. Compared to many
advanced fusion methods, this method can enhance performance of the fused image in the
case of as low computational complexity as possible and eliminate the effects of the glare,
smoke, etc. Apart from this, due to the simplification of computational operations, this
method is more suitable to use hardware to accelerate process.

Sections 2 and 3 will introduce the detailed fusion method and analysis the fusion
result. The FPGA implementation of this method will be introduced in Section 4.

2. Proposed Fusion Method
2.1. Overview of Guided Filter

Guided filter [13], an edge preservation filter, is originally proposed by K. M. He et al.,
which mainly performs smoothing operations by considering the statistical characteristics
of the neighboring pixels of the target pixel. The output calculated by the guided filter is the
same as syn-linear time-invariant filter [16]. When performing the smoothed process, the
correlation will be excited between the source image and the guided image by guided filter,
which can preserve the information for specific regions. Same as other edge-preserving
filters, the guided filter can preserve edge during image decomposition, which helps to
avoid ringing artifacts. In addition to the edge-preserving property, the guided filter could
also offer structure-transfer property. When the guided image is the same as the input
image, the edge-preserving smooth operation is performed by the guided filter that will
retain the structural behavior of the input image. When the guided image is different
from the input image, the structural behavior of the output image smoothed by the guided
filter will be affected by the guided image. Based on the above factors, when the infrared
and visible images are decomposed, the mutual guidance in between will improve the
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structural characteristics of decomposed images and enhance the fusion effect. The steps of
the guided filter are summarized in Algorithm 1.

Algorithm 1: Algorithm of guided filter

Input: guided image I, input image p, radius r, regularization eps
Output: smoothed image q

1: mean_I = fave(I, r)
mean_p = fave(p, r)
mean_I I = fave(I.× I, r)
mean_Ip = fave(I.× p, r)

2: cov_Ip = mean_Ip−mean_I.×mean_p
var_I = mean_I I −mean_I.×mean_I

3: a = cov_Ip./(var_I + eps)
b = mean_p− a.×mean_I
4: mean_a = fave(a, r)
mean_b = fave(b, r)
5: q = mean_a.× I + mean_b
fave: average filter process

At the same time, compared with the edge-preserving filter such as the cross bilateral
filter, the rolling guided filter, etc., the computation of the guided filter is smaller and
simpler, so it is easier to be implemented into hardware. The specific calculation strategy of
the guided filter can be summarized as shown in Algorithm 1. More detailed information
about the guided filter, please reference [13].

2.2. Image Decomposition Strategy

In this paper, the smoothing process by the guided filter can be described using the
following formula:

q = fGF(I, p, r, eps) (1)

fGF is the guided filtering function. The means of I, p, r, eps, and q are consistent with
those summarized in Algorithm 1.

2.2.1. Source Image Decomposition

Based on the scope of this study, we comprehensively describe the methods for the
decomposition of infrared and visible light images. In this multi-scale decomposition
method, the source image is firstly decomposed into the base layer and detail layer using
the guided filter, the specific operation can be summarized as follows:

Ib
vis = fGF(Iir, Ivis, r, eps) (2)

Ib
ir = fGF(Ivis, Iir, r, eps) (3)

Ivis and Iir represent the visible source image and infrared source image, respectively.
Ib
vis and Ib

ir represent the visible base layer and infrared base layer, respectively. In our
implementation, r = 7, eps = 1000. To obtain the detail layer of the source image using the
guided filter, the base layer is subtracted from the source image. This operation can be
summarized as follows:

Id
i = Ii − Ib

i , i = vis, ir (4)

Id
vis and Id

ir are the visible detail layer and infrared detail layer, respectively.
After the above operation, the source image is successfully decomposed into the detail

layer and base layer, of which detail layer contains the small detailed structure, edge, and
texture information, while the base layer contains the brightness contrast information,
background information, etc., in the source image.
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2.2.2. Base Layer Decomposition

The human visual perception system can easily perceive regions that are significantly
different from their neighborhoods in a large amount of data, during which those data
were labeled as salient information from the source data. Based on the saliency theory, the
saliency detection method can extract the complex saliency information of the infrared
and visible light images using different saliency detection rules and use it to improve the
expressiveness of the fused image. To reduce the influence of the glare, smoke and other
detrimental factors on the fused image, it is necessary to perform saliency detection in the
base layer containing brightness contrast information via decomposing the base layer to
obtain the saliency layer. Herein, we used the attention mechanism to solve the effect of
glare, smoke, etc. in the fused image when performing saliency layer fusion. The following
formulae describe the method used in the present study to extract the saliency layer from
the base layer, and the extraction process can be summarized as follows:

Si(x, y) = |Bi −
1
N ∑j∈ΩN

Bi(x, y)|, i = vis, ir (5)

Si−norm(x, y) =
Si(x, y)−min(Si(x, y))

max(Si(x, y))−min(Si(x, y))
, i = vis, ir (6)

Firstly, according to the brightness contrast rule, the local mean value (∑j∈ΩN
Bi(x, y))/N

centered at pixel (x, y) is subtracted from the global mean value Bi of the base layer, and then
operate the absolute operation for the value calculated above to obtain the saliency weight
map Si(x, y). To extract the saliency layer, a normalized operation is performed by saliency
weight map on the obtained saliency weight map, where local areas represent the windows
areas with a radius of N × N (N = 7 for the implementation in this study). |·| represents
the operation of calculating the absolute value. After obtaining the extraction coefficient
Si−norm(x, y) of the saliency layer, the base layer can be decomposed into the saliency layer
and background layer. The steps can be summarized in the following expressions:

Is
i (x, y) = Ib

i (x, y)× Si−norm(x, y), i = vis, ir (7)

Ibg
i (x, y) = Ib

i (x, y)− Is
i , i = vis, ir (8)

Then, the base layer is decomposed to saliency layer Is
i (x, y) and background layer

Ibg
i (x, y). According to the imaging principle, the saliency layer separated by this method

contains the area of interest, such as areas of high brightness contrast—glare, smoke, etc.
areas in the visible image and thermal target regions in the infrared image. The background
layer contains the rough background information.

2.3. Image Fusion Strategy
2.3.1. Detail Layer Fusion

The “maximum absolute value” strategy is commonly used for detail layer fusion,
which has a low computational cost and can maintain the edge and detail information, but
its anti-noise performance is usually unsatisfactory that may often introduce noise and
artifacts in the fused image. Therefore, to achieve balanced performance of computational
complexity, anti-noise performance and fusion effect, we adopt a weight fusion strategy
when performing the detail layer fusion. At the same time, considering that the detail layer
will be affected by noise, instead of directly using the pixel value of the original detail
layer as the fusion weight, the filtered detail layer by an average filter with a kernel size of
7 × 7 is used as the detail layer fusion weight. The fusion coefficient of the detail layer will
be constructed using the following expression:

Wd
i (x, y) =

|Id_blur
i (x, y)|

|Id_blur
vis (x, y)|+ |Id_blur

ir (x, y)|
, i = vis, ir (9)
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Id_blur
i (x, y) represents the infrared or visible detail layer processed by the average

filter. Wd
i (x, y) represents the fusion weight coefficient of the infrared or visible detail layer.

When the fusion weight was obtained, the fused detail layer Id
F(x, y) can be obtained using

the following expression:

Id
F(x, y) = Id

vis(x, y)×Wd
vis(x, y) + Id

ir(x, y)×Wd
ir(x, y) (10)

2.3.2. Saliency Layer Fusion

Since the high-brightness areas in the saliency layer represent the regions of interest
that contain different meanings. The common regions of interest in visible light image,
the regions of interest represent glare, smoke and other areas. Meanwhile, thermal target
areas are the common regions of interest for infrared image. The regions of interest in the
infrared and visible saliency layers are mutually exclusive. On the one hand, the regions
of interest in the visible saliency layer should be suppressed to reduce the effects of the
fused image. On the other hand, the regions of interest in the infrared saliency layer
should be maintained or enhanced to improve the performance of the thermal target in the
fused image. Hence, how constructing the fusion weight coefficient of saliency layers is
very important. Equation (11) describes the process of constructing saliency layer fusion
weight map.

i f (Is
vis

< 1
N ∑j∈ΩN

Is
vis
(x, y))

Ms
vis(x, y) = Is

ir(x, y)

Ms
ir(x, y) = Is

vis(x, y)

elsei f (Is
ir
< 1

N ∑j∈ΩN
Is

ir
(x, y)&&Is

vis
< 1

N ∑j∈ΩN
Is

vis
(x, y))

Ms
vis(x, y) = (Is

ir(x, y) + Is
vis(x, y))× (1− α)

Ms
ir(x, y) = (Is

ir(x, y) + Is
vis(x, y))× α

else
Ms

vis(x, y) = Is
vis(x, y)

Ms
ir(x, y) = Is

ir(x, y)

(11)

Specifically, regions where the local mean of the saliency layer (∑j∈ΩN
Is
i (x, y))/N is

greater than the global mean Is
i , i = vis, ir will be identified as the regions of interest. If the

region of interest is detected only in the visible saliency layer, the corresponding pixels of
the infrared and visible layer will be exchanged to construct the fusion weight map; if the
same regions of interest are detected in the visible and infrared saliency layers, the fusion
weight value to construct the fusion weight map will be distributed according to coefficient
α, whereas the coefficient α should be greater than 0.5 (α = 0.8 in our implementation).
Besides those areas mentioned, the other areas’ original pixel value of the infrared and
visible saliency will be directly used for constructing the fusion weight map. This processing
strategy of the saliency layer can overcome the influence of glare, smoke, etc., and enhance
the thermal target in the fused image.

The fusion weight map of the saliency layer constructed by this rule will be affected
by the noise and suffer from the brightness-edge effect. To overcome those problems, an
average filtering operation with an average filter kernel size of 15 × 15 will be performed
for the fusion weight map. After smoothing for fusion weight map of saliency layer, using
the normalization operation to obtain the final fusion weight coefficient.

Ws
i (x, y) =

|Ms_blur
i (x, y)|

|Ms_blur
vis (x, y)|+ |Ms_blur

ir (x, y)|
, i = vis, ir (12)
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where Ms_blur
i (x, y) represents the smoothed saliency layer using average filter, Ws

i (x, y)
represents the final fusion weight coefficient. After obtaining Ws

i (x, y), the fusion operation
of the saliency layers will be performed according to the following expression:

Is
F(x, y) = Is

vis(x, y)×Ws
vis(x, y) + Is

ir(x, y)×Ws
ir(x, y) (13)

Is
F(x, y) is the fused saliency layer. According to the above fusion rules, the fused

saliency layer eliminates potential detrimental factors such as smoke and glare in the
visible light saliency layer and maintains or highlights the thermal target information in
the infrared channel.

2.3.3. Background Layer Fusion

The background layer contains some relatively rough information, and its entropy is
at a low level, so the weight average fusion strategy is used in performing the background
layer fusion to obtain the fused background layer Ibg

F (x, y), which can reduce the amount of
necessary computation. The operation of the background layer fusion can be summarized
as follows:

Ibg
F (x, y) = (Ibg

vis(x, y) + Ibg
ir (x, y))× 0.5 (14)

2.4. Image Reconstruction and Enhancement

After obtaining the fused detail layer, fused saliency, and fused background layer, the
final fused image is obtained by the hierarchical integration of the three different scale
layers. The process of image reconstruction can be expressed as follows:

IF(x, y) = Id
F(x, y) + Is

F(x, y) + Ibg
F (x, y) (15)

IF(x, y) represents the fused image of the infrared and visible light images, which con-
tains the image information therein and may address the interference of glare, smoke, etc.
while enhancing the thermal target performance in the fused image.

Image enhancement technology can achieve operations such as changing the image
contrast and enhancing the detailed information, so the rational implementation of image
enhancement technology can effectively improve the expressiveness of the image. Due to
the low resolution of the infrared image and poor imaging environment, the contrast of the
fused image is usually not good in general. Herein, an image enhancement method using
the guided filter was executed for the fused image to improve its contrast. This method
can multiplex modules during hardware design, thereby reducing design complexity. The
steps of the image enhancement can be described using the following expressions:

Ib
F = fGF(IF, IF, r, eps) (16)

Id
F = IF − Ib

F (17)

Ienh
F = Id

F × β + Ib
F (18)

Ib
F and Id

F represent the base layer and detail layer of the fused image, respectively,
Ienh
F represents the final output image via this infrared and visible image fusion method. β

represents the enhancement factor. In our implementation, the values of r, eps, and β were
7, 1000, and 3, respectively. This image enhancement method could substantially improve
the edge, detailed information, and contrast of the fused image, which can enhance the
expressiveness of the fused image in terms of visual perception.

3. Algorithm Experiment and Analysis

For the experiment and analysis of the algorithm, images from commonly used public
datasets as well as self-made datasets for testing the performance. Public datasets include
TNO-dataset [44] and CVC-14 dataset [45]. The selected test datasets contain various scenes,
which can comprehensively challenge the above algorithm. In this study, the proposed
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method will be comparatively analyzed with five advanced infrared and visible image
fusion algorithm—MDLatLRR [46], MGFF [16], MSID [47], ResNet [29], and RGFF [19].

3.1. Subjective Analysis

Subjective evaluation is mainly based on the intuitive feeling of the human visual
system, for which the region of interest can quickly be distinguished by vision and attention
while useless information is discarded in the fused image. In the following analysis, the
glare, smoke, and normal dark scenes will be selected for analysis.

Figure 1 shows the fused images in the urban road scene with glare influence using
six different fusion methods, of which the glare area is marked with red rectangles. It
is observed that all the six methods have completed the fusion task. The fused images
obtained by MDLatLRR, MGFF, and ResNet methods in the glare scene preserve the
detailed information while reducing the impact of glare, but the contrast is low and the
target information is not prominent. The fused image based on the MSID method in the
glare scene is pronouncedly affected by the glare factor and shows overexposure in the red
box area, and the targets cannot be clearly detected in the fused image. The fused image
using the RGFF method in this scene has good performance and the targets are clear in the
glare area. However, from the overall expressiveness of the image, sharp brightness edges
are present in the red box, thus reducing the visual perception. Compared with the other
five fused images, the fused image using the proposed method is not affected by the glare
factor, and the targets in the red box area are salient. In addition, the integral performance
of the fused image shows greater benefit under high contrast.
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Figure 2 shows the fused images in the outdoor scene with smoke influence using
six methods mentioned above. It can be seen from Figure 2 in the smoke scene that the
six methods all show considerable fusion performance to some extent. The fused image
based on the MGFF method is seriously affected by smoke and less capable of preserving
the thermal target. The fused image obtained via RGFF method is less affected by the
interference of smoke but the contrast is relatively lower. Similar issues have also been
found for the fused image via ResNet method, which lacks detailed information, and the
thermal target is not clear. Compared with the four fusion methods mentioned above,
the fused image by the MDLatLRR method and the proposed method are not affected by
smoke, while the proposed method shows significantly higher contrast than the MDLatLRR
method, validating its superior visual perception capacity.
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Figure 3 shows the fused images obtained by six fusion methods in the normal dark
scene. Since infrared imaging does not require extra illumination, it is widely applied
under dark environment. According to the results in Figure 3, the thermal target in the
fused image obtained by the MDLatLRR method and the MGFF method is good but not
prominent. The fused image by the ResNet method lacks detailed information and is very
blurry, leading to poor recognition of the thermal target and contrast. Overall, the MSID
method, RGFF method, and proposed method showed roughly identical performance
in preserving the thermal target in the fused image is roughly equivalent. Those three
methods mentioned above enhance the thermal imaging performance for selected targets,
but the contrast of the fused image obtained by the proposed method is visibly better than
the others.
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In addition to the above scenes, the six methods have been thoroughly analyzed in
a comparative manner under different scenes, which contain the wild scene and lake scene
on the day, the campus scene with glare at night, and indoor scene with smoke. Figure 4
shows the effects of the results obtained by six different fusion methods, which immediately
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suggests that the performance of the proposed method in this study is superior to the other
established methods.
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3.2. Objective Analysis

After subjective evaluation, we employed the objective method to analyze the nine
pairs of the images mentioned in subjective analysis because of the high persuasiveness
of the indexes. The objective indexes include entropy (EN) based on information theory,
average gradient (AG), and edge intensity (EI) based on image features, structural similarity
index measure (SSIM) based on the similarity between fused image and source image,
visual information fidelity, information fusion (VIFF) based on visual perception. From
these five indexes, the comprehensive evaluation is carried out using VIFB benchmark [48].

Table 1 shows the average values of five metrics for nine pairs of infrared and visible
fused images obtained by six methods for objective evaluation of their performance in
different scenes, which can reflect the general applicability of the proposed method in
complex environment. The five evaluation metrics selected are all positively correlated
with the expressiveness of the fused image. It is observed that the proposed method we
developed presents the highest AG, EN, EI, and VIFF values, indicating its capability
to enhancing the expressiveness of the fused image via integrating image information,
preserving the edge and improving visual perception. However, the metric of SSIM for the
fused image obtained by the proposed method is not very prominent compared to those
established methods, and the possible explanation is that the reason is that the method we
developed would alter the image structure when performing contrast enhancement and
thus reduce SSIM performance, which is a metric characterizing the structural similarity
between the fused image and the infrared and visible light source images.

Due to limitation of hardware, it is necessary to reduce the time consumption of the
fusion process to facilitate hardware implementation. This test software is MATLAB R2019,
the hardware parameters of the PC platforms are as follows: intel core i7-7700HQ CPU,
8 GB memory, and Nvidia GeForce 1050 graphics. Table 2 shows the results of the average
time-consumption of the six fusion methods for processing 9 pairs of infrared and visible
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light images. Although the average time consumption of the image fusion process by
the proposed method is slightly longer than MSID, it is significantly more effective than
the other methods. The proposed method is based on the pixel level method, which is
suitable for dataflow optimization operation in hardware implementation and accelerate
the computation.

Table 1. Objective analysis for different methods.

AG EN EI SSIM VIFF

MDLatLRR 4.3380 6.7158 43.4766 1.5001 0.5611
MGFF 4.4433 6.8275 44.5341 1.4840 0.6935
MSID 4.1946 7.0509 42.1197 1.4815 0.5924

ResNet 2.7246 6.4840 26.4826 1.5363 0.3367
RGFF 4.4842 6.9844 45.3183 1.4201 0.4831

Proposed 7.7220 7.1230 77.1950 1.1486 0.7701

Table 2. Average time consumption of the six fusion methods.

MDLatLRR MGFF MSID ResNet RGFF Proposed

Time/s 63.73 2.39 0.34 6.67 19.77 1.29

The comprehensive subjective and objective evaluation shows that the method we
developed can achieve good fusion image expressivity with low time consumption and is
convenient for hardware implementation, thus presenting high practical value for various
real-life applications.

4. Hardware Implementation
4.1. Design of FPGA Implementation

The hardware implementation of the infrared and visible image fusion is designed by
the Vavido HLS tool, which can convert high-level language (C/C++) to hardware design
language such as Verilog or VHDL, thus shortening the development cycle of FPGA. At the
same time, this tool has good support for the floating-point operation, which is friendly for
the image fusion process that requires relatively high calculation accuracy.

Figure 5 shows the scheme of the image fusion module design for the proposed
method based on FPGA implementation. In this design, the AXI interface is used as
the data transport interface between the processing system (PS) and programming logic
(PL). In the design of the PL region, the conversion of AXI and MATRIX data formats is
implemented using the official library API, and the remaining modules mainly include
image decomposition, image fusion, and image reconstruction and enhancement. The
specific implementation procedures of individual modules are described by the processing
flow chart chapter 2.

For the purpose of computational optimization, the dataflow pragma is used to
parallelize the data processing. After the optimization treatment, the FIFO buffer will be
generated to store the data between the processing stages; therefore, achieving streamlined
computation. In addition, the pipeline pragma can unroll the loop to achieve the parallel
process. These optimization pragmas are suitable for the image fusion method as each
pixel is processed independently, which can speed up the image fusion process and achieve
real-time image output. Figure 6 shows the parallelized operation with dataflow in the top
design, through which the single pixel processed by the current stage will be stored in the
FIFO buffer and read by the next stage in an individualized manner, which is not affected
by the processing status of other pixels. The dataflow pragma and pipeline pragma are
also used in sub-module design in a similar manner, thus realizing the streamlined and
parallelized processing of images and reducing the consumption of the storage resources.
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The average filter is used repeatedly when performing the image fusion to smooth
the image or calculate the local mean, so it is important to rationally design this module.
The calculation of the average filter is based on the average convolution operator shown in
Figure 7. However, this strategy would require large amount of computation and would
increase exponentially with the increasing size of the average filter kernel. To solve this
problem, we adopts the box filter method with O(1) computational complexity to reduce
the amount of calculation that is not affected by N.
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The procedures of the box filtering include columns operation and row operation,
which have the same calculation rule. Figure 8 shows the calculation rule based on columns.
First, the columns of the original pixel are summed, and the position of the corresponding
pixel is updated to the sum of the topmost pixel value of the column for the corresponding
pixel. Subsequently, according to the column sum obtained after the update, the local
column sum of length N is obtained. After the column-based operation is completed, the
local sum of columns as the original value is subjected to a row operation same as the
column operation and then normalized to achieve average filter.
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4.2. FPGA Implementation Result

The hardware implementation is designed, tested, and verified based on the XCZU15EG
board of the FPGA board AXU15EG series. The resolution of the infrared and visible light
images is 640 × 470 in our implementation. In the design process, the data accuracy is
preserved as much as possible, which can prevent the excessive loss of data accuracy and
the resultant impairment of expressiveness for the fused image.

Table 3 shows the resource consumption of this developed image fusion module based
on FPGA implementation. After synthesis and simulation, a test platform is built based on
ARM+FPGA Architecture in Figure 9. The AXI video direct memory access (AXI VDMA) is
used to read infrared and visible source images and store fused image. The HP interface is
used for data interaction between ARM and AXI VDMA, and the config commands are
sent to VDMA through GP interface.

Table 3. FPGA resource requirements.

Resource Used Available % of All

BRAM_18K 740 1488 49
DSP48 391 3528 11

FF 97,624 682,560 14
LUT 143,594 341,280 42
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Table 4 shows the processing speed based on FPGA and PC. As can be seen from
Table 4, the processing speed of the image fusion module is about 18 ms (55FPS) under
the 100 MHZ reference clock. Compared to the processing speed implemented on PC,
the speed of processing on FPGA is roughly 63 times faster, leading to almost real-time
output of the fused image. The test results of the fused images on FPGA are shown in
Figures 10 and 11.

Table 4. Speed performance compared to PC implementation.

FPGA Maximum Clock Frequency 100 Mhz
FPGA Maximum Frame Rate 55 fps

PC/MATLAB R2019b (i7-7700HQ @ 2.80 GHz) 0.87 fps
speedup 63×
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Figure 11. Test result in the smoke scene. (a) Infrared image; (b) Visible image; (c) Fused image on
FPGA; (d) Fused image on PC.

Figure 10 shows the fused images obtained on FPGA and PC under the glare environ-
ment. From the perspective of the overall expressiveness, the performance of the fused
images obtained on the FPGA and PC is both acceptable, although certain differences
exist due to a certain loss of precision in hardware processing. Compared with the fused
image obtained on the PC, the brightness contrast of the fused image on the FPGA has
decreased, which leads to lower contrast and clarity of the targets in the yellow block 1 and
yellow block 3. For the yellow block 2 in Figure 10a,b, the traffic signs are not significantly
different. Based on the analysis of the three important areas and the overall expressiveness
of the fused image, it could be concluded that the image fusion process based on FPGA
successfully reduced the glare effects in the fused image and achieved image fusion despite
slight decrease in expressiveness.

Figure 11 shows the fused images obtained on FPGA and PC under the smoke environ-
ment. In this scene, the brightness contrast of the fused image obtained on FPGA is lower
than that obtained on PC, similar to performance in the glare scene. The yellow rectangle
areas in Figure 11a,b where the thermal target is located, respectively, the expressiveness of
the thermal target has decreased processed by FPGA than PC in the yellow rectangle area.
Besides, the detail and texture information of the fused image obtained on FPGA suffered
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a slight loss. This is explained by the loss of accuracy after the hardware implementation,
which causes the insensitivity to some low brightness or not-highlight detailed area when
performing the image fusion process. To sum up, after hardware-based implementation,
the fusion performance is within acceptable range despite a slight decrease in the quality of
the fused image in the smoke environment.

Table 5 shows the average metrics of the fused images obtained using different plat-
forms in the above two test datasets. According to the objective analysis in Table 5, AG,
EN, EI, VIFF of the fused image obtained on FPGA have decreased compared with that
obtained on PC, but the SSIM has slightly improved. The result of the objective analysis is
consistent with the subjective performance of the fused image in Figures 10 and 11, where
the fused image obtained on FPGA showed slight loss in the detail and texture information
as well as decreasing brightness contrast, resulting in attenuated overall expressiveness of
the fused image. Based on the above analysis, the image fusion speed through hardware
implementation is 63 times higher than that of the PC, leading to balanced performance
among fusion speed, image quality, data indicators and visual experience.

Table 5. Objective analysis for two fused images obtained on FPGA and PC.

AG EN EI SSIM VIFF

FPGA 5.5974 6.5457 56.4529 1.4671 0.6218
PC 6.1449 6.7678 61.3421 1.3007 0.7383

Figure 12 shows the comparative result of the two FPGA-based methods (Modified-
Frei-Chen operator-based and proposed) in the two scenes. According to the result, the
fused images obtained by Modified-Frei-Chen operator-based method in two scenes have
common characteristic compared with the proposed method. The common feature is
that lack some details and edges, and where the thermal target is not prominent. In the
meantime, the car, traffic sign and other targets of interest to visual perception are not
clear because of the low contrast. From the aspect of the subjective analysis, although the
fused images are not affected by glare, smoke, etc. obtained by two methods, the overall
performance of the fused image obtained by proposed method is better than another
mentioned. Table 6 shows the objective analysis result for two methods in the two scenes,
compared with the Modify-Frei-Chen operator (MFCO) based method, the five metrics of
the proposed method are better.
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(b) Visible image with smoke; (c) Fused image obtained by proposed method in the smoke
scene; (d) Fused image obtained by Modify-Frei-Chen operator based method in the smoke scene;
(e) Infrared image with glare; (f) Visible image with glare; (g) Fused image obtained by proposed
method in the glare scene; (h) Fused image obtained by Modify-Frei-Chen operator based method in
the glare scene.

Table 6. Objective analysis for two FPGA-based fusion method in the two scenes.

AG EN EI SSIM VIFF

MFCO-based 1.5360 6.0851 16.1062 1.6318 0.2280
Proposed 5.5974 6.5457 56.4529 1.4671 0.6218

5. Discussion

At Present, quality and speed are still huge challenges in the field of infrared and
visible image fusion. To enhance the performance of the fused image, enormous complex
methods are proposed and make progress in this aspect, but the speed of the fused image
is reduced because of complex computations, and simpler fusion models cannot guarantee
the quality of the fused image. How to get the balance between the quality and speed for
image fusion to meet real-time requirement is important.

In view of the slow fusion speed, most researchers implement algorithms based on
FPGA to speed up the image fusion process. At present, the mainstream FPGA-based
algorithms mainly focus on pyramid transform, wave transform and multi-scale transform.
Their fusion effect is relatively poor and cannot highlight salient regions, which is not
conducive to image fusion for regions of interest.

In this paper, a hardware-friendly infrared and visible light image fusion method based
on guided filter and saliency detection is developed exploiting FPGA as the hardware
circuit, which presents a viable solution for real-time scenarios such as automatic driving,
video surveillance, military reconnaissance, etc. Compared with other advanced infrared
and visible light image fusion methods, the computation and complexity of the proposed
method are significantly lower. At the same time, this method eliminates the effects of
the glare, smoke, etc., to the fused image. This paper analyzes the quality of the fused
images based on PC, the experimental results show that the fused images obtained by the
proposed method have good expressiveness, and the time consumption is about 1.15 s for
each image with a resolution of 640 × 470. Although this is still insufficient for real-time
image processing, it is still much faster than the other advanced image fusion method.
To accelerate the processing speed, we designed a hardware circuit based on FPGA by
exploiting its parallel computation capacity, which can enhance the processing speed to
about 18 ms per image, thus realizing real-time output of the fused image. The FPGA-based
image fusion method may offer balanced performance between fusion speed and image
quality, which shows promise for real-life applications.
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