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Abstract: When tracking maneuvering targets, recurrent neural networks (RNNs), especially long
short-term memory (LSTM) networks, are widely applied to sequentially capture the motion states
of targets from observations. However, LSTMs can only extract features of trajectories stepwise;
thus, their modeling of maneuvering motion lacks globality. Meanwhile, trajectory datasets are
often generated within a large, but fixed distance range. Therefore, the uncertainty of the initial
position of targets increases the complexity of network training, and the fixed distance range reduces
the generalization of the network to trajectories outside the dataset. In this study, we propose a
transformer-based network (TBN) that consists of an encoder part (transformer layers) and a decoder
part (one-dimensional convolutional layers), to track maneuvering targets. Assisted by the attention
mechanism of the transformer network, the TBN can capture the long short-term dependencies of
target states from a global perspective. Moreover, we propose a center–max normalization to reduce
the complexity of TBN training and improve its generalization. The experimental results show that
our proposed methods outperform the LSTM-based tracking network.

Keywords: attention mechanism; maneuvering target tracking; recurrent neural network; transformer-
based network

1. Introduction

With the rapid development of the electronic information industry, target tracking
technology has been increasingly used in the military and civilian fields. The target tracking
task aims to estimate the state of the target based on data measured by sensors. It can be
classified into maneuvering and non-maneuvering target tracking, where “maneuvering”
refers to the case in which the target suddenly changes its motion state. For the tracking of
maneuvering targets, the interactive multi-model (IMM) algorithm, which uses multiple
models to fit complex motion states, is considered [1]. Therefore, many tracking algorithms
proposed subsequently were based on the IMM [2–4]. However, IMM-based algorithms
are associated with the mismatch problem between the set of models and the target motion
states. Furthermore, when the motion state of the target changes, a specific number of
observations must be accumulated, resulting in the model estimation delay problem [5].

The development of deep neural networks, especially recurrent neural networks
(RNNs) with memory ability, provides novel ideas to solve the problems of IMM-based
algorithms [6–9]. The RNN [10] and long short-term memory (LSTM) networks [11] can
estimate the state from the observation at each time step [6,12]. Nevertheless, the LSTM
and RNN can only process the input sequence sequentially, resulting in long-distance
memory fading problems [9]. Thus, the LSTM and RNN may reduce the correlation
between trajectory points at different locations, which subjectively influences the modeling
of maneuvering states. In addition, trajectory datasets are usually collected in a fixed-range
coordinate system and preprocessed with min–max normalization [8,13,14]. However, the
same maneuvering state in the dataset may correspond to trajectories with different initial
positions, which increases the complexity of network learning. Moreover, the fixed distance
range reduces the generalization of the network.
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In this study, to accurately model and estimate the states of maneuvering targets,
we propose a transformer-based network (TBN). Specifically, our proposed network ap-
plies the transformer network as an encoder to extract global features of the observation
sequence. Simultaneously, 1D convolutional networks are applied as a decoder to esti-
mate the state sequence from the features. Compared with the LSTM network, which
processes observations sequentially, the TBN associates the observations at all positions
and applies an attention mechanism to model their dependencies [15]. Thus, the features of
the observations can be represented independently without regard to their position in the
sequence [16–18]. Therefore, the TBN has better feature representation and global memory
ability than LSTM [18]. Moreover, a learnable positional embedding is added to the input
of the TBN to explore the temporal features of the observation sequence. Finally, a novel
center–max normalization is applied by the TBN to improve generalization. Compared
with the min–max normalization, our proposed center–max normalization transforms
the trajectories from a fixed to a relative coordinate system with the initial observation
point as the origin. The experimental results demonstrate that center–max normalization
considerably increases the generalization of the TBN to trajectories with different distance
ranges. Furthermore, center–max normalization also promotes the tracking performance of
the TBN by reducing the complexity of trajectory learning.

2. Problem Formulation

Based on the previous research on maneuvering target tracking [4,7,8,19], we mainly
considered point targets tracked by radar in the X-Y plane. Meanwhile, the problem
of target birth and death was not considered in this study. Therefore, we assumed that
zk is the observation vector and xk is the state vector at the kth time step. Specifically,
xk =

[
cx,k, cy,k, vx,k, vy,k

]
denotes the coordinates and corresponding velocities in the two-

dimensional scene, and zk = [θk, dk] denotes the azimuth and distance of the radar observa-
tion.

We intend to build a maneuvering target tracking model based on a deep neural
network. The input to the model is the observation sequence z1:K = {z1, z2, . . . , zK},
and the output is the estimated state sequence x̂1:K = {x̂1, x̂2, . . . , x̂K}, where K is the
total number of time steps. Given that target tracking is a regression problem, we used
the root-mean-squared error (RMSE) between the normalized ground-truth sequence
x∗1K =

{
x∗1 , x∗2 , . . . , x∗K

}
and the estimated sequence x̂∗1:K =

{
x̂∗1 , x̂∗2 , . . . , x̂∗K

}
as the loss

function [9] to evaluate the model:

Loss =

√√√√ 1
K

K

∑
k=1

(
x̂∗k − x∗k

)2. (1)

In practice, obtaining a sufficient number of trajectories is difficult. Thus, we simulated
segmented trajectories based on the state-space model (SSM) [20].

The SSM defines the state transition equation and observation equation as:{
xk = Fxk−1 + nk

zk = h(xk) + uk
(2)

where F is the transition matrix and nk is the transition noise. h is the nonlinear observation,
and uk is the observed noise.

In this study, two motion states were considered: constant velocity (CV) and constant
turn (CT), as mentioned in [8]. The transition matrix of CV and CT is defined as:

FCV =


1 0 τ 0
0 1 0 τ
0 0 1 0
0 0 0 1

 (3)
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FCT =


1 0 sin(wτ)

w
cos(wτ)−1

w
0 1 1−cos(wτ)

w
sin(wτ)

w
0 0 cos(wτ) − sin(wτ)
0 0 sin(wτ) cos(wτ)

 (4)

where w is the turn rate of the maneuvering target and τ is the sampling interval of the
observations. According to [21], the transition noise nk = [nc,k, nc,k, nv,k, nv,k] is calcu-
lated from: 

nc,k
nc,k
nv,k
nv,k

 =


τ2

2 0
τ2

2 0
0 τ
0 τ

 ·
[

αk
αk

]
(5)

where αk ∼ N
(
0, σ2

a
)

is the Gaussian noise caused by the maneuvering acceleration with
zero mean and standard deviation σa.

For radar tracking, Zk is defined as:

[
θk
dk

]
=

 arc tan
cy,k
cx,k√

c2
x,k + c2

y,k︸ ︷︷ ︸


h(xk)

+

[
uθ,k
ud,k

]

uθ,k ∼ N
(
0, σ2

θ

)
, ud,k ∼ N

(
0, σ2

d
)

(6)

where σθ is the standard deviation of the azimuth and σd is the standard deviation of
the distance.

3. Proposed Model

In this section, we discuss the components of the TBN in detail. In Section 3.1, we
introduce a trajectory normalization method named center–max normalization to improve
generalization. In Section 3.2, the structure of the TBN is presented. In Section 3.3, we
summarize the overall process of applying the TBN for maneuvering target tracking.

3.1. Center–Max Normalization

A trajectory of a maneuvering target is exhibited in Figure 1. The left of Figure 1
shows an observation sequence, which contains the distance and azimuth. To eliminate the
dimensional difference between the observations, z1K in the polar coordinates are converted
to z̃1K in the X-Y plane coordinates:[

z̃x,k
z̃y,k︸︷︷︸

]
z̃k

=

[
dk cos(θk)
dk sin(θk)

]
. (7)

Figure 1c shows a trajectory in the X-Y plane coordinates. The distance range and initial
position of the targets may vary extensively; thus, we propose a center–max normalization
mechanism to improve the generalization of the model and reduce the training complexity,
as shown in Figure 2. This can be formulated as follows:

z̃∗k =
z̃k − z̃1

Dmax
, k = 1, . . . , K (8)

where z̃∗k is the normalized observation at the kth time step, z̃1 is the initial value of z̃1:K,
and Dmax denotes the maximum distance that the targets can move within K time steps.
In Equation (8), the observation sequence is normalized to [−1, 1] by dividing by Dmax.
Subtracting z̃1, the observation sequence z̃1:K is represented in a relative coordinate system
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with z̃1 as the origin. Benefiting from center–max normalization, the TBN only needs to
focus on learning different maneuvers of the target without considering the influence of the
initial position. Therefore, the tracking of maneuvering targets by the TBN is not limited by
the detection range. Correspondingly, the ground-truth state sequence x1:K is normalized
as follows:

x∗1:K =
x1:K − cx

Xmax

cx = [z̃x,1, z̃y,1, 0, 0] (9)

Xmax = [Dmax, Dmax, Vmax, Vmax]

where x∗1:K is the normalized state sequence, cx is the centering vector corresponding to
x∗1:K,

[
z̃x,1, z̃y,1

]
is the position component of z̃1, and Vmax is the maximum speed of the

simulation targets.

Figure 1. The observation and ground-truth of a trajectory. The (a) is the azimuth observation
sequence of the trajectory. The (b) is the distance observation sequence of the trajectory. The (c) is the
observation and ground-truth sequence in the X-Y plane coordinate system.

Figure 2. Center–max normalization. After center–max normalization, the distance ranges of the
trajectories are transformed to [−1, 1] and the differences in the initial positions of the trajectories
are removed.
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3.2. Proposed Network

In sequence modeling tasks, the LSTM network sequentially extracts features. How-
ever, the transformer network uses the self-attention mechanism to process input data in
parallel, which can capture both local and global dependencies. Therefore, we innovatively
introduced it to the target tracking task to comprehensively capture the internal law of
target maneuvering. Our proposed TBN consists of positional encoding, N-stacked trans-
former encoder layers, and one convolutional decoder layer. Each transformer encoder
layer contains multi-head self-attention, a feedforward fully connected network, and two
residual connections after each of the previous blocks. For intuitive understanding, the
entire architecture of the TBN is shown in Figure 3.

Figure 3. Architecture of the TBN. Input data are normalized observation sequences z̃∗1:K . z̃∗1:K is first
mapped to s∗1:K , whose dimension is E× K by positional encoding. The encoder consists of N-stacked
multi-head self-attention and fully connected feedforward layers, which aim at extracting the features
of s∗1:K . The decoder maps E-dimensional feature vectors to the normalized state sequence x̂∗1:K by
two 1D convolutional layers.

3.2.1. Positional Encoding

In natural language processing tasks, the transformer network adds positional encod-
ing to the input tokens to represent their relative or absolute positions in the sequence [15].
However, in this study, the input to the TBN is numeric. Therefore, the learnable positional
encoding mentioned [22] is added to the input of the network as follows:

s∗1:K[i] =
{

wi z̃∗1:K + ϕi, if i = 0
F
(
wi z̃∗1:K + ϕi

)
, if 1 ≤ i ≤ E

(10)

where F is the sine function, wi and ϕi are learnable parameters that map z̃∗k to an E-
dimensional representation space, and s∗1:K[i] is the encoding result of the ith subspace.
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3.2.2. Multi-Head Self-Attention

Self-attention is the core of the TBN. First, the input encoding sequence s∗1:K ∈ RE×K of
self-attention is linearly mapped into the sequences “query” (Q), “keys” (K), and “values”
(V) as follows:

Q = WQ · s1:K

K = WK · s1:K (11)

V = WV · s1:K

where WQ, WK, and WV ∈ RE×E are learnable matrices.
Furthermore, Q, K, and V are split into M subsequences along dimension E, and M

attention heads are obtained by the interaction of the elements at any two positions in
each subsequence:

headm = soft max
(

QT
mKm√
dM

)
Vm, m = 1, . . . , M (12)

where Qm, Km, Vm ∈ REm×K and Em = E
M .

Finally, M attention heads are concatenated to compose the multi-head self-attention:

sattention = Concat(head1, . . . , headM). (13)

Thus, the network is allowed to capture more information from different representation
subspaces at different positions.

3.2.3. Feedforward Layer

After the multi-head self-attention, a feedforward layer consisting of two fully con-
nected layers is used to linearly transform each position of sattention.

In the decoder part, two 1D convolutional layers are used to output the final trajectory
estimation x̂1:K, and the parameters of the network are trained by minimizing Equation (1)
using the mini-batch gradient descent.

3.3. Maneuvering Target Tracking Based on the TBN

When the well-trained TBN is applied to track a complete trajectory, all observations
are first segmented with window length K = 10 and step size P = 5. These segmented
observation sequences are then normalized sequentially and passed to the TBN to estimate

the corresponding state sequence set
{(

x̂1+rP
1:K

)∗
, r ∈ (0, . . . , R− 1)

}
, where

(
x̂1+rP

1:K

)∗
de-

notes the normalized state sequence output at time step (1 + rP) and R is the number of

sequences. Subsequently,
(

x̂1+rP
1:K

)∗
needs to be denormalized as follows:

x̂1+rP
1:K =

(
x̂1+rP

1:K

)∗
� Xmax + cr

x, r = 0, . . . , R− 1 (14)

where cr
x is the centering vector of the rth state sequence. In addition, adjacent state

sequences x̂1+rP
1:K and x̂1+(r+1)P

1:K are merged together. Let x̄1+rP
1:2K−P denote the merge result

of two above-mentioned state sequences, whose length is 2K− P. Thus, the overlapped
regions of x̄1+rP

1:2K−P are calculated as follows:

x̄1+rP
P:K = 0.5

(
x̂1+rP

P:K + x̂1+(r+1)P
1:K−P

)
. (15)

Finally, all state sequences in the set
{(

x̂1+rP
1:K

)
, r ∈ (0, . . . , R− 1)

}
are merged in

turn to obtain complete state estimates. Figure 4 illustrates the overall tracking process,
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including the observations segmentation, center–max normalization processing, network
estimation, denormalization processing, and segmented state sequences concatenation.

Figure 4. Structure of the transformer-based maneuvering target tracking. The observation sequences
of targets are firstly segmented into subsequences z1:K of length K with step size P. After that, z1:K

are converted to z̃∗1:K by center–max normalization. Then, the TBN infers the normalized trajectory
x̂∗1:K from z̃∗1:K . In addition, z̃∗1:K are de-normalized to x̂1:K . Finally, the overlapped region of x̂1:K is
averaged and concatenated to obtain the estimation of the complete state sequences.

4. Experiments and Results

In this section, we list the parameters of the trajectory dataset and the TBN. Several
experiments were designed to test the tracking performance of our proposed model.

4.1. Implementation Details

Dataset: We generated 300,000 trajectories based on the SSM as a dataset. The param-
eters of the trajectory dataset are listed in Table 1. In addition, we assumed normalization
parameters: Dmax = 3 km, Vmax = 300 m/s, and targets were observed every 1 s.

Hyper–parameters: Our network consists of four encoder layers, with eight attention
heads. The dimension of E was 512. The output dimensions of the 1D convolutional
layer in the decoder were 64 and 4, respectively. The model was trained using the Adam
optimizer [23] with β1 = 0.9, β2 = 0.98, and ε = 10−9. The learning rate was linear warmed-
up for the first 10 epochs and decayed subsequently based on the dynamic adjustment
strategy mentioned in [15]. We trained 300 epochs with a batch size of 64 on a single
NVIDIA TITAN Xp GPU.

Baseline: We compared the TBN+center–max normalization (TBN+CM) model with
the IMM algorithm [19] and the LSTM+min–max normalization (LSTM+MM) tracking
model [8]. As a comparison, we also built the LSTM+center–max normalization (LSTM+CM)
model. The LSTM network consisted of four hidden layers with a dimension of 128, as
mentioned in [8]. The same dataset was used to train the above networks.
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Table 1. Parameters of the trajectory dataset.

Parameter Value

Distance range 1 km∼10 km
Angle range 0◦∼360◦

Velocity range −300 m/s∼300 m/s
Turn rate (w) −10 ◦/s∼10 ◦/s

The standard deviation of acceleration noise (σa) 2 m/s2∼8 m/s2

The standard deviation of azimuth noise (σθ) 0.1◦∼0.3◦

The standard deviation of distance noise (σd) 5 m∼8 m

4.2. Results

We first compared the performances of the LSTM+MM, LSTM+CM, and TBN+CM
based on a test set containing 20,000 segmented trajectories. The tracking results are listed
in Table 2. In Table 2, the position and velocity RMSEs of the LSTM+CM are smaller
than that of the LSTM+MM, which proves that our proposed center–max normalization
improved the tracking capability of the network by reducing the complexity of trajectory
learning. At the same time, the TBN+CM achieved the smallest position and velocity RMSE.
Thus, it can be concluded that the TBN yields better performance than LSTM when tracking
segmented trajectories.

Table 2. Numerical results of several methods for tracking segmented trajectories.

RMSE of Position (m) RMSE of Velocity (m/s)

LSTM+MM 16.27 6.75
LSTM+CM 14.43 5.14
TBN+CM 13.50 3.64

We then simulated a target with the initial states of [2 km, 2 km, 50 m/s, 0 m/s] and
steering rates equal to 0◦ and conducted Monte Carlo simulations to generate a 60-step
trajectory named A1. The target maneuvers had turn rates equal to −1◦ and 3◦ at the 10th
step and the 40th steps, respectively. In addition, the standard deviations of acceleration,
azimuth, and distance noise were set to 5 m/s2, 0.2◦, and 5 m. We evaluated the TBN+CM,
LSTM+MM, LSTM+CM, and IMM algorithms on trajectory A1. The tracking results are
listed in Table 3 and Figure 5.

Table 3. Numerical results of several methods for tracking trajectory A1.

RMSE of Position (m) RMSE of Velocity (m/s)

IMM 14.54 6.35
LSTM+MM 11.82 4.64
LSTM+CM 10.30 3.47
TBN+CM 9.33 2.04

Among the listed figures, Figure 5a shows how well the algorithms tracked the target.
Figure 5b,c show the pointwise RMSE of trajectory A1. Furthermore, the average RMSEs
of trajectory A1 are listed in Table 3. In Table 3, the RMSEs of the LSTM+CM are smaller
than those of the LSTM+MM, which proves that our proposed center–max normalization
improved the tracking capability of the network by reducing the complexity of trajectory
learning. At the same time, the bolded results in Table 3 indicate that TBN+CM had
the smallest tracking error. The experiments above demonstrated the superiority of the
TBN+CM in tracking maneuvering targets.
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(a)

(b)

(c)

Figure 5. The result of tracking a maneuvering target by the TBM+CM, LSTM+MM, LSTM+CM, and
IMM algorithms. (a) Tracking trajectory in the X-Y plane. (b) Pointwise position RMSE. (c) Pointwise
velocity RMSE.

In addition, the initial position of trajectory A1 was moved to [12 km, 12 km] and
[15 km, 15 km] to obtain trajectories A2 and A3. We conducted generalization exper-
iments on trajectories A2 and A3, as listed in Table 4. The bolded results in Table 4
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demonstrated that our proposed TBN+CM can generalize to tracking trajectories beyond
the preset distance. However, the LSTM+MM led to tracking failure due to its fixed
normalization mechanism.

Table 4. Results of tracking trajectories at different initial positions.

RMSE of Position (m) RMSE of Velocity (m/s)

TBN+CM LSTM+MM TBN+CM LSTM+MM

A2 9.94 146.14 2.08 56.19
A3 9.15 295.71 2.03 78.92

5. Conclusions

In this study, we employed the attention mechanism of the transformer network to
extract a comprehensive tracking of trajectories and finally developed a novel network
named the TBN for radar target tracking missions. Furthermore, our proposed center–max
normalization improved the generalization of the network by processing observations
in a relative coordinate system. It can be seen from the experimental results that, when
tracking maneuvering targets, our proposed TBN model obtained lower RMSEs of position
and velocity than the LSTM model, and the TBN model can still work normally when the
observation sequence is missing; however, the LSTM model will not be available. There-
fore, our algorithm outperformed existing LSTM-based tracking networks and traditional
algorithms.
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