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Abstract: In this paper, human step length is estimated based on the wireless channel properties
and the received signal strength indicator (RSSI) method. The path loss between two ankles, called
the on-ankle path loss, is converted from the RSSI, which is measured by our developed wearable
hardware in indoor and outdoor ambulation scenarios. The human walking step length is estimated
by a reliable range of RSSI values. The upper threshold and the lower threshold of this range are
determined experimentally. This paper advances our previous step length measurement technique
by proposing a novel exponential weighted moving average (EWMA) algorithm to update the
upper and lower thresholds, and thus the step length estimation, recursively. The EWMA algorithm
allows our measurement technique to process each shorter subset of the dataset, called a time
window, and estimate the step length, rather than having to process the whole dataset at a time.
The step length is periodically updated on the fly when the time window is “sliding” forwards.
Thus, the EWMA algorithm facilitates the step length estimation in real-time. The impact of the
EWMA parameter is analysed, and the optimal parameter is discovered for different experimental
scenarios. Our experiments show that the EWMA algorithm could achieve comparable accuracy
as our previously proposed technique with errors as small as 3.02% and 0.30% for the indoor and
outdoor scenarios, respectively, while the processing time required to output an estimation of the
step length could be significantly shortened by 53.96% and 60% for the indoor walking and outdoor
walking, respectively.

Keywords: step length estimation; RSSI; exponential weighted moving average; path loss

1. Introduction

As an essential component in ambulation and gait analysis, the step length appears to
be informative in many aspects of life. First and foremost, the step length works as a health
indicator, which could aid the diagnosis of injuries and reflect underlying diseases, such
as the falling risk [1,2], the prediction of slip severity [3], and the risk of pre-disability [4].
Gait parameters, including step length, step width, cadence, as well as gait speed, can also
reflect the fitness of young adults [5]. Moreover, step length and walking speed reflect the
mortality and predict the living years of senior citizens to some extent [6,7]. In addition,
correctly estimating the step length could contribute to personal localisation, especially
in the indoor environment where the Global Positioning System (GPS) is inaccurate or
unavailable [8]. Ultimately, step length estimation could also assist the measurement of the
social distances between individuals, which could, in turns, help enforce the practice of
social distancing [9].

The problem of step length estimation can be traced back to the problem of distance
estimation. Meanwhile, stride length is a different, but related parameter, which could be
roughly estimated by doubling the step length in a symmetrical walking pattern. Thus,
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in this section, we review some related works on either step length or stride length measure-
ments. Current gait assessments used by physical therapists are subjective and restrictive,
as gait parameters are traditionally observed and recorded by trained professionals and
equipment that is costly and not easily accessible [10]. Meanwhile, the testing procedure
only lasts for a short period, which could result in inconsistent performance and, thus, may
lead to inaccurate conclusions [11]. Thereby, a system or method that can monitor and
assess human step length in a continuous daily manner, offering reliable and quantifiable
estimation, is worth exploring. In general, step length can be estimated based on three
systems, namely the instrumented walkway systems, the vision-based systems, and the
wearable device-based systems.

The walkway-based method, such as the instrumented walkway or instrumented tread-
mill, utilises pressure sensors embedded in mats where participants can get tested while
walking on the specifically designed floor covering [12–14]. For example, the GAITRite
portable mat is a commercially available walkway, which is able to collect data in real-
time for instant processing [15]. It relies on embedded pressure sensors to detect the foot
positions of the subject under test. This kind of device has been tested reliably in the mea-
surement of the temporal and spatial parameters of gait analysis among both young and
old generations [12,16]. The walkway-based measurement is welcomed in certain indoor
environments, such as hospitals, clinics, rehabilitation centres, and laboratories, where the
sensing mat is laid specially to measure a group of instant gait characteristics and to warn
about any abnormal walking behaviours. However, as the walkway system is confined by
locations, it is neither cost efficient nor realistic to pave the sensing mat ubiquitously for
assessment on a daily basis. Thus, instead of a long-term observation, the sensing mat is
only suitable for collecting data in a certain walking session as the participant must walk
on the fixed mat in a specific testing premise.

Vision-based monitoring systems have been widely applied around the world. The key
feature of vision-based step length detection and estimation is the image processing, which
can be performed through cameras and/or infrared radiation (IR) devices. The camera-
based system could provide a solution to continuous daily monitoring, which can be used
to track individuals’ gait patterns and estimate their step lengths [11,17–27]. A single
camera was used in [11] to track the motions of the person under test. The stride length
can be estimated by detecting and extracting several pieces of perspective information
related to predefined markers. The authors in [28] proposed a two-camera system to
extract valuable gait parameters, including the walking speed, step time, and step length.
Experimental data were collected from both a laboratory and from senior housing. It was
found that subjects performed walking differently in the laboratory and in the senior house.
The differences could be as large as 21% in walking speed, 12% in step time, and 6% in
step length estimation. Thus, the importance of measuring and estimating the human step
length in a real living environment is highlighted. The method of IR thermography was
applied in [29] to detect the gait patterns of humans with the estimation errors in the range
9–22%.

Vision-based monitoring systems have several limitations as follows. Firstly, the mon-
itoring cameras or IR devices are required to be installed at a specific place so that the
line-of-sight (LoS) path exists, which then limits the horizon of the observation and the
range of the movements of the person under test. This is because the participants have
to move in a way that the trajectory of the movement is perpendicular to the direction of
the camera lens. Measurements in specific, confined locations also have different results
compared to those in normal living locations, as shown in [28]. Secondly, their accuracy
is affected by obstacles appearing between the cameras or the IR devices and the person
under test. Thirdly, the operation of cameras arouses concerns regarding privacy intrusion.
Fourthly, because the usage of cameras and IR devices requires well-trained staff and pricey
equipment, it is not an ideal method for step length measurements on a daily basis.

The step length estimation using wearable devices is gaining much interest, and the
RSSI-based systems (either using RSSI alone or in combination with other approaches
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such as an inertial measurement unit (IMU)) facilitate the estimation of the step length
under different channel models for both indoor and outdoor environments. Step length
could be estimated by employing sensors on many body parts. For example, Reference [30]
proposed a system that places an IMU sensor on one side of the pelvis. To estimate the
step length bilaterally during walking with a single IMU, the authors proposed a novel
signalling method by combining a Kalman filter and an optimal filtered direct-and-reverse
integration. Results showed that the step length can be estimated for all subjects with
errors being less than 3%. Another work [31] focused on long-term monitoring of stride
length and gait speed. In [31], a simple geometric model was proposed to estimate the
stride length based on the leg length and the opening angle during the stride. To measure
this angle, a gyroscope sensor was mounted on the thigh. However, the proposed model
had modest accuracy with a ±15% maximum relative error in the estimation of walking
velocities. The authors in [32] proposed a novel step detector, which makes use of the
opening angle of the leg. It was found that the step length and the opening angle can be
formulated with a linear regression model, and the estimated step length error was about
10.37 cm. The research in [33] studied the influence of different factors on the step length
and walking speed estimation. By using the Gaussian process regression, with external
acceleration to calibrate the measurements, the mean absolute errors for the waist-mounted
and ankle-mounted systems were 4.5% and 4.9%, respectively.

The wearable-device-based systems mentioned above have that common drawbacks
that the mounting places of the wearable devices have a strong impact on the accuracy
of the step length and the RSSI is sensitive to the shadowing effect caused by the human
body parts.

In our previous work [34,35], we proposed a step length measurement technique that
can overcome the limitations on health-concerning, space-confined, shadowing sensitivity,
and daily usage of the aforementioned existing methods. Our technique works based on
our developed radio frequency (RF) wearable transceivers, our experimental path loss
model, and our proposed data filtering method. The results of our previous work showed
that the proposed empirical path loss model between two ankles along with the proposed
filtering method in [34,35] could estimate the average human step length with a centimetre
error. For example, the step length estimation errors in [34] were only 10.15 mm for indoor
walking, 4.40 mm for indoor jogging, 4.81 mm for outdoor walking, and 10.84 mm for
outdoor jogging, respectively. However, a limitation of those techniques is that we need
to collect the dataset for the whole intended period and then proceed to the offline data
processing phase, rather than processing data to estimate the step length and constantly
updating this estimation while the person under test is moving. As a result, our previous
technique does not facilitate real-time measurements.

Overcoming this limitation is the main motivation of this paper. More specifically,
to guarantee both the accuracy and efficiency of the step length estimation and to simulate
real-time processing, we propose a novel exponentially weighted moving average (EWMA)
technique to continuously estimate the average step length and keep updating this estima-
tion over a shorter period of time. Thereby, the dynamic essence of human activities could
be captured more accurately than the simple average used in our previous techniques.
The problem at hand is to accurately estimate the human walking step length in real-time
so that individuals’ walking patterns could be tracked and updated in a timely manner.

The main contributions of this paper are summarised as follows:

• A novel EWMA algorithm is proposed to determine the threshold pair of the path loss
and to update the estimated step length for each segment (or time window) of the
dataset. Though the data values are collected offline, the proposed EWMA algorithm
provides a perspective to simulate the step length estimation process in real-time.

• The optimal upper threshold for updating the step length estimation for both indoor
and outdoor walking scenarios was examined.

• The step length estimation results showed that the accuracy of the proposed EWMA al-
gorithm for indoor walking had a centimetre-level error, which is close to the esti-
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mations in our previous works. Interestingly, for outdoor activities, the proposed
technique could further minimise the error to only a few millimetres, which is as small
as 0.30% of the real step length.

• The processing time of the proposed EWMA algorithm was analysed in comparison
with that of our previous work in [34]. Our experiments showed that the proposed
EWMA algorithm could save up to 53.96% and 60% of the time required to estimate a
step length for the indoor and outdoor walking scenarios, respectively, while it can
still provide accuracy comparable to our previous technique.

The rest of this paper is organised as follows. An overview of the moving average
algorithms is provided in Section 2. Section 3 presents the experimental setups, including
the hardware and software. Section 4 introduces the experimental system model and the
proposed EWMA method. The experimental results containing the analysis and evaluation
are detailed in Section 5, for both indoor and outdoor environments. Lastly, Section 6
concludes this paper.

2. Heuristic Algorithm: Moving Average

The moving average is a favoured tool in statistics for calculating and analysing data
by creating a series of averages of different subsets of the full dataset. There are several
methods, including simple moving average (SMA), weighted moving average (WMA),
and exponential moving average (EMA).

The SMA is the unweighted mean of a numbered data stream. The SMA of a dataset
containing n points is calculated as

SMA =
1
n

n

∑
i=1

pi, (1)

where pi is the i-th data point, and every point contributes the same importance to the
outcome. SMA was the strategy that we utilised in our previous work [34] to estimate the
step length over a dataset. Statistically, SMA is straightforward and relatively accurate
when data points do not experience much fluctuation, yet the key limitation is that all data
points must be included in the assessment even for those out-of-date ones.

The basic idea of the WMA is as follows. The weighted average is an average that has
multiplying factors to give different weights to the data at different positions in the sample
time window. Mathematically, it is calculated by multiplying the value of the given data
by its associated weighting and totalling the values. In general, WMA assigns a heavier
weight to more current data point and less to the past ones. This is because the recent data
are more relevant than the data points in the past. The WMA for a time window of n data
points can be expressed as

WMA =
qn pn + qn−1 pn−1 + ... + q2 p2 + q1 p1

n(n+1)
2

,

=
∑n

i=1 qi pi
n(n+1)

2

, (2)

where qi is the weight of each data point pi, and ∑n
i=1 qi = 1.

An EMA is also known as an EWMA. The EWMA for a series Y could be calculated
recursively as

EWMAt =

{
Y0, t = 0
qEWMAt−1 + (1− q)Yt, t > 0

(3)

where the coefficient q represents the degree of weighting. It is a constant smoothing factor
between 0 and 1. The effect of old data samples in Equation (3) reduces exponentially
fast. A smaller q discounts the past observations faster. Yt is the value at a time period t,
and EWMAt is the value of the exponential weighted moving average at the time period t.
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Though the basic smoothing provided by the SMA may be effective for a finite number
of data, it is concerning that the effects of lags in the data may reduce the responsiveness of
the moving average indicator. The WMA and EWMA are more responsive to the change
of data as they rely more heavily on the freshest data and place less value on older ones.
This suggests that the EWMA might be a better approach to estimate the step length in a
daily human activity. As a result, this paper proposes a novel EWMA algorithm to estimate
the step length in both indoor and outdoor walking scenarios. It is worth noting that
the pure EWMA technique already exists, but has not been used in step length estimations.
Thus, our paper is the first work that uses the EWMA technique to estimate step length.
In addition, apart from updating the mean value µ and the standard deviation value σ in
each time window as in the pure EWMA technique, the upper threshold of our data filtering
technique is found to be in the form of µ+γσ. To estimate the human step length accurately,
the optimal value of γ also needs to be explored. The whole process of estimating µ, σ,
γ, and thus, the upper threshold of the corresponding time window is called our novel
EWMA algorithm.

3. Experimental Setup

In this paper, the experiments were carried out by deploying the same hardware,
as well as software and under the same environments as in [34,35]. This means that two
Arduino UNO microprocessors were programmed by the Arduino Integrated Development
Environment (IDE) as a transmitter (coordinator) and a receiver (end device), respectively.
XBee-PRO S2C wireless module chips were configured by the XBee Configuration & Test
Unit (X-CTU) software, including destination and source addresses, interface data rate,
and power level. A signal will be transmitted with the power of P0 = 0 dBm, at a rate
of 9600 bps, from the coordinator to the end device. The operating frequency of the RF
modules is 2.4 GHz in the Industrial, Scientific, and Medical (ISM) band [36], which is also
one of the carrier frequencies of the IEEE standard recommended for wireless body area
networks [37]. The data samples are received and stored in a micro SD card, then imported
to and analysed in Matlab.

After assembling the transceiver hardware, whose components are shown in Figure 1,
the equipment will be attached to the medial side of human ankles at the same height h,
as illustrated in Figure 2. The distance between the two antennas of the transceivers in
Figure 2 is defined as the real step length d0.

Figure 1. Components of the transceivers.
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(a) Side view (b) Top view

Figure 2. Schematic diagrams of the on-ankle transceivers.

The indoor experiments were conducted along a corridor in one of the university
buildings, while the outdoor ones were performed on pavement next to a car park, which
can be considered as an open area, as shown in Figure 3. To improve the data reliability,
unlike our previous experiments, more data values were collected for the work in this
paper. In the previous works [34,35], each dataset contained ten separate experiments.
One experiment only recorded the RSSI of a one-way direction walking or jogging. In this
section, we significantly increased the size of each dataset by prolonging the experimental
procedure in terms of time and distance.

(a) Indoor. (b) Outdoor.

Figure 3. Experimental environments.

With the purpose of making the path of the experiment identifiable and improving the
reliability of the work, the route was traced with conspicuous cords stuck on the ground.
As shown in Figure 4, the path had the shape of a rectangle, with two semi-circles on its
left and right sides with a radius of r = 0.96 m. The length of the long edge of the rectangle
was l = 32.53 m. The person under test was instructed to walk along the marked route.
There were three remarks in the experimental procedure. First, in order to collect a dataset
with continuous and abundant samples, the subject under test was required to walk along
the path for twenty rounds in each experiment session. The total number of walking steps
was counted to calculate the average walking step length d0, which was used as a ground
truth. Second, the participant performed the walk at a normal and steady pace at all times,
especially during the arc areas, and did not make sharp turns at the semi-circle portions to
ensure that the stride would not experience significant fluctuation. Third, new or newly
charged rechargeable batteries were used before commencing a new set of experiments to
guarantee the completeness of the data collection and the data reliability. Considering the
time duration of each experiment and two AAA batteries powering the hardware, there
might be excessive discharging of the two AAA batteries after each set of experiments.
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Figure 4. Schematic diagram of the experiment route.

4. System Model

As mentioned above, the transmitter and the receiver were fastened to the inner
side of the ankles of the participant; thereby, an LoS path existed between the equipment
throughout the time of the experiment. Moreover, no body tissue or other obstacles would
appear between the transceivers; thus, the space between the two ankles could be regarded
as a nearly free space. An experimental path loss model that measures the path loss between
human ankles in daily activities was proposed in [35].

It could be described as a modified free space path loss model with a correction
factor ∆PL:

PLOA(dB) = PLFS + ∆PL, (4)

where PLFS (dB) is the free space path loss and ∆PL (dB) is the correction factor, which
consists of the hardware non-linearity, multipath propagation, insertion loss, and mismatch
loss. From the observations in [35], the correction factor was empirically found as 10 dB.
Therefore, Equation (4) can be written as

PLOA(dB) = PLFS + 10. (5)

It is noted that the free space path loss is numerically defined as

PLFS(dB) = 20 log10

(
4πd

λ

)
, (6)

where d (m) is the distance between the two antennas and λ (m) is the signal wavelength.
From Equations (5) and (6), this distance could be estimated as

d =
λ

4π
10

(
PLOA(dB)−10

20

)
. (7)

Seen from the end device, the on-ankle path loss can be calculated as

PLOA(dB) = Pt − Pr + Gt + Gr,

= Pt + RSSI, (8)

where Pt (dB) and Pr (dB) are the transmitted power and the received power, respectively.
Note that Pr (dB) is a negative value. Gt (dB) and Gr (dB) are the antenna gains of the
transmitter and the receiver. RSSI = −Pr + Gt + Gr, and the RSSI is presented as a positive
decibel value from our experiments.

From Equations (7) and (8), the distance between the two transceivers is

d =
λ

4π
10

(
Pt(dB)+RSSI(dB)−10

20

)
. (9)

To improve the accuracy of the step length estimation, a filtering technique was
proposed in our paper [34] to remove path loss outliers by establishing a pair of path loss
thresholds. Any path loss that is greater than the upper threshold or smaller than the lower
threshold would be abandoned. The path loss values within the two thresholds were used
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to estimate the step length. The lower threshold was found to correspond to the point at
which the survival rate of the dataset dropped to 0.68 [34]. The upper threshold was found
from the second hump of the probability density function (PDF) of the measured data [34].
This hump could be approximated as a Gaussian distribution:

f2(x) = a2e−(
x−b2

c2
)2

, (10)

where a2, b2, and c2 are all curve-fitting coefficients, whose values could be estimated by
mathematical software, such as Matlab. a2 is the amplitude and b2 the centroid, while c2
relates to the peak width of the Gaussian distribution. These coefficients have a relation
with the mean µ and the standard deviation σ of the second hump based on the above
Gaussian distribution in Equation (10) as follows:

µ = b2, (11)

σ =
c2√

2
. (12)

As mentioned in [34], the corresponding upper threshold was found as µ + γσ, where γ is
the key factor in specifying the upper threshold.

The aim of this paper was to estimate the walking step length and update the esti-
mation after each certain time period. This time period is the duration of each sliding
time window. Thus, the collected RSSI dataset was truncated into different time windows
twi, (i = 1, 2, ..., k). The upper threshold of each time window twi is determined as

Th(u)i = µi + γσi. (13)

Meanwhile, the lower threshold is fully dependent on the current time window sample:

Th(l)i = Th(l)sample, (14)

where Th(l)sample is the lower threshold value calculated for the current time window. Th(l)sample
is determined at the point where the survival rate of the data in this time window falls to
0.68. We propose here an EWMA algorithm, where the mean µi and standard deviation σi
in Equation (13) for the time window twi are calculated recursively as

µi =

{
µsample, i = 1
αµi−1 + (1− α)µsample, i ≥ 2

(15)

σi =

{
σsample, i = 1
βσi−1 + (1− β)σsample, i ≥ 2

(16)

where the subscript sample indicates the corresponding value for the current time window.
In the following analyses, the influence of γ will be explored in different environments.

5. Experimental Results

In this section, human daily walking activities are examined in both indoor and
outdoor environments. The datasets of the path loss values were collected to estimate
the participant’s walking step length in both scenarios. Besides, the influence of the key
parameter, γ, on the upper threshold in Equation (13) was investigated, assuming that
the weights α and β in Equations (15) and (16) are α = 0.125 and β = 0.25, respectively.
The values α = 0.125 and β = 0.25 were chosen for illustration purposes. They had small
values to have more impact on the current sample values of µ and σ, denoted as µsample and
σsample, on the average values of µ and σ. The rationale was that the current data samples
were more significant than the old samples in the human step length estimation. Recall
that µsample and σsample are the mean and standard deviation, respectively, which could
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be found from the second Gaussian hump of the current time window. Research on the
optimal pair of α and β in step length estimations is beyond the scope of this paper.

In each indoor or outdoor scenario, two datasets were collected for the completeness
of the experiments. Hence, there were four datasets in total, and the real walking step
length of each dataset is shown in Table 1. It is noted that the average walking step
length for men and women is 2.5 feet and 2.2 feet, respectively [38]. In reality, step length
may be impacted by several factors, such as height, age, injury, illness, terrain, and the
environment surrounding the subject under test. Generally, the walking step length for
adults is within the range of 67.1 cm to 76.2 cm on average [38]. As a result, in this paper,
our measurements and analyses focused on the range of step length from 0.6 m to 0.8 m.
In Table 1, the range of the real walking step length of the person under test was from
0.66 m to 0.68 m, which lies in our range of interest. In addition, in the same experimental
scenario, during both experiments, the person under test walked along the pre-defined
route at a normal speed for twenty rounds to collect sufficient data samples. Though the
measurements were carried out in the same scenarios, there was still a slight discrepancy of
the total walking time in different measurement trials. Therefore, the number of collected
data samples varied, resulting in the different numbers of time windows among different
experiments. Considering a time window size of 60 s, corresponding to 3000 samples per
time window, each of these datasets had 11 to 15 time windows. It is noted that, due to the
slight difference of total walking time and the difference of the hardware synchronisation
time, the number of collected data samples, thus the number of time windows, may vary
among different experiments. Moreover, compared to the experimental datasets in [34],
the datasets in this paper contained twice the amount of data.

Table 1. Real walking step length and the number of time windows in the datasets.

Dataset Description Real Walking Step Length (m) Number of Time Windows

1 Indoor walking 1 0.6627 12
2 Indoor walking 2 0.6844 11
3 Outdoor walking 1 0.6633 15
4 Outdoor walking 2 0.6561 11

The benefit of increasing the size of the datasets is twofold. Firstly, it overcomes the
limitation of the data samples in the previous experiments (around 15,000 samples in each
experimental scenario), which may not be sufficient for applying the sliding time window
and the EWMA. Secondly, the reliability of the collected data is likely to be improved with
a more extensive dataset.

5.1. Indoor Walking

In our previous study [34], the histogram of the on-ankle path loss can be well ap-
proximated by a two-term Gaussian fitting curve model, whose second hump is closely
related to the maximum path loss, which helps estimate the step length. An innovative
filtering technique was proposed in [34] to filter out the path loss outliers by setting a pair
of thresholds, namely the lower and upper thresholds. Recalling from our previous work
in [34], the lower threshold could be numerically found as the corresponding path loss
value when the survival rate of the dataset reaches 0.68. Meanwhile, the upper threshold is
located on the right side of the second hump, and its value is a function of the mean and
standard deviation of the second Gaussian hump, which can be expressed as

Th(u) = µ + σ, (17)

which indicates γ = 1 in [34]. In this paper, along with the proposed EWMA algorithm, we
also investigated the optimal range of γ to obtain a more accurate step length estimation
following Equation (13).
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Figure 5 compares the absolute error between the real step length and the averaged
estimation, calculated for the last time window (tw12), with respect to the variation of γ
from 0 to 1 for the indoor walking case based on dataset 1. The marker on each error bar in
Figure 5 represents the average estimated absolute error, while the two caps present the
variation of the estimated absolute error around the average value, i.e., the deviation of the
estimation. The result showed that, when only the last time window tw12 was considered,
the absolute error (AE) dropped constantly from 0.18 m at γ = 0 to nearly 0.02 m at γ = 0.8.
This error remained stable at γ = 0.9 and then slightly rose at γ = 1.

Figure 5. Indoor walking (dataset 1): absolute error of the last time window (tw12) with respect to
γ ∈ [0, 1].

For more comprehension, Figure 6 plots the absolute error calculated for each time window
with γ = 0.1, 0.5, and 0.9 in a bar diagram. The same tendency as shown in Figure 5 can be
seen in Figure 6. For instance, at the last time window, AE(tw12)

(γ=0.1) > AE(tw12)
(γ=0.5) > AE(tw12)

(γ=0.9).

Figure 6. Indoor walking (dataset 1): absolute error with respect to time windows twi, i ∈ [1, 12].
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From the above experiment, it is clear that the optimal γ was located between 0.8 and
0.9 for indoor environments. For completeness, we plot a graph similar to Figure 5 for
dataset 2 for the same indoor walking scenario as shown in Figure 7. Clearly, the absolute
error calculated for the last time window decreased consistently with γ, and the optimal γ
was within the range [0.9, 1.0]. Further, it is confirmed in Figure 8 that the optimal γ of this
dataset was 0.9, and the absolute error could be as small as 0.064 m.

Figure 7. Indoor walking (dataset 2): absolute error of the last time window (tw11) with respect to
γ ∈ [0, 1].

Figure 8. Indoor walking (dataset 2): absolute error with respect to time windows twi, i ∈ [1, 11].

As a result, the optimal γ for calculating the upper threshold for an indoor walking
activity in Equation (13) was found to be 0.9, which is relatively close to the sub-optimal
value γ = 1 chosen in [34]. The above estimation error could be as small as 3.02% of the
real step length.
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5.2. Outdoor Walking

Regarding the outdoor case, it was predicted based on [34] that the optimal γ could
be around 0.5, because the multipath effect is less serious than the indoor case. This was
confirmed by our experiments as detailed below.

Figure 9 presents the absolute error of the step length estimation with respect to γ for
dataset 3. From Figure 9, at the last time window tw15 of dataset 3, it was observed that the
estimated absolute error reduced to only 0.002 m when γ was within the range [0.5, 0.7].
Figure 10 depicts the absolute error of the step length estimation with respect to the sliding
time windows for dataset 3. From this figure, it is clear that the best γ for the outdoor
walking scenario was around 0.5, which turned out to be the same value chosen in [34].

Figure 9. Outdoor walking (dataset 3): absolute error of the last time window (tw15) with respect to
γ ∈ [0, 1].

Figure 10. Outdoor walking (dataset 3): absolute error with respect to time windows twi, i ∈ [1, 15].
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For completeness, Figures 11 and 12 present the estimation errors of another dataset
of outdoor experiments, namely dataset 4. From Figure 11, it is noticed that the line graph
shares the same trend as that for dataset 3 as presented in Figure 9. From the two figures,
the smallest absolute error of the last time window tw11 was 0.0155 m when γ was within
the range [0.4, 0.5]. The step length estimation error for the outdoor scenario could be as
small as 0.30% of the real step length.

Figure 11. Outdoor walking (dataset 4): absolute error of the last time window (tw11) with respect to
γ ∈ [0, 1].

Figure 12. Outdoor walking (dataset 4): absolute error with respect to time windows twi, i ∈ [1, 11].

In order to confirm the validity, accuracy, repeatability, and reliability of our proposed
method, two more experiments were conducted to collect bigger datasets than the four
datasets 1–4 mentioned previously in our analysis, for indoor and outdoor walking sce-
narios, respectively. The two newly collected datasets, namely datasets 5 and 6, contained
18 time windows each. The absolute step length measurement errors calculated based on
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the last time window tw18 for datasets 5 and 6 are shown in Figures 13 and 14 for the indoor
and outdoor walking scenarios, respectively.

Figure 13. Indoor walking (dataset 5): absolute error of the last time window (tw18) with respect to
γ ∈ [0, 1].

Figure 14. Outdoor walking (dataset 6): absolute error of the last time window (tw18) with respect to
γ ∈ [0, 1].

Figures 13 and 14 show that the new results agree with those mentioned previously
in the paper. Let us consider Figure 13 for illustration. The real step length for dataset 5
is 0.6679 m. As shown in this figure, when γ varied, the smallest absolute step length
measurement error of 0.0127 m, i.e., 1.90% of the real step length, could be achieved when
γ was in the range [0.8, 1]. Similarly, in Figure 14, the smallest absolute measurement error
of 0.0096 m, i.e., 1.45% of the actual step length (0.6599 m), could be achieved when γ was
in the range [0.4, 0.5]. These optimal γ ranges and the centimetre-level accuracy are similar
to those mentioned previously for datasets 1–4.
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To sum up, from the six groups of experiments, it was possible to achieve a centimetre-
scale absolute error in step length estimation for both indoor and outdoor walking scenarios.
Furthermore, the estimated absolute error of the outdoor walking case could be as small
as a few millimetres (cf. Figures 9, 10, and 14). In general, the step length estimated
in the outdoor walking scenario was more accurate than in the indoor walking one, as
shown in Table 2. For instance, for indoor walking, from datasets 1, 2, and 5, the smallest
absolute estimation error between the real step length and corresponding estimated step
length was 0.0127 m. Meanwhile, for outdoor walking, the largest absolute step length
estimation error based on the datasets 3, 4, and 6 was just 0.0155 m. It was observed that
the estimated step length had a centimetre-level error for indoor scenarios, whereas it had
a sub-centimetre-level error for outdoor ones. This observation agrees with the finding in
our previous work in [34], where the SMA method was applied and the absolute error was
10.15 mm and 4.40 mm for indoor and outdoor walking, respectively. The comparative
results validated the hypothesis proposed in this paper, that the proposed EWMA algo-
rithm could be employed to update the upper threshold periodically. The estimated step
length within each time window was estimated based on the updated pair of thresholds.
The estimation accuracy was slightly worse than the experimental outcomes in [34] be-
cause the data being used in each time window were downsized. However, the proposed
EWMA algorithm is promising because it allows real-time step length estimation without
sacrificing much accuracy.

Table 2. Comparison of the real step length, estimated step length, and absolute and relative
estimation error for both indoor and outdoor walking environments.

Environment Dataset Real Step
Length (m)

Estimated
Step Length

(m)

Absolute
Estimation
Error (m)

Relative
Estimation
Error (%)

Indoor
1 0.6627 0.6427 0.0200 3.12
2 0.6844 0.6204 0.0640 9.35
5 0.6679 0.6552 0.0127 1.90

Outdoor
3 0.6633 0.6613 0.0020 0.30
4 0.6561 0.6409 0.0155 2.36
6 0.6599 0.6503 0.0096 1.15

Recall that the work in [28] using a two-camera system had step length estimation
outcomes with an error of 6%. The estimation error in the IR thermography technique
is 9–22% [29]. By using the IMU sensor, the step length estimation error in the work [30]
was about 3%, while the work [33] mounted the wearable sensor on the wrists of the
subject under test, gaining an estimation error of 4.5%. From Table 2, the median relative
estimation errors for indoor and outdoor walking scenarios in our EWMA technique were
3.12% and 1.45%, respectively. Compared with the existing techniques, the proposed
EWMA algorithm could achieve a comparable or even better accuracy level in the step
length estimation, while overcoming some main limitations of the existing techniques,
which are discussed in Section 1.

5.3. Comparison of the Processing Time

Apart from the accuracy evaluation, the processing time, which is the time used
to estimate the step length, was analysed to assess the effectiveness and the feasibility
of the proposed EWMA algorithm. In this section, we compare the processing time of
our measurement technique in the cases of with and without applying the proposed
EWMA algorithm. It is noted that the measurement technique without applying the
EWMA algorithm is the technique proposed in [34]. For a fair comparison, we used
datasets of the same sizes. The datasets were those for the indoor and outdoor walking
experiments in [34], which had 6 time windows and 4 time windows, respectively. Each
time window comprises 3000 data samples. The processing time to output a value of the
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step length depends on the number of samples of the datasets to be used each time and
whether the EWMA algorithm is used. The measurement technique in [34] requires the
use of the whole dataset to estimate the step length; thus, the processing time is large.
Meanwhile, the processing time is significantly reduced in the EWMA technique due to the
shortened time window.

The above conjecture is confirmed in Figure 15, which plots the average process-
ing time of step length estimation for the same dataset with and without the proposed
EWMA algorithm. In this figure, the white bars are the time required to estimate the step
length using the whole dataset without applying the EWMA algorithm in indoor and
outdoor activities. The green bars are the average time of step length estimation required
by the proposed EWMA algorithm to process each time window. This figure shows that
the processing time was significantly shortened by the EWMA algorithm for both indoor
and outdoor scenarios. Initially, the indoor walking case included more data samples than
the outdoor one; thus, the time used to estimate the step length for indoor walking would
be longer for outdoor walking without applying the proposed EWMA algorithm. However,
with the application of EWMA algorithm, the step length could be estimated and updated
in each time window. Based on the data samples collected from our previous work [34],
the average processing time to estimate a step length was 15.1 ms and 11.0 ms, respectively.
In particular, in the indoor walking scenario, the time required to estimate the step length in
each time window using the EWMA algorithm was only 46.04% of the total time required
for the step length estimation where the EWMA algorithm was not applied. For the outdoor
walking case, this number was 40%. In other words, the proposed EWMA algorithm not
only can provide comparable accuracy, but also shorten the processing time by 53.96% for
indoor walking and by 60% for outdoor walking, compared to our technique proposed
in [34].
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Figure 15. Comparison of the average processing time in the cases with and without the EWMA,
for indoor and outdoor walking scenarios.

6. Conclusions

In this paper, we estimated the human step length for daily indoor and outdoor
walking activities based on our developed wearable transceivers and the RSSI method.
The RSSI outlier filtering technique was refined with the proposed EWMA method, so that
the thresholds could be updated periodically while the person under test was walking.
As a result, the proposed EWMA algorithm facilitates the step length estimation in real-
time. In addition, this paper investigated the optimal γ value in the equation of the upper
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threshold Th(u) to minimise the estimation errors, by analysing the statistical properties of
the collected datasets. The results revealed that the optimal γ for an indoor environment
was about 0.9, while this value for an outdoor scenario was around 0.5. With the optimal
values of γ, step length estimation can be considered to be accurate with the estimation
errors being as small as 3.02% and 0.30% for the indoor and outdoor scenarios, respectively.
It is worth noting that this accuracy was achievable without the need to collect and process
the whole dataset, as discussed in [34]. In addition, by comparing the processing time
required to compute and output a step length estimation for the cases with and without
using the proposed EWMA algorithm, it was found that the new method could shorten this
processing time by 53.96% for indoor walking and by 56.72% to 60% for outdoor walking,
respectively. As a result, the EWMA algorithm could be a promising candidate technique
for measuring the step length in human daily activities in real-time.
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