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Abstract: In this study, a traumatic spinal cord injury (TSCI) classification system is proposed
using a convolutional neural network (CNN) technique with automatically learned features from
electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between
the proposed classification system and a classical classification method (k-nearest neighbors, kNN)
is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier)
is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the
evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an
agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis
monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from
the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG
features. The results suggest that the CNN provides a promising classification technique for TSCI,
compared to conventional machine learning classification. The kNN with hand-crafted EMG features
classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and
right-side muscles, respectively, while the CNN with the EMG segments classified the data with an
F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed
deep learning classification model (CNN), with its learning ability of high-level features using EMG
segments as inputs, shows high potential and promising results for use as a TSCI classification system.
Future studies can confirm this finding by considering more subjects.

Keywords: deep learning; machine learning; convolutional neural network; k-nearest neighbors;
electromyography; spinal cord injury; non-human primate

1. Introduction

Traumatic spinal cord injuries (TSCI) comprise a serious public health burden. World-
wide, it has been estimated that there are approximately 930,000 new cases a year, and
approximately 27 million people are currently living with TSCI [1]. Common causes include
motor vehicle crashes, sports injuries, falls, and interpersonal violence [2]. Patients may
experience a plethora of clinical deficits, which can be attributed to the injury of specific
fiber tracts [3]. Typical symptoms include limb weakness and sensory abnormalities, in
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addition to bowel and bladder dysfunction [4]. TSCI has a devastating effect on the physi-
cal, psychosocial, and emotional aspects of the patient and the caregivers [2]. Although
rehabilitation treatments have positively impacted patient independence, there exist limited
pharmacological approaches to mediate improvements in volitional limb control [4]. In
this context, the development of a valid non-human primate (NHP) model of TSCI with
an efficient assessment tool may assist in the identification and evaluation of candidate
therapeutic agents for this condition [4].

Electromyography (EMG) signals are bioelectrical signals generated from muscle fibers
during muscle contractions [5]. Skeletal muscle is composed of densely packed muscle
fibers innervated by motor neurons [6]. The motor fibers subtended by one motor neuron
are considered a motor unit (MU). Each muscle consists of multiple MUs, which act in a
graded and coordinated manner to generate a functional muscle contraction. To increase or
maintain the generated force of a muscle, the MUs fire repeatedly and generate a motor
unit potential train (MUPT). A detected EMG signal is composed of the superposition of
the generated MUPTs of all fired MUs and any accompanying interference signal, such as
background noise [7–9].

EMG signals were initially analyzed based on a number of spikes in the aggregate
signal [4], followed by more sophisticated approaches, such as those based on wavelet
analysis [10] and machine learning [11]. Consequently, in the present work, we propose a
new TSCI classification system using raw EMG segments and deep learning (DL) classifica-
tion through the use of a convolutional neural network (CNN). Moreover, a comparison
between the proposed classification system and a classical machine learning (ML) classifi-
cation technique—k-nearest neighbors (kNN)—is presented.

Despite the valuable information included in the recorded EMG signal, its complex
and non-stationary nature makes the process of extracting relevant features a challenging
task, particularly for a dynamic free muscle activity with different levels of contractions.
Recent advances in the AI field—particularly DL techniques—may help to overcome this
issue and promote new classification approaches. DL techniques are unique, in terms of
their learning ability for high-level features, which eliminates the need for the challenging
feature extraction process. Another key factor that makes DL more popular is the ability
to be used even with complex, wide, and unstructured data [12,13]. Although growing
attention has been given to the DL techniques, including CNNs, autoencoders (AEs),
and recurrent neural networks (RNNs) in the EMG motor control area, to the best of our
knowledge, the EMG-based classification system for neuromuscular disease is still a new
application, which has not been investigated previously. Therefore, it seems reasonable
to start investigating this type of learning style and compare it to conventional machine
learning techniques that have been studied extensively in the literature. CNN has been
used as a successful tool in various EMG motor control studies, achieving competitive
results compared to other machine learning classification techniques. Table 1 summarizes
the most recent applications of deep learning in the EMG classification field.
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Table 1. Previous works related to EMG signals and deep learning techniques.

# Month/
Year Study DL Model EMG Feature Application Conclusion

1 June/2019 [14]

Improved dual parallel
channels convolutional

neural network
(IDPC-CNN).

Spectral features of
sEMG

Fall detection
using sEMG

IDPC-CNN was
significantly better than
other applied methods

2 May/2019 [15] CNN Spectrogram
images

Pattern
recognition

CNN classification
accuracy of 88.04%

3 August/2018 [16] Regression CNN Raw EMG signal
Simultaneous

EMG
control

CNN-based system
outperformed

SVM-based system

4 August/2018 [16] Compact CNN Raw EMG signal Gesture
classification CNN outperformed SVM

5 January/2019 [17] CNN + transfer
learning

Raw EMG,
spectrograms, and
continuous wavelet
transform (CWT)

Gesture
classification

Transfer learning
enhanced the

performance of the
CWT-based CNN

6 October/2017 [18] CNN sEMG Gesture
recognition

CNN achieved an
average accuracy of

97.81%

7 July/2017 [19] CNN sEMG Pattern
recognition

CNN showed a better
performance compared

to SVM

8 February/2017 [20] CNN sEMG images Hand gesture
recognition

CNN was better than
LDA, SVM, kNN, and RF

(state-of-the-art
methods)

9 November/2016 [21] CNN sEMG images Gesture
recognition

CNN was better than
LDA, SVM, kNN, MLP

and RF

10 October/2016 [22] CNN sEMG
spectrograms

Robotic
arm

guidance

CNN achieved
state-of-the-art results

11 September/2016 [23] CNN Raw sEMG Pattern
recognition

CNN produced accurate
results with a simple

architecture, compared
to the classical methods

The overall objective of this research program is to design a valid NHP model of TSCI
with two goals: (1) measuring the initial impairment associated with an experimentally
created spinal cord lesion, and (2) measuring natural recovery without treatment and
recovery with treatment. This impairment was measured with respect to electromyographic
signals obtained from muscles affected by the experimental spinal cord injury. Stated in
another way, the EMG can be considered a neurophysiological biomarker. This paper
presents the results and analysis investigating the first goal using EMG signals with two
different classification techniques (kNN and CNN).

2. Materials and Methods
2.1. EMG Acquisition Setup and Protocol

The experimental methods were as described in detail elsewhere [3,4,10,11,24]. Briefly,
the subjects were adult Macaca fasicularis monkeys. All procedures were completed with a
sterile technique and under anesthesia. A transmitter was inserted, which recorded the
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EMG signal from the tail’s left and right flexor cauda longus and brevis muscles. An exper-
imental spinal cord lesion was created using an epidural catheter. The applied protocol
in this experiment was approved by the Institutional Animal Care and Use Committee
(IACUC) at Harvard University and the University of Wisconsin at Madison. This study
represents a novel analysis of the data utilizing a deep learning approach.

2.2. EMG Data Analysis
2.2.1. EMG Data Pre-Processing

In this section, the recorded raw EMG signals were filtered using a bandpass filter
(fourth-order Butterworth filter with lower and upper cut-off frequencies of 10 and 450 Hz,
respectively). Another filtering stage was implemented on the data using a notch filter
at 60 Hz, in order to eliminate the power line noise. Additionally, the input signal was
processed forward and backward, in order to resolve phase shift problems. The EMG signal
conditioning phase was implemented using MATLAB software (MathWorks, Natick, MA,
USA).

The filtered EMG signal for each individual day of the experiment was segmented into
a series of disjoint windows of size 1000 ms. A different number of EMG segments were
then tested as inputs to the classification system. After multiple trials, 53,350 pre-lesion
EMG segments and 135,300 post-lesion EMG segments, combined for all the subjects, were
chosen to be used as classifier inputs. This number was selected as a compromise between
the improvement in the classification accuracy and the time consumed. According to the
nature of the experiment, the collected data were imbalanced, as they were collected for
more days during the post-lesion period (90 days), compared to the pre-lesion period
(30 days). An imbalanced data set can lead to inaccurate classification results [25]. To
address this problem, the data set was balanced by applying the random over-sampling
technique in the pre-lesion class. The samples of the balanced data set were normalized
between 0 and 1 using min–max normalization, followed by splitting into training and test
sets in an 80:20 split.

2.2.2. Classification Techniques

Two different styles of classification techniques were employed for comparison. These
techniques are as follows:

kNN Classification

kNN is a supervised, non-parametric machine learning classification approach. It is a
simple and practical algorithm which can be employed for classification and regression
tasks [26]. kNN has been used widely in the EMG research area, and its efficiency has been
proven in many EMG classification applications [27–30].

Four of the standard EMG amplitude features were extracted from the prepared EMG
segments, including the area, the root mean square (RMS), the turn number, and the zero-
crossing number. All features were then standardized and normalized. The created feature
vector was then utilized as an input to the kNN classifier. Different k values were tested,
and the best accuracy was obtained when using k = 9.

CNN Classification

I. The Main Layers of CNN

A CNN consists of multiple structural layers of various types, where the three main
types of layers are as follows [31,32]:

Convolutional layer: This is an essential component of any CNN. It includes linear
and non-linear operations (convolutional and activation functions). The convolutional
layer comprises a specific number of filters (kernels) that are applied to the input data.
These filters work as detectors to extract different features of the input data. Each filter
convolves with input data elements (e.g., image: pixels, signal: data points) by shifting it
horizontally and vertically a certain number of steps (known as the stride). All outputs
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from the convolution step are then combined into one volume, which is known as a feature
map. Next, a non-linear function (usually a rectified linear unit, ReLU) is applied to the
created feature maps. The ReLU function has been shown to be useful in solving the
vanishing gradient problem during the back-propagation process [33], which helps in
reducing the training time. Then, to reduce the size of the extracted feature maps, pooling
operations are applied using different types of operations (Max, Sum, Average). Finally,
the final convolutional layer output passes through a flatten operation to transform it into
one vector, to be used later as input to the fully connected layer. The CNN is trained in a
supervised manner, and the filters (kernels) are learned automatically during the training
process of the CNN. The hyperparameters related to the kernels, such as their size, number,
padding, and stride, need to be designed before the CNN training process.

Fully connected layer: This is a fully connected feed-forward neural network that
consists of a vector of neurons that are connected to all the neurons in the next layer
through learnable weights. It receives the output of the flattening step, which is the last
pooling step of the last convolutional layer.

Output layer: This includes an activation function, which is selected according to
the type of classification task (e.g., binary classification: Sigmoid function, multiple class
classification: Softmax function, continuous value regression: Linear function)

II. The Proposed CNN Architecture

In this work, the CNN architecture was chosen empirically by running multiple
experiments with different architectures considering various numbers of layers and filters
with different sizes and strides.

The final selected network consisted of five blocks, as illustrated in Figure 1 and
Table 2. The CNN was structured as follows:
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Figure 1. Convolutional neural network structure utilized to build the EMG-based TSCI classification
system.
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Table 2. Optimized CNN architecture.

No Architecture Parameters Output Shape No. of Parameters

1 CONV1: 32 × (5,1), stride: (2) 500 × 32 192

2 Maxpool1: (2,1), stride: (2) 250 × 32 0

3 CONV2: 32 × (5,1), stride: (2) 125 × 32 5152

4 Maxpool2: (2,1), stride: (2) 63 × 32 0

5 CONV3: 64 × (3,1), stride: (1) 63 × 64 6208

6 Maxpool3: (2,1), stride: (2) 32 × 64 0

7 Dropout3: (0.1) 32 × 64 0

8 CONV4: 128 × (3,1), stride: (1) 32 × 128 24,704

9 Maxpool4: (2,1), stride: (2) 16 × 128 0

10 Dropout4: (0.1) 16 × 128 0

11 Global Average Pooling 128 0

12 FC: 100 (ReLU) 100 12,900

13 Output: 1 (Sigmoid) 1 101

Total No. of Parameters 49,257

Input: An EMG segment (1000 × 1)
Block 1 was composed of:

- A convolutional layer with 32 filters having a size 5 × 1 and a stride of 2;
- An activation layer using rectified linear units (ReLUs) as activation functions;
- A sub-sampling layer (max-pooling).

Block 2 was composed of:

- A convolutional layer with 32 filters having a size of 5 × 1 and a stride of 2;
- An activation layer of ReLUs used as activation functions;
- A sub-sampling layer (max-pooling).

Block 3 was composed of:

- A convolutional layer with 64 filters having a size of 3 × 1 and a stride of 1;
- An activation layer of ReLUs used as activation functions;
- A sub-sampling layer (max-pooling), where a dropout of 0.1 was applied.

Block 4 was composed of:

- A convolutional layer with 128 filters having a size of 3 × 1 and a stride of 1;
- An activation layer of ReLUs used as activation functions;
- A sub-sampling layer (max-pooling), where a dropout of 0.1 was applied.

These four blocks were followed by:
A global average pooling layer (GAP), which computes the average value of each indi-

vidual input feature map and yields a single feature map, obtained by concatenating the
computed average values.

A fully connected layer (FC) of size 100 × 1, with ReLUs as activation functions.
An output layer, in which the sigmoid activation function was chosen to satisfy the

binary classification requirement. This was used to classify the input data using the output
from the FC layer into either the pre-lesion class (<0.5) or post-lesion class (>0.5).

3. Results and Discussion

The results of the classification comparison analysis are as follows:
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3.1. CNN Hyperparameters

To design a neural network, certain variables need to be set before optimizing the
network weights. These variables are known as network hyperparameters, and include
variables such as the number of layers, the number of nodes, the learning rate, the batch size,
and the number of epochs. We applied a manual search method to find the combination of
hyperparameters that provided the best classification performance. Various combinations of
the hyperparameters were evaluated, and the best combination was selected to perform the
classification task. The hyperparameters were optimized using training and test sets, and the
final results are reported using five-fold cross validation. The same procedure was applied to
the EMG data for the right and left sides. Table 3 summarizes the selected hyperparameters.

Table 3. The utilized hyperparameters.

Optimizer Learning Rate Batch Size Epoch Loss Function

Adam 0.001 128 500 BC

The network was trained using the extracted EMG segments, along with their corre-
sponding class labels (pre-lesion = Class 0, post-lesion = Class 1). The binary cross-entropy
(BC) loss function was used, as shown in the following equation:

BC = − 1
n ∑n

i=1 xi . log(yi) + (1 − xi). log(1 − yi), (1)

where yi is the predicted probability, xi is the actual probability (0 or 1), and n is the total
number of instances. All the experiments were conducted using a free cloud service based
on Jupyter Notebooks, known as Google Colaboratory (Colab), which has been shown to
be an effective tool for deep learning [34]. The CNN was implemented in Keras (a Python
front-end for deep learning) [35], and the Python Tensorflow library [36] was used for the
computational implementations.

3.2. CNN Over-Fitting

Over-fitting is a common problem in machine learning, which occurs when the model
is too complex and fits the training data very well (memorizing the data). To test the perfor-
mance of the proposed CNN classifier, the loss and the accuracy curves were visualized
for both sides, when trained using 80% of the EMG segments and tested using 20% of the
segments. Figures 2–5 show the accuracy and the loss curves of the CNN for the left and
right sides. In these figures, both the training and testing loss decreased continuously, and
were close throughout the training process, which indicated that the proposed CNN did
not face an over-fitting problem.
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Figure 5. The loss curve for the EMG data classification of the right side using the proposed CNN
architecture.

3.3. Performance Metrics of kNN and CNN Classification

The major goal of biological system statistical analysis is to obtain inference regarding
the data generalization process by creating a mathematical model. Such a model will help
in confirming previous biological knowledge about the studied system, as well as offering
a suitable tool to test different hypotheses regarding the system behavior. Generally,
statistical analysis requires data collected through controlled experiment design and a
small–moderate sample size (compared to ML). Consequently, the statistical results and
inferences would be more complex and less precise when dealing with complex and wide
data [12]. On the other hand, artificial intelligence (AI) analysis (i.e., ML or DL) aims mainly
to generate a prediction about unseen (unobserved) data, or to make a prediction about
future behavior without requiring an understanding of the underlying mechanism (e.g.,
identifying the best course of treatment) [12]. AI analysis can be effective even with an
unstructured data set collected in uncontrolled experiment settings, or data characterized
by a complicated non-linear nature. AI techniques, including ML and DL, make minimal
assumptions regarding the data generating system [12]. Hence, the classification techniques
that were implemented in this study (CNN and kNN) might be a more suitable choice for
developing a reliable assessment tool (automatic identification) [13] of TSCI using EMG
signals.

Figures 6 and 7 show the five statistical metrics calculated for the kNN and CNN
classifications of the EMG data for the muscles of the left and right sides, separately.
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Figure 6. Evaluation metrics of the CNN and kNN classifiers (left side).
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Figure 7. Evaluation metrics of the CNN and kNN classifiers (right side).

According to these figures, the kNN classified the EMG data with an F-measure of
89.7% for the left side and 92.7% for the right side. The simple proposed architecture of the
CNN also performed reliably, as it achieved a higher F-measure of 89.8% and 96.9% for the
left and right sides, respectively. The CNN model achieved a competitive result for all of
the evaluation metrics for both sides. This can be explained by the advantage that the CNN
has, in terms of its ability to use the temporal correlation existing inside the EMG segments.
These results might also indicate that CNN had learned the required information from the
EMG signal, reflecting the effect of the created lesions on the muscle activity. These unique
EMG features were learned through the successive convolutional layers.

Therefore, such a type of learning system might help in interpreting the complex
neural signals between the motor control system and the skeletal muscles, recorded as
EMG signals. It may also help to characterize the neuromuscular abnormalities (i.e.,
perturbations in the electrical activity of the muscle) that occur as a result of neuromuscular
diseases, including TSCI. Electromyography is a reliable and cost-efficient muscle activity
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assessment tool; however, due to the complex process of generating this signal, analyzing
and understanding such a complicated signal is a challenging task. Notably, in this project,
the EMG signal presented higher complexity as it was collected while the subjects were
performing their daily activities without any restrictions (freestyle movement). The TSCI
classification system could be applied in future work using a CNN system with a more
advanced structure.

4. Conclusions

This study presented a new application of deep learning (CNN) as a TSCI classification
system, and compared the results obtained with the proposed model with those of a classical
machine learning classifier (kNN). The CNN classification system was employed using
EMG segments as inputs, while the kNN was applied using four EMG hand-crafted features
(i.e., area, RMS, turn number, and zero-crossing number). The performance of the two
classifiers was measured and compared according to five performance metrics (accuracy,
sensitivity, specificity, precision, and F-measure). From the obtained results, we found that
the proposed CNN technique with automatically learned features achieved a competitive
degree of classification accuracy, when compared to the classical kNN classifier. As the
CNN technique is still a new application, more investigations need to be performed in
order to obtain a clear understanding of the ability and reliability of such a deep learning
technique. The work contributes to the literature and will help researchers learn about the
effect of implementing the CNN for such a TSCI data set.
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