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Abstract: Automated bioacoustics classification has received increasing attention from the research
community in recent years due its cross-disciplinary nature and its diverse application. Applica-
tions in bioacoustics classification range from smart acoustic sensor networks that investigate the
effects of acoustic vocalizations on species to context-aware edge devices that anticipate changes
in their environment adapt their sensing and processing accordingly. The research described here
is an in-depth survey of the current state of bioacoustics classification and monitoring. The survey
examines bioacoustics classification alongside general acoustics to provide a representative picture
of the research landscape. The survey reviewed 124 studies spanning eight years of research. The
survey identifies the key application areas in bioacoustics research and the techniques used in audio
transformation and feature extraction. The survey also examines the classification algorithms used in
bioacoustics systems. Lastly, the survey examines current challenges, possible opportunities, and
future directions in bioacoustics.
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1. Introduction

Automatic acoustic classification also referred to as audio or sound classification,
involves the detection or recognition of sound using audio informatics for storage and
retrieval, and machine learning techniques for autonomous classification [1–5]. Bioacoustics
is the branch of acoustics that is concerned with sounds produced by or affecting living
organisms. Bioacoustics is often used in acoustic sensing to monitor biodiversity, especially
in visually inaccessible areas [6]. Animal acoustic emissions contain species-specific in-
formation that reflects the character and behavior of different living organisms [1]. There
are three main application areas of bioacoustics [1]. The first focuses on the classification
and analysis of sounds vocalized by different animal species. Its primary aim is to identify
sounds that characterize species in different behavioral contexts. The second is concerned
with integrating sound signals vocalized by animals with behavioral contexts to understand
how the sounds affect the behavior and emotions of the receiver. The third explores the
production mechanisms used in sound vocalization processes [1]. The survey presented in
this paper explores how current research in automated bioacoustics classification differs
from traditional acoustic classification with respect to the techniques used and application
areas. We use the term “general acoustic studies” to refer to acoustic research whose
primary focus is neither living or non-living organisms.

The scope of our survey is limited to studies that use machine learning as the primary
tool for automating acoustic classification. The survey is intended to be a representative
rather than an exhaustive review of the state of the research. The survey reviewed 124 publi-
cations, spanning 21 years, from 2000–2021. Only papers published in the English language
were reviewed. To the best of our knowledge, no recent studies have been undertaken to
examine the state of research in this important and fast-growing research area.
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Our survey highlights the advances in automated bioacoustics classification, but also
identifies the challenges and opportunities presented. For example, we note that the
automated classification techniques used bioacoustics still lag behind those in general
acoustics. A number of machine learning techniques that have been successfully used in
general acoustics are yet to be tested in bioacoustics classification.

The survey sought to answer four questions relating to current bioacoustics research:

• RQ1: What are the main application areas?
• RQ2: What sound data processing and classification techniques are used?
• RQ3: How have the applications described in the studies been implemented?
• RQ4: To what extent have previously identified research problems been addressed by

current studies?

Our findings show that current research in bioacoustics is mainly concerned with
applications that involve species classification while general acoustic research is primarily
concerned with identifying suitable machine-learning algorithms for classifying general
sounds. The short-term Fourier transformation (STFT) technique was the most popular
audio transformation technique for both bioacoustics and general acoustics studies. Al-
though Mel-frequency cepstral coefficients (MFCCs) and feature extraction techniques
were popular in both bioacoustics and general acoustics research, linear prediction cepstral
coefficients (LPCCs) techniques were more popular in general acoustics. In bioacoustics
research, ensemble classification algorithms were more popular while in general acoustic
studies, convolutional neural networks (CNN) classifiers were more popular. Only half
of the publications surveyed provided the implementation details of their systems (i.e.,
architectural design and theoretical background). Most general acoustic studies also de-
scribed the system workflows, unlike bioacoustics studies. All the studies had a strong
focus on results.

The rest of this paper is organized as follows; Section 2 provides a brief background on
related work. Section 3 describes the methodology used in the review. Section 4 reports on
the results of the review. Section 5 provides a summary of automated bioacoustics research
and future trends. Section 6 provides some concluding thoughts.

2. Related Work

This section reviews existing surveys on acoustic classifications to provide the context
and motivation for our work. The first survey on bioacoustics sound classification was
published in 2010 [7], with the first general acoustics classification survey appearing four
years later, in 2014 [8]. Since then, the number of surveys has steadily grown, as shown
in Figure 1. The size of the circles indicate the number of surveys published in that year.
However, while current surveys suggest significant growth in bioacoustics classification
research, many research challenges remain. For example, most surveys focus on well-
known taxonomic groups such as birds, and mammals [9] due to the lack of open-source
datasets for other species [10]. Secondly, tropical regions are poorly represented in the
surveys despite their rich diversity of flora and fauna [11]. Another challenge relates to
the running costs of the IoT devices used in data collection. Most of the IoT devices are
deployed in remote locations where they are intended to run autonomously for long periods
of time, making their operational lifespan crucial in mitigating their running costs. As the
devices are battery-operated it is important that effective ways are found improve their
energy efficiency. An important aim of our survey was to establish the extent to which the
research challenges identified in past surveys have been addressed by current work on
acoustics classification.
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Figure 1. Growth of (a) bioacoustics and (b) general acoustics research over the years.

Current research in acoustics classification spans disciplines such as zoology, engi-
neering, environmental sciences, physics, computer science, and medicine; thus, the range
of datasets that we used to source the studies described here vary widely. Out of the
31 survey publications analyzed, twelve focused on bioacoustics sound and the rest on
general acoustics. A significant number of bioacoustics survey publications (7) focused on
the medical aspects, while general acoustic papers focused on the technology. However,
there is growing interest in investigating the technical aspects of bioacoustics classification
as highlighted in [9,10,12–15]. Early reviews [14,15] highlighted Mel-frequency cepstral
coefficients (MFCCs) and hidden Markov model (HMM)-based classifiers as the popular
acoustic preprocessing and classification techniques. However, recent surveys identify
deep learning [13] and ensemble methods as better classification techniques. Other reviews
note that widespread use of modern acoustic classification techniques is hindered by the
lack of adequate datasets [10] and better de-noising techniques [9,12].

To establish the relevance of existing surveys to our own survey, we conducted a
word cloud search to identify comparable surveys. The outcome indicates that the selected
surveys used machine learning techniques to identify sounds made by animals. The word
cloud search also shows that surveys on bioacoustics monitored biodiversity, characterized
vocalizations, or investigated animal behavior. The search shows that the studies in general
acoustics surveys focused largely on environmental awareness through sound recognition.
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The results also show that the selected surveys are relevant and highlights the extent of
surveys in acoustic sound classification.

Further analysis of the surveys revealed that most (55%) of the bioacoustics pub-
lications included study demographic information such as year, publisher, and imple-
mentation details, as shown in Figure 2. Additionally, most surveys focused on either
bioacoustics [1–12,16–22] or general acoustics classification [13,23,24] without direct com-
parisons. This makes it difficult to share lessons and good practice between the two.

Figure 2. Analysis of previous reviews in acoustics classification.

3. Methodology

According to [25], reviews with an understanding goal focus more on interpretation
than deductive logic. Understanding may be accomplished with the help of two types of
reviews; scoping reviews and critical reviews [26]. This review uses a scoping approach
where a broader perspective that strives to discern a subject’s overall meaning and relation-
ships is used. The analysis of survey papers consists of six key steps: problem formulation,
literature research, screening for inclusion, quality assessment, data extraction, and data
analysis and interpretation [26]. The scoping review methodology used in this study ex-
cludes quality assessment and therefore uses five of these steps as recommended by [26].
The process is described next.

3.1. Problem Formulation

The problem identification process was used to examine related work in past surveys.
From this exercise, the research objectives identified were: (i) conducting a comparative
analysis of acoustic classification techniques based on their application areas, (ii) high-
lighting the challenges (gaps) in current research on bioacoustics classification techniques,
and (iii) making recommendations for a research agenda for bioacoustics classification
techniques based on the application areas.

3.1.1. Literature Search

After examining past reviews, the study mined research papers that addressed the
identified research objectives from publications in peer-reviewed research datasets. We
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screened the relevant papers through an extensive review of literature on the design of
bioacoustics and general acoustics classification techniques. This systematic review of
the literature used various online databases that index computer science and technology
research, namely: IEEE, Science Direct, PubMed, ACM Digital Library, Elsevier, MDPI,
Nature, PLOS one, Taylor and Francis, and Springer. The search keywords used were:
environmental sound classification, animal sound classification, bioacoustics sound classifi-
cation, and general acoustics sound classification. To enhance the search process, synonyms
complemented some of the keywords. For example, in place of bioacoustics, we also
used terms such as animal or bird sounds. Table 1 summarizes the search terms used, the
synonyms that complimented them, and the alternative terms used to refine the search.

Table 1. Literature search keywords.

Search Key Acronyms Search Refinement Definition

Bioacoustics Animals birds, wildlife, pests
The branch of acoustics is concerned with sounds
produced by or affecting living organisms,
especially as relating to communication.

Non-Bioacoustics Environment, artificial Sounds are produced by artificial sources or both
artificial and natural sources.

Sound Noise
Vibrations that travel through the air or another
medium, and can be heard when they reach
a person’s or animal’s ear.

Classification identification The action or process of classifying something
according to shared qualities or characteristics.

Technology Sensors, Devices Technology classification of sounds.

Machine Learning Artificial Intelligence CNN, SVM, Naïve Bayes

The use and development of computer systems
that can learn and adapt without following explicit
instructions, by using algorithms and statistical
models to analyze and draw inferences from patterns
in data.

We reviewed relevant articles published in the past 21 years (2000–2021). This time-
frame was selected because practical machine learning techniques started gaining popu-
larity during that time. Only papers written in the English language were included in the
review process. The search criteria sought articles that involved sound classification and
machine learning technology. Generic search terms (according to the thesaurus of each
database) identified the relevant studies. The process of screening relevant studies used
the inclusion and exclusion criteria tabulated in Table 2. The identification and elimination
of duplicate studies followed. We categorized papers having the same titles or published
by the same author on the same subject as duplicates. After the screening and duplicate
elimination process, 124 (47 for environmental sound classification and 77 for bioacoustics
sound classification) papers emerged as significant for the review.

Table 2. Literature exclusion and inclusion criteria.

Exclusion Criteria Inclusion Criteria

Machine Learning Techniques Based on Images bioacoustics classification.

Research not Published in English General acoustic classification.

Research Published before 2000 Using machine learning technology

Sound classification in the medical sector that does not touch on technology Peer-reviewed publications

Papers that were not considered original research, such as letters to the,
editor comments, etc. papers published in English
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The initial search process yielded 166 articles (IEEE = 35, Elsevier = 23 Science
Direct = 5, ACM Digital Library = 26, MDPI = 17 Springer = 20 and other = 40), with
101 articles for bioacoustics and 65 for general acoustics classification.

3.1.2. Screening for Inclusion

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
methodology [27] was used to screen relevant publications on acoustic classification for
review. The PRISMA flow diagram in Figure 3 shows the number of papers identified,
included, and excluded for the review and the databases used preferred Reporting Items
for Systematic Reviews and Meta-Analyses. The identification and elimination of duplicate
studies followed the search process. We categorized papers having duplicate titles or
published by the same author on the same subject as duplicates. After excluding duplicated
papers, 153 articles remained eligible for screening. The screening process resulted in the
exclusion of 19 papers that were not in English and those published before 2000, when
machine learning technology was still in its infancy. We further excluded ten papers that
did not meet the inclusion criteria because they focused on the development of a dataset,
monitoring sounds in the music industry or biologically, such as [28–30] through a full-text
review of the articles.

Figure 3. The study selection process.
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From this process 124 papers (IEEE = 32, Elsevier = 14 Science Direct = 1, ACM Digital
Library = 13, Springer = 10, MDPI = 16, and others = 38), emerged as significant for the
final review. Most papers were retrieved from Computer Technology datasets such as
Institute of Electrical and Electronics Engineers (IEEE) and the Association for Computing
Machinery (ACM) for general acoustics papers. In contrast, bioacoustics papers were
common in medical datasets PUBMED and multidisciplinary datasets such as MDPI, as
shown in Figure 4. This unsurprising as bioacoustics classification integrates biology and
technology disciplines while general acoustics classification focuses largely on technology-
related disciplines. Our review used 77 papers representing bioacoustics classification and
47 papers representing general acoustic classification.

Figure 4. Databases used to retrieve (a) bioacoustics and (b) general acoustics classification papers.

3.1.3. Data Extraction

The screened articles were profiled next, in terms of keywords and year of publication
to establish the nature and context of the research. The extracted data included: the
year of publication, reference, publishers, algorithms used, datasets used, accuracy levels,
application area, and the research contribution.

3.1.4. Data Analysis and Interpretation

Following the data extraction stage, research challenges (gaps) were identified using
quantitative and qualitative descriptive techniques. Quantitative techniques involved
numeric tabulation of observations from the reviews such as the number of datasets or
machine learning techniques used in different studies. Qualitative techniques involved
description of observations using words such as the limitations identified by previous
studies. For example, some studies indicated that there was limited research in tropical
geographic areas. These narrations were used to identify and describe the gaps. The results
were collated and summarized. The analysis conducted on application areas of bioacoustics
versus general acoustics studies provided insights on how research goals between the two
areas differed. Additionally, a comparative analysis of acoustics technology revealed how
these technologies differ across different application areas. The pre-processing techniques,
datasets used, and machine learning algorithms adopted by different studies were tabulated
for bioacoustics studies and compared to those used by general acoustic studies. The
similarities and differences were documents and used to draw conclusions on preferences
for different types of studies. The results of the analysis and interpretations are discussed
in the next section.

3.1.5. Publication Demographics

For purposes of this survey, we classified acoustic sound classification publications
into two broad categories; those that focused on bioacoustics (where the sound originated
from living organisms in the animal kingdom) and general acoustics (where sounds origi-
nated from outside the animal kingdom). The word cloud generated from the publication
keywords illustrates the relevance of the selected papers. Studies on bioacoustics focused
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mainly on classifying animal sounds such as birds, insects, and whales, while those con-
cerned with general acoustics were mostly environmental sound signals and not specific
to particular species. We confined the scope of the survey to studies that used machine-
learning algorithms for sound classification. It is worth noting that several studies also
used image recognition techniques classify animals [31–38]. Those studies fell outside the
scope of this review.

The survey revealed that both categories have received differing attention, with 62.0%
of current acoustics classification research focused on bioacoustics and 38.0% on general
acoustics, as illustrated in Table 3. This might be explained by the fact that research in
bioacoustics classification started earlier than general acoustics research, with bioacoustics
research picking up from 2009, as shown in Figure 5, while general acoustics research
picked up from 2013. In both cases, the research output has steadily grown. However, the
growth of acoustics classification in biology domains has been broader and faster than in
technology domains.

Table 3. Literature exclusion and inclusion criteria.

Bioacoustics Research General Acoustic Research

Citations Number Citations Number
[14,15,39–107] 77 (62.0%) [108–152] 47 (38.0%)

Figure 5. Progress of (a) bioacoustics and (b) general acoustics research output over the years.

4. Results
4.1. Application Areas

The survey shows that bioacoustics classification has found application in various
botany and zoology fields such as: in conserving species [42–44,46]; monitoring of inter-
species interaction [39,41,49,59,66,69]; understanding animal behavior [56,64,81]; agricul-
ture in pest control [72,74]; and health in detecting sleep disorders [73]. General acoustics
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classification has applications in: hearing aids [108,109,113,122,124,153]; analyzing machine-
learning algorithms [110–112,114,154]; or for detecting the sources of sounds [155,156].
Monitoring of species formed the largest bioacoustics application area (84.2%), as shown
in Figure 6. Most general acoustics research focused on technology improvement by
evaluating machine learning algorithms (38.1%) and detecting the source of the sound
through acoustic monitoring (33.3%), as illustrated in Figure 6. A few studies classified
environmental sounds to support users with hearing impairments (19%).

Figure 6. Application areas of research in bioacoustics and general acoustics classifications.

Most bioacoustics originated from animal vocals (74%) such as frogs croaking [40–42]
or birds chirping [9,18,50,58,61] while a few originated from their locomotion (24%) such as
bees [56,81,82] or mosquitoes [59] in flight as shown in Figure 7. Insects produce locomotion
sounds in five different ways: stridulation, percussion, vibration, tymbal mechanism, or air
expulsion [14]. Sounds originating from locomotion are low and sometimes not humanly
audible thus, some studies have focused on image recognition to identify insects such as
moths [28,33,34,36,38], which can be challenging if the insect is not within the field of vision.
It is worth noting that some studies used both image and acoustic classification to classify
bird sounds and observed that fusing these approaches achieved the better classification
performance [79] compared to individual techniques. Some researchers have also noted
that including features that provide visual-based discrimination, extending beyond the
bio-acoustically, relevant parameters may offer improved performance [88].

Most publications surveyed (94%) dealt only with acoustic classification for humanly
audible sounds. A similar observation was made for general acoustics sounds, where most
studies focused on humanly audible sounds such as sounds made by a helicopter, chainsaw,
or rain. Limited research existed for non-human inaudible sounds, as seen in Figure 7. This
makes it difficult to assess the effectiveness of sound classification techniques for sounds
that are not human audible from past studies. Thus, the acoustics research studies reviewed
here are biased toward humanly audible sounds.
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Figure 7. Forms of sound for bioacoustics and general acoustics studies.

It is worth noting that the general acoustics research reviewed here was concerned
with sounds from both artificial sources, such as car alarms, gunshots, and construction
equipment and natural sources, such as rain or animal sounds. Most of the studies exam-
ined [112,115,119,144,146] used the two types sound interchangeably, making it difficult to
analyze general acoustic techniques exclusively on non-bioacoustics sounds. Establishing
whether classification techniques differed for bioacoustics and non-bioacoustics techniques
would provide better insight into the factors that influence the choice of classification
techniques.

4.2. Techniques Used

Acoustic studies need datasets for training sound classification models. Most of the
datasets used for bioacoustics classification are created by the researchers specifically for the
study, as shown in Figure 8 [42,45,55,64,72,74]. This was common where publicly available
datasets were unavailable. Datasets on insects were few, with the majority having sounds
for birds, frogs, cats, whales, and dogs. For general acoustics, the most popular dataset
was the US8K (Urban Sound 8K) which contains 8732 labeled sound excerpts of urban
sounds [119,127,131,132,138,141,146,149] as shown in Figure 7. The ESC 50 and ESC 10
datasets were also among the popular datasets [119,130–132,141,143,144,146–149]. They
contain a mixture of bioacoustics and general acoustics sounds. Most of the past general
acoustics studies focused on a mixture of both bioacoustics and non-bioacoustics sounds.
Therefore, targeted research is required to examine specific general acoustics based on their
application areas.

Audio datasets present several challenges that influence the accuracy of the results ob-
tained. For example, many real-world acoustic analysis problems are characterized by low
signal-to-noise ratios and compounded by scarce data [59]. Another challenge is that most
large-scale bioacoustics archives contain only a small percentage of animal vocalizations
and a large amount of environmental noise, which makes it extremely difficult to retrieve
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sufficient vocalizations for extended analysis [47]. The majority of the bioacoustics datasets
examined had sounds exclusive to certain animal species, rendering them inappropriate
for categorizing other different animal species [46]. Several studies also noted that [18] the
species belong to specific geographic locations restricting the applications of the datasets.
Beehives, for example, are found in various geographic locations with different acoustic
backgrounds, and tests should represent each type of background [56]. Typically, locomo-
tion sound falls under two behavioral contexts: (i) sonication (e.g., bees vibrating tomato
flowers); and (ii) flight (e.g., bees between tomato flowers). The flight and sonication sound
present pronounced differences in acoustic characteristics [82], which should be factored
in during classification. A deeper experimental evaluation across multiple datasets is also
required to improve the classification performance [107]. These datasets also do not factor
in the animal age. Hence another challenge for the classifiers is to discriminate between
species regardless of the age or stance [53].

Figure 8. Data sets used for (a) bioacoustics and (b) general acoustics studies.

Our survey examined the impact of dataset size and classes on the accuracy ob-
tained from acoustic classification. To achieve this, we assumed that all classes have the
same number of instances; hence, we obtained an average of the instances per class. For
bioacoustics, the results showed that higher accuracy levels occurred where fewer data
(instances) existed, such as using the Cat Sound and Open-Source Beehive project datasets,
as shown in Table 4. The number of classes also appeared to impact the accuracy, given that
higher accuracy levels occurred where higher instance class ratios existed, as illustrated
in Figure 8a.

Table 4. Bioacoustics dataset size and classification accuracy.

Dataset Classes Instances Ratio Average Accuracy

Cat Sound 2 440 220.00 91.13
Birdvox70k—CLO43SD 43 5428 126.20 90.00
Open Source Beehive Project 2 78 39.00 89.33
BIRDZ 50 602,512 12,050.20 89.04
Humboldt-University Animal Sound Archive 2530 120,000 47.40 81.30
MFCC dataset 10 7195 719.50 78.40
Zoological Sound Library 10,000 240,000 24.00 73.04
NIPS4Bplus 87 687 7.90 65.00

For general acoustics, the results showed that higher accuracy levels were obtained
where fewer data (instances) existed, such as using the ESC-10 and DCASE datasets, as
shown in Table 5. This is similar to the observations made for bioacoustics. However,
the higher the number of classes, the higher the accuracy levels obtained, given that
higher accuracy levels occurred where lower instance class ratios existed, as illustrated
in Figure 9b. While these results point towards the number of classes having opposite
impacts on the results’ accuracy, it is difficult to verify them conclusively because existing
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studies used only a single dataset. Most studies investigated how the type of algorithm
influences the accuracy of the classification process. More research is required to investi-
gate how other factors, such as the size or type of dataset, influence the accuracy of the
classification process.

Table 5. General acoustics dataset size and classification accuracy.

Dataset Classes Instances Ratio Average Accuracy

ESC-10 10 400 40.00 90.66
DCASE 16 320 20.00 86.70
US8K 10 8732 873.20 83.67
ESC-50 50 2000 40.00 81.54
Ryerson AV DB 8 7356 919.50 71.30
CICESE 20 1367 68.35 68.10

Figure 9. Impact of dataset size on classification accuracy for (a) bioacoustics and (b) general acoustics
studies.

4.2.1. Data Preprocessing

After collecting audio data, they need to undergo preprocessing techniques that clean
and transform them for classification. Most bioacoustics [48–51,53,54,61–64,68–75,81,82,86],
and general acoustic [113–115,117,118,120,121,123,124,126,132,135,137–147,149,153,154] stud-
ies did not describe the preprocessing techniques that they used. An analysis of the studies
that mentioned preprocessing revealed the most popular audio transformation technique as
STFT (short-time Fourier transform) among both the bioacoustics [52,60,65,83] and general
acoustic [111,119,130] studies (Figure 10). STFT is a powerful general-purpose tool for audio
signal preprocessing [157–159] where a signal is broken into several signals of shorter duration
and then transformed into frequency domains. The other popular technique mentioned was
constant-Q transform (CQT) which was used in both bioacoustics [79] and general acoustic
studies [148]. It transforms a data series into a frequency domain. The fast Fourier transform
(FTT) was popular in bioacoustics studies [47,67]. It expands signals in terms of sinusoids.
Both bioacoustics and general acoustic studies employed segmentation [14,39–43,46,83,84,110]
to distinguish the sound in question from other sounds such as speech, music, environmental
sounds, silence, and combinations of these sounds by automatically revealing semantically
meaningful temporal segments in an audio signal [160].

Feature extraction helps derive the audio’s short-time energy, zero-crossing rate, and
bandwidth, among other useful features when classifying sound. It reduces the dimension
of an audio input vector while retaining the important discriminating feature of the audio.
This study revealed that the most popular feature extraction technique uses the cepstral
coefficient, as illustrated in Figure 11. Mel frequency cepstral coefficients (MFCCs) use
the MEL scale to divide the frequency band into sub-bands and then extract the Cepstral
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Coefficients using a discrete cosine transform (DCT). The MEL scale is based on how
humans distinguish between frequencies, making it a very effective approach for processing
sounds. Before the introduction of MFCCs, linear prediction coefficients (LPCs) and linear
prediction cepstral coefficients (LPCCs) were the primary feature type for automatic speech
recognition, especially with hidden Markov model (HMM) classifiers.

Figure 10. Audio pre-processing techniques used in (a) bioacoustics and (b) general acoustics studies.

The review observed that MFCCs was popular among bioacoustics
studies [39,40,43,44,49,53,61,73,81–84,86] and general acoustic studies [112,116,125,133,141,148].
Linear frequency cepstral coefficients (LFCC) were popular among general acoustics stud-
ies [83,109,110,112] but found fewer applications in bioacoustics studies [14]. Few studies
used LPCC [74,127] although it was used in both bioacoustics and general acoustics studies.

Figure 11. Feature extraction techniques used in bioacoustics and general acoustics studies.

4.2.2. Machine Learning Algorithms

Audio, sound, or acoustics classification is the process of analyzing audio record-
ings to identify their origin, type, or environment. The process is often automated us-
ing machine learning classification algorithms. Our survey showed that ensemble ap-
proaches are the most popular machine learning algorithms used in bioacoustics classi-
fication [39,40,43–45,48,50,51,53,56,76,77,79,81–84,86]. Convolutional neural networks (CNN)
were the most popular algorithms for general acoustic
classifications [113,114,119,121,125,133,136,137,139,141,144,146,148] as seen in Figure 12. The
choice of particular classifiers was motivated by the performance of similar classification
tasks from previous studies [110,111] or from experiments conducted to identify the most
accurate algorithm [113,114]. Some studies did not specify the type of neural network they
used; hence we classified them as DNN (Deep Neural Networks) [81,115,124,131,138,154].
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Figure 12. Classification algorithms used for bioacoustics and general acoustics studies.

Bayesian [58] and hidden Markov models [47] showed the best accuracy levels (based
on the figures provided by the authors of these studies) for bioacoustics sounds. However,
only a few studies used them, as seen in Figure 13a, due to (1) their high computational
cost and (2) greater statistical expertise required than some other methods. This makes
it difficult to generalize their efficacy. CNN algorithms and ensemble approaches were
more popular; however, they had slightly lower accuracy (87–88%). Ensemble approaches
showed better accuracy for classifying general acoustics than approaches based on CNN.
However, only a fewer studies used them (Figure 13a). The SVM algorithm gave very
high accuracy levels (84.5%), but was used only in a few studies [106,107], which makes
it difficult to generalize. These results also show that CNN (at 88%) algorithms perform
marginally better than ensemble (at 87%) approaches in bioacoustics studies. However,
despite their popularity, they perform poorly (at 82%) in general acoustics studies compared
to ensemble approaches (at 83.6%). Therefore, in general, in acoustic studies, ensemble
approaches work better. Ensemble approaches also seem to be better at detecting some
animal vocalizations, which might explain their accuracy [72]. For example, it has been
shown that certain frog species are easily recognized by specific algorithms [71].

Figure 13. Classification algorithms used for (a) bioacoustics and (b) general acoustics studies.

Although more accurate, CNN demands large amounts of labeled raw acoustic
data [68]. Learning directly from the raw waveform allows the algorithm to automat-
ically select those elements of the sound that are best suited for the task, bypassing the
onerous task of selecting feature extraction techniques and reducing possible biases [58].
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However, due to the limited datasets available, solutions that yield effective classifica-
tion results, even when only a small number of per-class training examples are available,
should be explored [63]. For example, Ref. [64] proposes a deep learning approach that
computes a perceptual embedding of animal vocalizations based on similarity judgments
instead of class-specific labels. Similarly, a different study [80] combined transfer learning
of a pre-trained deep convolutional neural network (CNN) model and a semi-supervised
pseudo-labeling method with a custom loss function to address this challenge. They em-
ploy techniques to deal with the lack of class-labeled data, such as transfer learning from
a (Multi-Dimensional Scaling) MDS space, attention pooling, and dynamic triplet loss.
Combined with the ensemble approach, such techniques have produced better accuracy
results [75].

Most acoustic studies did not address resource utilization as part of the algorithm’s
efficiency in terms of power and space. Hence, these approaches are unsuitable for real-
time resource-constrained applications [76]. Most acoustic presentation approaches require
extracting a large set of features, which consumes additional storage, processing, and
communication resources.

The application areas and sources of sound can shed light on the preferred choice of
classification techniques to establish the adequacy of an algorithm for a given role. The
analysis results shown in Figure 14 reveal that CNN algorithms were predominantly used
in general acoustics, where the research investigated ways of enhancing the classification
algorithms or detecting the source of the sound. Support Vector Machine (SVM) approaches
were also popular for detecting the source of sounds. Other roles, such as speech analysis
and video captioning, preferred ensemble approaches. In bioacoustics studies, CNN and
ensemble approaches were popular for all roles. However, some algorithms, such as
Bayesian approaches were used in species detection.

Figure 14. Algorithms used for different acoustic roles in (a) bioacoustics and (b) general
acoustics studies.

Both CNN and Ensemble approaches were used to classify natural and artificial sound
sources in general acoustic classifications, as shown in Figure 15b. No specific algorithm
for natural sound classification was preferred, although such studies avoided CNN and
SVM. Studies that investigated bioacoustics preferred CNN and ensemble approaches
for analyzing locomotion. However, studies that analyzed vocals also used other algo-
rithms, such as SVM and HMM (Figure 15a). Bayesian approaches were also preferred for
analyzing locomotion.
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Figure 15. Algorithms used for different sources of sound in (a) bioacoustics and (b) general
acoustics studies.

4.2.3. Overtones in Acoustic Techniques

Using the R Statistical analysis tool, we used the Cramer’s V method to measure the
strength of associations between preprocessing and classification algorithms. The Cramer’s
V values for the association between classification algorithms and the preprocessing tech-
niques were obtained as 0.443 and 0.3274 for bioacoustics and general acoustics studies,
respectively. While both values indicated a strong association, this value was only statis-
tically significant for bioacoustics studies where the Pearson’s correlation coefficient was
0.0414 (p < 0.05), as illustrated in Figure 16.

Figure 16. Cramer’s V association test for bioacoustics and general acoustics studies.

Based on these findings, we identified the specific associations for bioacoustics studies
using mosaic plots. The blue cells in Figure 17 contribute to the significance of the test of
independence, therefore, demonstrating an association between artificial neural networks
algorithms for classification and STFT techniques for audio transformation. Similarly,
Gaussian mixture model (GMM) classification approaches were strongly associated with
LFCC audio transformation techniques. Future studies should seek to understand these
associations further through a comparative analysis of different classification algorithms
and preprocessing techniques.

To understand how areas of focus varied among the bioacoustics studies that we
reviewed, we conducted a cluster analysis of the studies. A cluster analysis groups the
observations based on common characteristics to derive further insights from the obser-
vations. The results showed that most studies focused on one or two areas. For instance,
most studies that examined neural network classifiers did not specify either the audio
transformation techniques used (Cluster 5) or the feature extraction techniques (Cluster 3),
as shown in Figure 18. Similarly, most of the studies that used ensemble classifiers did not
specify the audio transformation techniques, instead they explored either ensemble feature
extraction approaches (Cluster 1) or MFCC feature extraction approaches (Cluster 2). Only
four studies explored all techniques (Cluster 4). In addition, most studies in Cluster 4 used
MFCC and fast Fourier transform (FFT) preprocessing techniques for ensemble classifica-
tion approaches. It is unclear from our findings how the choice of preprocessing techniques
influenced the selection of classification techniques. However, this type of information
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could benefit other researchers in the field. It would therefore be useful, if studies described
the techniques used across all the phases of their bioacoustics classification.

Figure 17. Associations between pre-processing and classification techniques for bioacoustics studies.

Figure 18. Focus Areas in bioacoustics studies.

4.3. Implementation and Evaluation

To understand how the applications identified in the survey were implemented, we
examined the theoretical backgrounds, architectural designs, workflow descriptions, and
the results presented. A comparison of bioacoustics and general acoustics studies revealed
that in both cases, only half of the studies provided theoretical backgrounds or discussed
architectural considerations. We attributed this to the fact that the studies prioritized the use
of existing technology obtain results at the expense of other considerations. An interesting
observation was the emphasis laid on the workflow description by general acoustic studies
(85.1%). The results in Figure 19 show that most studies focused on presenting results
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compared to providing implementation details. The ability to recreate results is a crucial
aspect of evaluating the efficacy of any proposed solution, and future studies need to
describe implementation as part of the research.

Figure 19. Implementation and evaluation details for acoustic studies.

5. Discussion and Open Questions

Our survey identified several open questions that might inform future research in
bioacoustics. These research gaps are discussed next, and the emerging challenges and
opportunities are summarized in Figure 20.

Figure 20. Summary of the challenges and opportunities.

5.1. Acoustics

The bioacoustics studies surveyed focused on sounds made vocally rather than
through locomotion or other bodily movements. There is need for more research on
classifying sounds generated through locomotion and bodily movements. Sonication and
isolated motion present pronounced differences in acoustic characteristics, which should be
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factored in during the classification. Both bioacoustics and general acoustic studies focused
on humanly audible sounds, such as those made by frogs or birds, with limited research on
less audible sounds made by insects such as moths.

5.2. Dataset

Most bioacoustics studies used datasets explicitly generated for the study. Publicly
available datasets on insects, arachnids and arthropods were few. The majority of the
datasets had sounds for birds, frogs, cats, whales, and dogs. More diverse datasets are
needed to enhance research in this area. It is also useful that datasets include not just
information on the species, but also geographic locations. Our survey examined the impact
of dataset size and classes on the accuracy obtained from acoustic classification. However,
it was difficult to verify the findings conclusively as existing studies used only a single
dataset. Most studies investigated how the type of algorithm influences the accuracy of the
classification process. More research is required to investigate how other factors, such as
the size or type of dataset, influence the accuracy of the classification process. A deeper
experimental evaluation across multiple datasets is required to enhance the classification
performance. Existing datasets also do not factor in the age of the animal, gender, or season.

5.3. Classification

While bioacoustics applications in sound detection, species monitoring, and conserva-
tion are growing, the volume is still small. The current focus is mainly on classification. The
most popular audio transformation and feature extraction techniques among bioacoustics
studies were STFT (short-time Fourier transform) and MFCCs. However, few studies have
investigated how these techniques’ choices influenced the results’ accuracy. Our survey
observed that ensemble approaches were the most popular machine learning algorithms in
bioacoustics classification; however, Bayesian and hidden Markov models presented higher
accuracy levels. More research is needed on these techniques to generalize their efficacy.
There is limited research on how the role or source of sound influence the effectiveness of
selected algorithms. Additionally, there is limited understanding of the association between
preprocessing techniques and the choice of classification algorithms.

5.4. Deployment

Most acoustic studies surveyed did not address resource utilization as part of the
algorithm’s efficiency in terms of processing power and memory space requirements. This
makes it difficult to gauge their effectiveness for real-time resource-constrained applica-
tions. Most studies focused on presenting results compared to providing implementation
details such as the theoretical background, architectural and workflow considerations.
Further, most of the studies provided more information on feature extraction theoretical
backgrounds compared to machine learning. The workflows presented focused more on
machine learning compared to feature extraction phases. The ability to recreate results is a
crucial aspect of evaluating the efficacy of any proposed solution, and future studies need
to adequately describe feature extraction and machine learning implementation aspects as
part of the research description.

Classification algorithms present challenges and opportunities for research in new
application areas, preprocessing and selection. However, there is also need to investigate
and create diverse bioacoustics sources and datasets.

6. Conclusions

This survey was a review of acoustic classification techniques based on their applica-
tion areas to highlight the gaps in existing research on acoustic classification techniques.
The results revealed the critical application areas as species classification, done using animal
vocals. The popular audio transformation techniques are STFT, while the popular feature
extraction techniques are MFCC. The most popular classification approaches are Ensemble
and CNN machine learning algorithms. Studies that used ensemble approaches showed a
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preference for MFCC feature extraction techniques and no specific audio transformation
techniques. However, studies that used neural networks showed a preference for LFCC
feature extraction techniques and STFT audio transformation techniques. the findings from
the survey revealed that most studies focused on disseminating the results rather than
implementation considerations. Finally, the study recommended a research agenda for
bioacoustics classification techniques.
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