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Abstract: At present, in specific and complex industrial operations, robots have to respect certain
requirements and criteria as high kinematic or dynamic performance, specific dimensions of the
workspace, or limitation of the dimensions of the mobile elements of the robot. In order to respect
these criteria, a proper design of the robots has to be achieved, which requires years of practice and
a proper knowledge and experience of a human designer. In order to assist the human designer
in the process of designing the robots, several methods (including optimization methods) have
been developed. The scientific problem addressed in this paper is the development of an artificial
intelligence method to estimate the size of the workspace and the kinematics of a robot using a
feedforward neural network. The method is applied on a parallel robot composed of a base platform,
a mobile platform and six kinematic rotational-universal-spherical open loops. The numerical results
show that, with proper training and topology, a feedforward neural network is able to estimate
properly values of the volume of the workspace and the values of the generalized coordinates based
on the pose of the end effector.

Keywords: machine learning; neural network; feedforward; robot; kinematic analysis; workspace;
artificial intelligence

1. Introduction

At present, industrial robots are almost a prerequisite in industrial applications such
as milling, drilling, painting, machining or pick-and-place applications, mostly due to the
fact that industrial processes have become more and more complex. This is why, with the
increase in complexity of the industrial operations, in order to meet the specific criteria of
the several industrial processes, robots are being continuously redesigned in what regards
the architecture or the control system.

The action of redesigning a robot is usually realized by human designers, who have
developed several mathematical methods to improve the design and reduce the required
amount of time. Most of these mathematical methods are based on optimization algo-
rithms (for numerical optimization), but, in past years, several artificial intelligence-based
methods were developed. These newly developed methods are efficient and may decrease
the required computational time of the redesign process. Undoubtedly, there are some
disadvantages, such as the limited capability of online implementation and the capability
of neural network to identify/establish a relation between the input and the output is
dependent by the quality and the size of the training data.

When it comes to the process of designing or redesigning, one important aspect is the
kinematics of the robot. In addition, in recent years, several scientific papers have proposed,
for the design of robots, the use of neural networks for kinematic analysis. Although these
papers focus on the estimation of the generalized coordinates based on the poses of the tool
center point of the robot, little work has been conducted considering the workspace as a
whole as the output of a neural network based on the generalized coordinates.
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Moreover, the process of redesigning a robot is required by the applications in which
the robot will be used and by the specific criteria, either imposed by the application or
a human designer. In order to meet the criteria, several complex mathematical models
have to be developed, which are based on highly nonlinear equations. Considering this
aspect, the design of robots requires a large amount of experience from a human designer,
an aspect that may be bypassed or improved with the mean of optimization methods [1–7].
Moreover, recently, a high amount of work was performed for the mathematical modeling
of industrial robots using machine learning methods, as presented in [8–10].

In the following, several examples are presented using neural networks in order to
estimate the kinematics of robots. The authors of [11] proposed the use of neural networks
for the offline estimation of the kinematic analysis of a robot and an online neural network
in order to control the trajectory. A multilayer feedforward neural network was trained
in [12] in order to solve the kinematic analysis of a planar parallel mechanism. The proposed
solution overcomes some limitations of the Newton–Rapson numerical algorithm in what
regards obtaining multiple solutions for the generalized coordinates.

Another example is [13], which proposed a supervised learning neural network in
order to solve the inverse kinematic problem of serial robots, considering the assembly
errors in the joints. In [14], the authors proposed adversarial neural network in order to
solve the inverse kinematic and dynamic problems.

A more complex analysis was presented in [15], in which the inverse kinematic
problem of a parallel robot was approached both in analytic form and using neural networks.
Three types of neural networks were used: Multilayer Perceptron (MLP), Long-Short
Term Memory (LSTM) and Gated Recurrent Unit (GRU). The networks were trained and
tested using a point cloud that represents the possible poses of the final effector and the
corresponding generalized coordinates. The type of neural network that achieved the best
accuracy was the GRU, which presented also the lowest demanded computational time.

A similar analysis was performed in [16], where the direct kinematic problem of a
three-degrees-of-freedom redundant parallel robot was resolved based on different type
of machine learning methods: an MLP neural network, a Radial Basis Function (RBF)
neural network and Support Vector Machines (SVM). A backpropagation neural network
was used to identify a parameter of the architecture of a parallel robot based on several
performance indices as the workspace, the global conditioning index and the global rigidity
index. The paper presented, also, some of the disadvantages of using the neural network
for the kinematic analysis of robots, such as the neural networks may not be used in an
online application (and the control of robots requires real time processing), the capabilities
of the neural network to identify a mathematical function between the input and output
are completely dependent on the way the system was trained and the precision of the
discretization (for obtaining highly accurate results, a large amount of data is required),
and a slow convergence ratio.

Furthermore, ref. [17] proposed the estimation of the kinematic analysis of a parallel
robot that contains six prismatic–sphere–sphere open loops by implementing several machine
learning methods, such as Multiple Linear Regression, Multi-Variate Polynomial Regression,
Support Vector Regression, Decision Tree Regression and Random Forest Regression.

The direct kinematic problem of an industrial robot solved using a feedforward
Multilayer Perceptron was presented in [18]. A cloud of points that describes the poses of
the end effector of the robot were generated using Denavit–Hartenberg matrices. A part of
the points was used for training the network and the other part for testing and verification.
A similar work was presented in [19], where the authors used a Deep Neural Network in
order to solve the kinematics of a serial robot with five degrees of freedom.

As presented in [20], the workspace, e.g., the geometrical locus of all the possible
coordinates of the tool center point, is one of the main criteria in the design of robots. The
importance of the workspace is provided by: the capability of execution of a certain task (the
poses of the tool center for a certain task must lay inside the workspace), safety criteria (if a
worker occupies the workspace of a robot that performs a task he or she might be injured)
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or factory floor or enclosure dimensioning and nesting (the environment of the robot has to
allow the free movement of the tool center point). In what regards workspace estimation
using neural networks, in the scientific literature, there are few published papers that treat
this subject. For example, ref. [21] proposed the use of a deep neural network to estimate
the workspace by the mean of subspace learning. The paper states that the computational
time is lower than classical methods of workspace generation. The paper [22] presented
a development of the work from [21], i.e., the generation of the full workspace of serial
robots using a deep-learning framework for a given pose.

The work presented in this paper is an extended version of [23] and presents an
artificial neural network-based method (a feedforward neural network) that is used to
estimate the kinematics and the volume of the workspace of a robot, considering as inputs
the parameters that describe the architecture of the robot and the pose of the end effector.
The proposed framework is applied on a six-degrees-of-freedom parallel manipulator with
rotational active joints. The novelty of the paper rests mostly on two aspects. The first
aspect is the fact that the neural network estimates the values of the generalized coordinates
from each active joint in particular (for each generalized coordinate, there is an output from
the network), an aspect that has the advantage of and offers the possibility to apply the
method for manipulators with a different number of active joints. The second one is the fact
that, in the process of designing or redesigning a robot, a human designer can estimate the
workspace directly, each time a parameter of the robot is changed, without the requirement
of computing it with the classical workspace generation methods.

2. Proposed Method

The work presented in this paper is summarized by Figure 1. In the following subsec-
tions, each step from the problem formulation is described in detail.
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Figure 1. Representation of the problem formulation.

2.1. Generate the Training Data and of the Workspace of the Robot

In the first step, the kinematic model of a robot was developed. Therefore, for a given
pose of the end effector, the mathematical equations that map the values of the generalized
coordinates from the active joints were developed, as in Equation (1):

q = f (p, ϕ) (1)



Sensors 2022, 22, 8356 4 of 23

where q is a linear vector with the generalized coordinates, f represents the mathematical
functions, and p and ϕ represent the pose of the end effector (p is the vector of the coordinates
on the x, y and z axes, and ϕ is the vector of Euler’s angles around the x, y and z axes).

By performing the kinematics, a dataset of values for the pose of the end effector and
the corresponding values for the generalized coordinates was generated. Part of this data
represent the training data and the rest was kept for validation.

Next, the generation of the workspace data was based on the kinematic analysis. There
are several methods proposed in the scientific literature for workspace evaluation, with the
previous work of the authors on this subject being presented in [24,25]. Firstly, a 3D space (a
parallelepiped) is discretized in uniformly distributed points pi. For each pi, the kinematic
analysis is performed and, if there is a valid solution for the generalized coordinates, the
point pi is included in the workspace. Finally, the workspace is generated as a cloud of
points from all the points that generated a valid solution.

In order to evaluate the volume of the workspace, Equation (2) is used:

VWS = vpi ·m (2)

where VWS is the volume of the workspace, vpi is the volume correspondent to a single
point of the workspace and m is the total number of points.

The next step was to perform multiple evaluations of the workspace using the kine-
matic equations, using several parameters that describe the architecture of a robot. In this
way, a second dataset was created.

For the two generated datasets (one for the kinematic analysis and one for the
workspace), 80% of the data were used for training the neural networks and 20% of
the data were used for validation and testing.

2.2. Establish the Parameters That Describe the Neural Networks Used for Kinematics and
Workspace Estimation

The process of defining the neural network is a complex and important task and, for
these applications, a proper method was not identified in the scientific literature. Both for
the kinematics and workspace estimations, a multilayer, fully connected neural network
was used. The network was implemented in the MATLAB environment. Figure 2 presents
the general topology of the neural network.
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Figure 2. General topology of a multilayer fully connected neural network (reprinted with permission
from ref. [23]. 2022, IEEE Proceedings).

The parameters that describe the neural network are the number of layers, lambda
λ (the regularization rate) and the type of activation function, which may be the Rectified
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Linear Unit (ReLU), the hyperbolic tangent tanh, the sigmoid or identity function, functions
that are presented, respectively, in the following Equations (3)–(6):

φ(v) =
{

v, v ≥ 0
0, v < 0

, (3)

φ(v) = tan h(v), (4)

φ(v) =
1

1 + ev , (5)

φ(v) = v. (6)

In order to define these parameters, an optimization was performed in MATLAB using the
Random Search Algorithm for both the networks used for the kinematics and for the workspace
estimation (numerical examples of the optimization are presented in Sections 4.2 and 5.2).

2.3. Training the Neural Networks

After the establishment of the parameters that describe the networks, the neural
network used for the kinematics estimation and the neural network used for the workspace
estimation were trained based on the two datasets created in the first step. As presented, a
fraction of the two datasets was kept for validation purposes.

In this step, another important aspect is the convergence criterion. This may be the
maximal number of function evaluations, a specific minimal value of the mean squared
error (MSE) or the confirmation of the performance of the trained network based on the
data reserved for validation. This criterion is imposed by the user that defines the network
but may be dependent on the application the neural network is used for.

2.4. Tesing the Trained Neural Network Us

After the training of the neural networks from the third step, the performance of the
networks was evaluated using the validation datasets (using the 20% fraction reserved in
the first step from each dataset).

The outputs of the two neural networks, i.e., the estimated values of the generalized
coordinates and the volume of the workspaces, were compared with the numerically
evaluated ones. In order to quantify the error, two mean squared errors were computed,
one for the kinematics and one for the volume of the workspace, as presented in the
following equations:

MSEKinematics =
1
t

t

∑
i=1

(qi − q̂i)
2 (7)

MSEWorkspace =
1
p

p

∑
i=1

(
VWSi − V̂WSi

)2, (8)

where qi is the ith vector with generalized coordinates evaluated numerically in the first
step, q̂i is the vector with estimated values of the generalized coordinates corresponding
to the same input as for the numerically evaluated one, t is the total number of test cases
for kinematics, VWSi represents the numerically evaluated volume of the ith workspace
from the first step, V̂WSi is the volume of the workspace that was estimated by the neural
network, corresponding to the same parameters of the robot, and p is the total number of
test cases for the workspace.

2.5. Analysis of the Performance of the Neural Networks

The last step corresponds to an in-depth analysis of the performance of the neural net-
works. The estimated values (both for the kinematics and for the volume of the workspace)
were compared in terms of relative difference with the numerically evaluated ones (from
the validation dataset). Moreover, the convergence of the neural networks, the training
history and the error histograms were presented for each neural network.
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3. Prerequisite—Kinematics and Workspace Analysis of a Parallel Robot

In order to validate the proposed method and to generate the training and test data
for the neural network, the kinematics and the workspace of a robot were developed in
analytical form. In this paper, a six-degrees-of-freedom parallel robot was used, composed
of a fixed platform, a mobile platform and six identical kinematic open loops that intercon-
nect the platforms. These open loops are composed of two mobile elements, a rotational
joint (R), a universal joint (U) and a spherical joint (S).

On the one hand, the reason for applying the methodology on a parallel robot is that,
in the case of parallel robots, one disadvantage is the reduced size of the workspace in
comparison with the dimensions of the elements of the robots. Moreover, in the case of the
direct kinematics of a parallel robot, there is a closed-form analytical solution for computing
the poses of the tool center point from the values of the generalized coordinates.

On the other hand, the methodology presented in Section 2 was developed regardless
of the type of the robot to which it is applied, so it may be applied to other types of robots
(e.g., serial or parallel robots).

The architecture of the robot is presented in Figure 3 and the top view of the platforms
is presented in Figure 4.
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ref. [23]. 2022, IEEE Proceedings).
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Figure 4. The fixed (a) and mobile (b) platforms of the parallel robot (adapted with permission from
ref. [23]. 2022, IEEE Proceedings).

The parameters in Figures 3 and 4 represent:

• l1 and l2 are the lengths of the elements of the RUS kinematic open loops that intercon-
nect the platforms;

• R and r are the radii of the two platforms (fixed and mobile);
• βi and αi are the angles that describe the positioning of the rotational joints on the

fixed platform and of the spherical joints on the mobile platform, respectively (where
i = 1 . . . 6).
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3.1. Kinematic Analysis

In order to perform the kinematic analysis, Figure 5 is considered.
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Figure 5. Parallel robot (only one RUS open loop is represented).

The notations from Figure 5 (other than ones presented in the previous two figures)
represent (for each notation, i = 1 . . . 6):

• O0x0y0z0 is the absolute coordinate system attached to the fixed platform;
• Pxyz is the relative coordinate system attached to the mobile platform. The coordinates

of the position vector p of the point P with respect to the absolute frame O0x0y0z0 are(
px, py, pz

)
;

• The angles ρx, ρy, ρz are the Euler’s rotation angles of the system Pxyz around x0, y0
and z0 of the absolute coordinate system;

• q1i is the active angle in the rotational joint i;
• O1i is the center of the rotational joint. The coordinates of the position vector o1i of the

point O1i expressed in the absolute coordinate system are
(
o1ix, o1iy, o1iz

)
;

• O2i is the center of the universal joint. The coordinates of the position vector o2i of the
point O2i expressed in the absolute coordinate system are

(
o2ix, o2iy, o2iz

)
;

• O3i is the center of the universal joint. The coordinates of the position vector o3i of the
point O3i expressed in the absolute coordinate system are

(
o3ix, o3iy, o3iz

)
;

The kinematic analysis was solved for one open loop, in a similar manner as presented
in [26]. Applying the same methodology for each open loop, the inverse kinematic analysis
was solved for entire robot. Firstly, one has to evaluate the analytic expression of the
active angle q1i. The geometrical parameters of the mobile platform that are known are:
R, r, l1, d, l2, βi, αi. Writing the equation of the length of the second element, l2 the
following equation was obtained (for each equation, the value of i = 1 . . . 6):

(o3ix − o2ix)
2 + (o3iy − o2iy)

2 + (o3iz − o2iz)
2 = l2

2 . (9)

The coordinates of the point O3i were evaluated from the pose of Pxyz towards
O0x0y0z0: [

o3ix, o3iy, o3iz
]T

=
[
px, py, pz

]T
+ Rzyx·r·[cos(∝i), sin(∝i), 0]T . (10)
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The term Rzyx is the rotation matrix of Pxyz towards O0x0y0z0, evaluated with:

Rzyx = Rz(ρz)·Ry
(
ρy
)
·Rx·(ρx). (11)

The coordinates
(
o2ix, o2iy, o2iz

)
of the points O2i were evaluated with the equation:[

o2ix, o2iy, o2iz
]T

=
[
o1ix, o1iy, o1iz

]T
+ l1i·[cos βi· cos q1i, sin βi· cos q1i, sin q1i]

T . (12)

The coordinates
(
o1ix, o1iy, o1iz

)
of the point O1i are:[

o1ix, o1iy, o1iz
]T

= r·[cos βi, sin βi, 0]T . (13)

By replacing Equations (10)–(13) into Equation (9), we obtained:

cos q1i·Di + sin q1i·Ei = Fi, (14)

where Di, Ei and Fi are evaluated as follows:

Di = cos βi(o3ix − o1ix) + sin βi
(
o3iy − o1iy

)
, (15)

Ei = o3iz − o1iz (16)

Fi =

[
l2
1 − l2

2 + (o3ix − o1ix)
2 +

(
o3iy − o1iy

)2
+ (o3iz − o1iz)

2
]

(2 ·l1)
. (17)

The analytic expression of the active angle q1i is expressed by:

sin(q1i) =

(
Ei·Fi − Ki·Di·

√
(Di

2 + Ei
2 − Fi

2)
)

(
D2

i + E2
i
) , (18)

cos(q1i) =

(
Di·Fi + Ki·Ei·

√
(Di

2 + Ei
2 − Fi

2)
)

(
D2

i + E2
i
) . (19)

The term Ki from Equations (18) and (19) has the value either 1 or −1, depending
on the joint configuration (branch index). Each angle q1i has two valid solutions in the
inverse kinematic problem, depending on the term Ki. Only one of them was considered
in the following equations. The final solution for the active angles was evaluated with
the atan2 function:

q1i = atan2(sin(q1i), cos(q1i)). (20)

3.2. Workspace Analysis

In general, the workspace of a robot is defined by the space occupied by the end
effector considering all the possible positions and orientation of its end effector. In the
following, the zero-orientation workspace was developed for the six-degrees-of-freedom
parallel robot analyzed in this paper. There several constraints that affect the workspace, as
presented in [20] as:

1. Kinematic/geometrical constraints represent the solutions of the active angles from
the inverse kinematics from Section 3.2:

qi = f
(

px, py, pz, ϕx, ϕy, ϕz
)
. (21)

2. Mechanical constraints are the physical limitations in the joints:

qi min ≤ qi ≤ qi max. (22)
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3. Limitations regarding the minimal distance between elements (ek and el being two
random elements):

dist(ek, el) > distmin (23)

Firstly, a cube is discretized in points for which the inverse kinematic problem is
evaluated. If there is a geometric solution of the kinematics, it is evaluated if the point lies
within the singular configurations and if other mechanical constraints are respected. If all
the requirements are true, the analyzed point lies within the workspace. By combining all
the valid points from the discretized cube, the workspace of the robot is generated. The
workspace of the parallel robot is presented in Figure 6.
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4. Results—Estimation of the Kinematics Using a Neural Network

In this section, the methodology presented in Section 2 was applied for the inverse
kinematics of the six-degrees-of-freedom parallel robot, i.e., a feedforward neural network
was trained to estimate the values of the generalized coordinates based on the pose of the
end effector.

4.1. Generation of the Training and Test Dataset

The desired output of the neural network is the generalized coordinates given the
pose of the end effector. The training data have to be generated, i.e., a dataset of poses
of the end effector are randomly generated (which is the input in the neural network)
and the corresponding generalized coordinates are evaluated using the inverse kinematics
algorithm presented in Section 3 (the generalized coordinates are the output of the neural
network). For each generalized coordinate, the neural network was trained individually
meaning that there were six models trained, for each generalized coordinate.

The pose of the end effector is given by the coordinates of the tool center point(
px, py, pz

)
on the x, y and z axes and the angles of rotations around each axis

(
ρx, ρy, ρz

)
.

In order to generate the training data, a number of 10,000 random values were considered
for each coordinate and angle. The random values were generated between the following
minimal and maximal limits for each parameter, as presented in Equation (24):

−0.3 < px < 0.3 [m],

−0.3 < py < 0.3 [m],

0.8 < pz < 1.2[m],

−π
6 < ρx < π

6 ,

−π
6 < ρy < π

6 ,

− π
12 < ρz <

π
12 .

(24)
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The random values were combined in 10,000 input random combinations. For each
combination, the correspondent generalized coordinates of the robot were evaluated using
the inverse kinematics analysis. In this way, the dataset required for training the neural
network was generated. A fraction of 80% of this dataset was reserved for the training of
the neural network and the remaining 20% was reserved for validation.

4.2. Define the Parameters of the Neural Network for Kinematic Estimation

The type of network that was used to evaluate the volume of a workspace based on
the input parameters was a feedforward, fully connected neural network implemented in
the MATLAB environment. The parameters that define the topology of the neural network
have a strong influence upon the numerical results. This is why, in order to increase the
efficiency, the parameters of the network were established based on an optimization.

The optimization was run using a random search algorithm from the MATLAB envi-
ronment. The optimization was run for 1000 iterations and, on each iteration, the neural
network was trained based on the training data already prepared. The objective function of
the optimization was the mean squared error after training. On each iteration, the neural
network was trained up to the point in which the number of epochs for training reached
1000. The resulting parameters that provided the best neural network are presented in
Equations (25)–(28):

Nolayers = 2, (25)

Sizelayers = [18, 13] (26)

λ = 7.943 × 10−8, (27)

Act f cn = tanh. (28)

In Equations (25)–(28), the parameters that were optimized are: Nolayers—the number
of intermediate layers (without the input and output layers), Sizelayers—a vector that
contains the size (the number of neurons) of each intermediate layer, λ—the regularization
rate and Act f cn—the type activation function.

4.3. Numerical Results

The feedforward neural network was trained in the MATLAB environment using
80% of the training data. The equipment that was used was a PC with an Intel I7-4770k
processor and 64 GB of RAM.

As presented before, six trained models were generated, using the same neural net-
work parameters each time. Therefore, each model estimated one generalized coordinate.
In each case, the condition of convergence of the neural network was reaching 1 million
epochs or an MSE of 1 × 10−7.

4.3.1. Results for the First Generalized Coordinate q1

Figure 7 presents the convergence of the neural network on a logarithm scale. From
the 1st epoch to the 1000th epoch, the mean squared error (MSE) reached from 3.88 to
1.8 × 10−3. In the 1 millionth epoch, the MSE reached its lowest value, as in Equation (29).
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MSE_Best_q1 = 3.71 × 10−5. (29)

Using the trained model, the values of the first generalized coordinate were estimated,
using the fraction of 20% from the dataset reserved for validation. Figure 8 presents the
real values of the first generalized coordinate in comparison with the estimated ones from
the neural network.
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Figure 8. The comparison between the real data (the real value of q1) and the predicted data (the
predicted value of q1).

Figure 9 presents the relative error between the real validation data and the predicted
data and the model and Figure 10 presents the error histogram between the target and
predicted values.
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By analyzing Figures 9 and 10, the maximal error between the target and prediction
was 11.08%. Nevertheless, among the 2000 target values, only for 17, the relative error was
higher than 1%. The mean error between the target and prediction for the first generalized
coordinate was 0.0103%.

4.3.2. Results for the First Generalized Coordinate q2

Figure 11 presents the convergence of the neural network on a logarithm scale. From
the 1st epoch to the 1000th epoch, the mean squared error reached from 7.08 to 1.3 × 10−3.
In the 1 millionth epoch, the MSE reached its lowest value, as in Equation (30).
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Figure 11. Convergence of the neural network for the first generalized coordinate q2 (log scale).

MSE_Best_q2 = 9.46 × 10−5. (30)

Using the trained model, the values of the first generalized coordinate were estimated,
using the fraction of 20% from the dataset reserved for validation. Figure 12 presents the
real values of the first generalized coordinate in comparison with the estimated ones from
the neural network.
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predicted value of q2).

Figure 13 presents the relative error between the real validation data and the predicted
data and the model and Figure 14 presents the error histogram between the target and
predicted values.

By analyzing Figures 13 and 14, the maximal error between the target and prediction
was −11.48%. Nevertheless, among the 2000 target values, only for 38, the relative error
was higher than 1%. The mean error between the target and prediction for the second
generalized coordinate was 0.104%.
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4.3.3. Results for the First Generalized Coordinate q3

Figure 15 presents the convergence of the neural network on a logarithm scale. From
the 1st epoch to the 1000th epoch, the mean squared error reached from 9.71 to 1.07 × 10−3.
In the 1 millionth epoch, the MSE reached its lowest value, as in Equation (31).

Sensors 2022, 22, x FOR PEER REVIEW 13 of 23 
 

 

Figure 13 presents the relative error between the real validation data and the pre-

dicted data and the model and Figure 14 presents the error histogram between the target 

and predicted values.  

 

Figure 13. Relative errors between the target values and the predicted values for 𝑞2. 

 

Figure 14. Error histogram between the target values and the estimated values for 𝑞2. 

By analyzing Figures 13 and 14, the maximal error between the target and prediction 

was −11.48%. Nevertheless, among the 2000 target values, only for 38, the relative error 

was higher than 1%. The mean error between the target and prediction for the second 

generalized coordinate was 0.104%.  

4.3.3. Results for the First Generalized Coordinate 𝑞3 

Figure 15 presents the convergence of the neural network on a logarithm scale. From 

the 1st epoch to the 1000th epoch, the mean squared error reached from 9.71 to 1.07 × 10−3. 

In the 1 millionth epoch, the MSE reached its lowest value, as in Equation (31). 

 

Figure 15. Convergence of the neural network for the first generalized coordinate 𝑞3 (log scale). 

𝑀𝑆𝐸_𝐵𝑒𝑠𝑡_𝑞3  = 7.8 ×  10−5.  (31) 

Using the trained model, the values of the first generalized coordinate were esti-

mated, using the fraction of 20% from the dataset reserved for validation. Figure 16 pre-

sents the real values of the first generalized coordinate in comparison with the estimated 

ones from the neural network. 

Figure 15. Convergence of the neural network for the first generalized coordinate q3 (log scale).

MSE_Best_q3 = 7.8 × 10−5. (31)

Using the trained model, the values of the first generalized coordinate were estimated,
using the fraction of 20% from the dataset reserved for validation. Figure 16 presents the
real values of the first generalized coordinate in comparison with the estimated ones from
the neural network.
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Figure 16. The comparison between the real data (the real value of q3) and the predicted data (the
predicted value of q3).

Figure 17 presents the relative error between the real validation data and the predicted
data and the model and Figure 18 presents the error histogram between the target and
predicted values.

By analyzing Figures 16 and 18, the maximal error between the target and prediction
was −6.76%. Nevertheless, among the 2000 target values, only for 29, the relative error was
higher than 1%. The mean error between the target and prediction for the third generalized
coordinate was 0.042%.
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4.3.4. Results for the First Generalized Coordinate q4

Figure 19 presents the convergence of the neural network on a logarithm scale. From
the 1st epoch to the 1000th epoch, the mean squared error reached from 3.34 to 1.4 × 10−3,
In the 1 millionth epoch, the MSE reached its lowest value, as in Equation (32).
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Figure 19. Convergence of the neural network for the first generalized coordinate q4 (log scale).

MSE_Best_q4 = 1.14 × 10−4. (32)

Using the trained model, the values of the first generalized coordinate were estimated,
using the fraction of 20% from the dataset reserved for validation. Figure 20 presents the
real values of the first generalized coordinate in comparison with the estimated ones from
the neural network.

Figure 21 presents the relative error between the real validation data and the predicted
data and the model and Figure 22 presents the error histogram between the target and
predicted values.

By analyzing Figures 21 and 22, the maximal error between the target and prediction
was around −9%. Nevertheless, among the 2000 target values, only for 33, the relative
error was higher than 1%. The mean error between the target and prediction for the fourth
generalized coordinate was 0.038%.
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4.3.5. Results for the First Generalized Coordinate q5

Figure 23 presents the convergence of the neural network on a logarithm scale. From
the 1st epoch to the 1000th epoch, the mean squared error reached from 7.72 to 1.3 × 10−3.
In the 1 millionth epoch, the MSE reached its lowest value, as in Equation (33).
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MSE_Best_q5 = 1.2 × 10−4. (33)
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Using the trained model, the values of the first generalized coordinate were estimated,
using the fraction of 20% from the dataset reserved for validation. Figure 24 presents the
real values of the first generalized coordinate in comparison with the estimated ones from
the neural network.
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Figure 24. The comparison between the real data (the real value of q5) and the predicted data (the
predicted value of q5).

Figure 25 presents the relative error between the real validation data and the predicted
data and the model and Figure 26 presents the error histogram between the target and
predicted values.
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By analyzing Figures 25 and 26, the maximal error between the target and prediction
was 13.59%. Nevertheless, among the 2000 target values, only for 38, the relative error was
higher than 1%. The mean error between the target and prediction for the fifth generalized
coordinate was 0.0309%.

4.3.6. Results for the First Generalized Coordinate q6

Figure 27 presents the convergence of the neural network on a logarithm scale. From
the 1st epoch to the 1000th epoch, the mean squared error reached from 0.72 to 1.2 × 10−3,
In the 1 millionth epoch, the MSE reached its lowest value, as in Equation (34).
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Figure 27. Convergence of the neural network for the first generalized coordinate q6 (log scale).

MSE_Best_q6 = 5.37 × 10−5. (34)

Using the trained model, the values of the first generalized coordinate were estimated,
using the fraction of 20% from the dataset reserved for validation. Figure 28 presents the
real values of the first generalized coordinate in comparison with the estimated ones from
the neural network.
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Figure 28. The comparison between the real data (the real value of q6) and the predicted data (the
predicted value of q6).

Figure 29 presents the relative error between the real validation data and the predicted
data and the model and Figure 30 presents the error histogram between the target and
predicted values.

By analyzing Figures 29 and 30, the maximal error between the target and prediction
was −13.3%. Nevertheless, among the 2000 target values, only for 27, the relative error was
higher than 1%. The mean error between the target and prediction for the sixth generalized
coordinate was 0.0058%.
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4.3.7. Comparison of the Results for the Generalized Coordinates

The numerical results for all generalized coordinates are similar in what regards the
magnitude of each MSE after 1 million epochs, maximal errors and the number of values
with errors higher than 1%.

In what regards the MSE, it reached similar degrees of magnitude for each generalized
coordinate; the highest value was in the case of q4, where the MSE was 12.1 × 10−5, and
the lowest was in the case of q1, where the MSE was 3.7 × 10−5.

The highest errors of estimation of the generalized coordinates were around 11–13%
for q1, q2, q5 and q6 and around 6–9% for q3 and q4, which may seem high in absolute value.
Still, the maximal number of relative errors higher than 1% is 38, among 2000 validation
cases for each generalized coordinate, which leads to a ratio of 1.9%. Moreover, considering
the fact that the values of the mean relative errors for the estimation of each generalized
coordinate were below 0.104% (correspondent for the case of q2), it can be concluded that
the estimation of the values of the generalized coordinate using the proposed methodology
has a good level of accuracy.

5. Results—Estimation of the Workspace Using a Neural Network

In this section, we applied the methodology presented in Section 2 in order to estimate
the volume of the workspace of the parallel robot presented in Section 3.

5.1. Generation of the Training and Test Dataset

The desired output of the neural network is the volume of the workspace given the
parameters that describe the architecture of the robot. Therefore, in this step, the training
data has to be generated, i.e., a dataset of workspaces is computed (which is the output
of the neural network) based on the parameters that define the architecture of the robot
(which are the input of the neural network).

By evaluating all the parameters that define the architecture of the robot, the ones
that were considered as most influent upon the size of the workspace were: l1 and l2, the
lengths of the mobile elements of the RUS kinematic open loop, R and r, the radii of the
fixed and mobile platforms, respectively, and βi and αi, the angles of positioning of the
rotational joints on the fixed platforms and of the spherical joints on the mobile platform,
respectively. Since the angles correspondent to an odd value of the index i are equal to each
other and the angles correspondent to an odd value of the index i are equal to each other, in
order to reduce the number of parameters, the ratios between two consecutive angles from
the fixed and from the mobile platforms were introduced, notated with ratiod and ratiou,
expressed in Equations (35) and (36) as:

ratiod =
β1

β2
=

β3

β4
=

β5

β6
, (35)

ratiou =
α1

α2
=

α3

α4
=

α5

α6
. (36)

Therefore, the input parameters for the neural network for estimation of the volume of
the workspace were l1, l2, R, r, ratiod and ratiou. In order to generate the training data, for
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each of the parameters, a number of 10,000 random values were considered. The random
values were generated between the minimal and maximal limits for each parameter:

0.1 < l1 < 0.3 [m],

0.2 < l2 < 0.9 [m],

0.1 < r < 0.3[m],

0.2 < R < 0.5 [m],

0.5 < ratiod < 2,

0.5 < ratiou < 2.

(37)

With these random variables, a number of 10,000 of robot workspaces were evaluated,
corresponding to 10,000 input parameters. A fraction of 80% of this dataset was reserved
for training of the neural network and the rest of 20% was reserved for validation.

5.2. Define of the Parameters of the Neural Network

Similar to Section 4, the type of network that was used to evaluate the volume of
a workspace based on the input parameters was a feedforward, fully connected neural
network implemented in the MATLAB environment. In order to establish the parameters
of the neural network, another optimization was run using a random search algorithm
from the MATLAB environment. The optimization was run for 1000 iterations and, on
each iteration, the neural network was trained based on the training data already prepared.
On each iteration, the neural network was trained up to the point in which the number of
epochs reached 1000. The following parameters were obtained for the neural network:

Nolayers = 2, (38)

Sizelayers = [30, 11], (39)

λ = 1.6331 × 10−8, (40)

Act f cn = tanh. (41)

In Equations (38)–(41), the parameters represent the same as the ones from
Equations (25)–(28).

5.3. Numerical Results for the the Workspace

Figure 31 presents the convergence of the neural network in log scale. The condition
of convergence of the neural network was chosen as reaching 1 million epochs or reaching
a mean squared error of 1 × 10−7. From the 1st epoch to the 1000th epoch, the MSE reached
form 0.03 up to 3.4 × 10−6. From the 1000th epoch up to the 1 millionth epoch, the MSE
was lowered with just one degree of magnitude. After reaching the first condition of
convergence, 1 million epochs, the MSE for the last epoch is presented in Equation (42).

MSE_Best_WS = 5.57 × 10−7 (42)
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Figure 32 presents a comparison between the real data, the actual values of the volume
of the workspaces (validation data, evaluated numerically) and the predicted data, the
value of the volume of the workspace predicted by the feedforward trained neural network.
As seen in the figure, the trained model was able to predict the data with high precision.
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Figure 33 presents the relative error between the real validation data and the predicted
data and the model and Figure 34 presents the error histogram between the target and
predicted values.
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By analyzing Figures 33 and 34, the maximal error between the target and prediction
was around 5%. Nevertheless, among the 2000 target values, for 327 the relative error
was higher than 1%. The mean error between the target and prediction values for the first
generalized coordinate was −0.0029%.

6. Discussion

By analyzing the numerical results from Section 4, in the case of kinematics estimation,
one relevant aspect is that each generalized coordinate is estimated separately with indi-
vidual neural networks for each. Therefore, the presented method may be applied even
for different numbers of DOFs or type of robots. The accuracy of the trained models is
provided by the MSE and the relative mean error between the real validation and estimated
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data, which was below 0.1%. The estimation of the kinematics using neural networks
may be used in order to avoid carrying out classical kinematics algorithms for real-time
implementation. Moreover, it may present advantages when applied to robots for which
the kinematics problem may have more than one solution or to redundant robots. In the
case of the estimation of kinematics using neural networks, the work presented may be
further developed in what regards the estimation of first and second differentials of the
generalized coordinates (i.e., the generalized velocities and accelerations).

In the case of estimation of the volume of the workspace, the main outcome of the
proposed approach is for the process of designing or redesigning a robot. By applying this
method, a human designer is able to estimate directly the volume of the workspace, without
being required to numerically compute again the workspace (for each time the value of
a parameters that defines the architecture of the robot has to be changed). The accuracy
of the trained model is provided by the MSE and the relative mean error between the real
validation and estimation data, which was below 0.1%. Still, in this case, the number of test
cases that presented a relative error larger than 1% was higher than in the case of estimation
of the kinematics.

7. Conclusions

This paper presented the development process of an artificial neural network, namely
a feedforward fully connected neural network in order to estimate the inverse kinematics
and the volume of the workspace of a robot. The values of the generalized coordinates of
the robot were estimated by the neural network from the poses (position and orientation) of
the end effector and the volume of the workspace was estimated based on the parameters
that describe the architecture of the robot.

The datasets the neural networks were trained and validated were generated using
classical inverse kinematics analysis and workspace generation for a six-DOF parallel robot
composed by six identical RUS open loops that interconnect the fixed and mobile platforms.

The topology of the neural networks was established based on two optimizations
implemented in MATLAB. The optimization had as objective function the MSE and the
parameters that were optimized were the number of layers, the size of each layer, the type
of the activation function and the regularization rate.

In what regards the future development of this work for the estimation of the workspace,
in this paper, only the volume of the workspace was considered, without implementing the
shape and size of the workspace as input or output. This is why the future outlook for the
estimation of the workspace is to further develop the machine learning model to be able to
estimate the workspace, including the shape and dimensions.

Author Contributions: Writing—original draft, C.B. (Cătălin Boanta); Writing—review & editing,
C.B. (Cornel Bris, an). The authors declare similar contributions in writing this article. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Project “Entrepreneurial competences and excellence
research in doctoral and postdoctoral programs—ANTREDOC”, project co-funded by the European
Social Fund financing agreement no. 56437/24.07.2019. Moreover, this paper received financial
support by Romanian Ministry of Research and Innovation, project PN-IIIP2-2.1-PED-2019-0085
CONTRACT 447PED/2020 (Acronym POSEIDON).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 8356 22 of 23

References
1. Laribi, M.A.; Carbone, G.; Zeghloul, S. On the optimal design of cable driven parallel robot with a prescribed workspace for

upper limb rehabilitation tasks. J. Bionic Eng. 2019, 16, 503–513. [CrossRef]
2. Yi, W.; Zheng, Y.; Wang, W.; Tang, X.; Liu, X.; Meng, F. Optimal design and force control of a nine-cable-driven parallel mechanism

for lunar takeoff simulation. Chin. J. Mech. Eng. 2019, 32, 73. [CrossRef]
3. Gao, Z.; Zhang, D. Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans.

Ind. Electron. 2014, 62, 423–433. [CrossRef]
4. El Hraiech, S.; Chebbi, A.H.; Affi, Z.; Romdhane, L. Genetic algorithm coupled with the Krawczyk method for multi-objective

design parameters optimization of the 3-UPU manipulator. Robotica 2020, 38, 1138–1154. [CrossRef]
5. Cheng, H.; Li, W. Reducing the frame vibration of delta robot in pick and place application: An acceleration profile optimization

approach. Shock Vib. 2018, 2018, 2945314. [CrossRef]
6. Diveev, A.; Dubrovin, G.; Malyshev, D.; Nozdracheva, A. Geometric parameters and workspace optimization of sitting-type

lower limb rehabilitation robot. In Latin American Symposium on Industrial and Robotic Systems; Springer: Cham, Switzerland, 2019;
pp. 279–289. [CrossRef]

7. Hamida, I.B.; Laribi, M.A.; Mlika, A.; Romdhane, L.; Zeghloul, S. Comparative study of design of a 3-DOF translational
parallel manipulator with prescribed workspace. In IFToMM World Congress on Mechanism and Machine Science; Springer: Cham,
Switzerland, 2019; pp. 501–512. [CrossRef]

8. López, E.G.; Yu, W.; Li, X. Optimal design of a parallel robot using neural network and genetic algorithm. In Proceedings
of the 2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh, Morocco,
14–19 December 2019; pp. 64–69. [CrossRef]

9. Huang, G.; Zhang, D.; Zou, Q. Neural network and performance analysis for a novel reconfigurable parallel manipulator based
on the spatial multiloop overconstrained mechanism. Int. J. Aerosp. Eng. 2020, 2020, 8878058. [CrossRef]

10. Chen, Q.; Yang, C. Hybrid algorithm for multi-objective optimization design of parallel manipulators. Appl. Math. Model. 2021,
98, 245–265. [CrossRef]

11. Gholami, A.; Homayouni, T.; Ehsani, R.; Sun, J.Q. Inverse Kinematic Control of a Delta Robot Using Neural Networks in
Real-Time. Robotics 2021, 10, 115. [CrossRef]

12. López, E.J.; De La Mora-Pulido, D.S.; De La Mora-Pulido, R.S.; Ochoa-Estrella, F.J.; Flores, M.A.; Luna-Sandoval, G. Modeling in
Two Configurations of a 5R 2-DoF Planar Parallel Mechanism and Solution to the Inverse Kinematic Modeling Using Artificial
Neural Network. IEEE Access 2021, 9, 68583–68594. [CrossRef]

13. Csiszar, A.; Eilers, J.; Verl, A. On solving the inverse kinematics problem using neural networks. In Proceedings of the 2017 24th
International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November
2017; pp. 1–6. [CrossRef]

14. Ren, H.; Ben-Tzvi, P. Learning inverse kinematics and dynamics of a robotic manipulator using generative adversarial networks.
Robot. Auton. Syst. 2020, 124, 103386. [CrossRef]

15. Toquica, J.S.; Oliveira, P.S.; Souza, W.S.; Motta, J.M.S.; Borges, D.L. An analytical and a Deep Learning model for solving the
inverse kinematic problem of an industrial parallel robot. Comput. Ind. Eng. 2021, 151, 106682. [CrossRef]

16. Zhang, D.; Lei, J. Kinematic analysis of a novel 3-DOF actuation redundant parallel manipulator using artificial intelligence
approach. Robot. Comput. Integr. Manuf. 2011, 27, 157–163. [CrossRef]

17. Sanjeev, M.M.; Thomas, M.J.; Kumar, T.S.; Sudheer, A.P.; Joy, M.L. Determination of inverse kinematic solutions for a 3 degree of
freedom parallel manipulator using machine learning. In Proceedings of the 2020 IEEE Students Conference on Engineering &
Systems (SCES), Prayagraj, India, 10–12 July 2020; pp. 1–6.
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