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Abstract: Advances in neural networks have garnered growing interest in applications of machine
vision in livestock management, but simpler landmark-based approaches suitable for small, early
stage exploratory studies still represent a critical stepping stone towards these more sophisticated
analyses. While such approaches are well-validated for calibrated images, the practical limitations
of such imaging systems restrict their applicability in working farm environments. The aim of this
study was to validate novel algorithmic approaches to improving the reliability of scale-free image
biometrics acquired from uncalibrated images of minimally restrained livestock. Using a database
of 551 facial images acquired from 108 dairy cows, we demonstrate that, using a simple geometric
projection-based approach to metric extraction, a priori knowledge may be leveraged to produce
more intuitive and reliable morphometric measurements than conventional informationally complete
Euclidean distance matrix analysis. Where uncontrolled variations in image annotation, camera
position, and animal pose could not be fully controlled through the design of morphometrics, we
further demonstrate how modern unsupervised machine learning tools may be used to leverage
the systematic error structures created by such lurking variables in order to generate bias correction
terms that may subsequently be used to improve the reliability of downstream statistical analyses
and dimension reduction.

Keywords: scale free morphometrics; Euclidean distance matrix analysis; projective biometrics;
facial morphology; facial expression; unsupervised machine learning; precision livestock farming;
dairy welfare

1. Introduction

Methodological advances in machine vision, namely the rapid evolution of neural
network-based approaches to image segmentation and analysis, have garnered growing
interest in the utility of imaging systems in livestock management [1]. For some appli-
cations, existing databases may be suitable with respect to both size and structure to
directly implement these cutting-edge analytical techniques. For example, algorithmic
approaches to the evaluation of livestock confirmation are not only able to train on large
image databases curated by breed improvement programs, but can also leverage the depth
of literature on linear type traits to evaluate the efficacy of the resulting model [2]. Other
applications of machine vision, however, may seek to extract information from livestock
systems that has not previously been quantified due to issues with either accuracy or
practicality. Applications related to livestock behavior and welfare may be particularly
apt to fall into this latter category [3,4]. For use cases where an image database must be
purpose-built for the task, perhaps with little prior literature to inform optimal sampling
strategies or even how response features should be encoded, the scale and complexity
of neural network-based analyses may constitute a considerable barrier to entry. Where
such gaps in the literature base arise, preliminary analyses that employ less data-hungry
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approaches to image analysis may still serve as critical stepping stones towards these more
sophisticated models, provided they return reliable results.

Landmark-based approaches to image analysis are a natural choice for such ex-
ploratory analyses. While not informationally complete, they can be easily implemented
with manual annotation protocols in a range of programs without the extensive image
preprocessing required by embedding techniques [5,6]. How the information contained in
coordinate vectors is then compressed into 1D biometrics suitable for statistical analysis
varies widely with the use case. As much of the existing literature base on image analysis
in livestock has been geared towards estimation of body weight, many well-validated
methods emphasize the absolute size of target features. Such measurements, however,
must be derived from extrinsically calibrated imaging systems that require animals to be
restrained with little freedom of movement so that either focal distance can be held constant,
as with calibrated 2D systems [7–9], or to facilitate the limited focal range of 3D depth
cameras [10–13]. Such restraint is, however, not conducive to many applications, namely
those attempting to quantify behavioral responses [3,4]. Where instead the relative position
(shape) of target features may suffice, such information may be gleaned from uncalibrated
2D images [14], but there is comparatively far less literature available on the reliability and
resilience of such scale-free biometric measurements of livestock under minimal restraint.

One readily generalizable strategy that may be used to extract information about the
shape of target features from coordinate vectors is to simply employ pre-defined geometric
transforms that are intrinsically scale-free. Angle measures have been used extensively in
definitions of subjective conformation scoring scales, and have subsequently been extended
to analysis of livestock images. Previous work exploring the use of angle-based measures of
leg conformation in breeding sows [15,16] and several horse breeds [17,18] have generally
reported good within-photo repeatability (>0.5) over multiple annotations, but a wide range
of between-photo repeatability estimates have been reported with replicated imaging, from
as high as 0.96 to as low as 0.34. Curvature measures have been employed more sparingly,
but have previously been validated against subjective lameness scores to quantify back
arching in cattle [19]. While geometrically defined metrics allow for targeted extraction
of readily interpretable shape measures, this approach may not suffice to capture more
complex geometric features.

A more informationally complete strategy employed to produce scale-free biometrics
is to align coordinate vectors across images via an affine transformation and then extract
shape features using an unsupervised dimension reduction technique. Geometric morpho-
metric (GM) analysis is a well-established method in anthropological studies that combines
Procrustes alignment with gPCA feature extraction [14]. In work by Druml and colleagues,
GM analyses successfully recovered holistic distinctions in overall body type amongst
Lipizzaner breeding stock, but was significantly impacted by changes in animal stance
and pose [20–22]. In a follow up study, high within-photo repeatability (>0.9) and good
between-digitizer reproducibility (>0.7) were reported, but between-photo repeatability
estimates were not provided [18]. In Alhajeri et al. (2019) GM analyses also recovered
significant differences in hump morphology between the two major classes of camel breeds
in the Arabian peninsula [23]. PCA and kernel PCA have also been used after affine
point alignments to relate variations in topline morphology to body condition scores in
cattle [24,25]. In order to fully circumvent with camera position, GM analyses have recently
been extended to 3D images using advanced photogrammetric techniques [26]. Unfortu-
nately, these preliminary studies failed to recover significant differences in facial grimace
in piglets following castration, which the studies speculated were due to difficulties with
image alignment and the invasiveness of the imaging system. While such approaches
provide more holistic descriptions of shape, the intensive image acquisition, annotation,
and alignment protocols required makes these techniques more challenging to implement,
and the subsequent dimension reduction may produce metrics that are more challenging to
interpret or extrapolate to new data.
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The purpose of this study was to characterize the efficacy and reliability of two
additional strategies to producing scale-free biometrics from uncalibrated 2D images of
minimally restrained livestock that may offer an intermediate approach between these
two existing analytical paradigms. The first was globally normalized Euclidean distance
measures, here referred to as normalized length biometrics, an informationally complete
approach to extracting coordinate-free descriptors of shape without preliminary affine
alignment [14]. The second method sought to employ a wider range of readily generalizable
vector projection-based techniques, hereafter referred to as projective biometrics, to produce
locally normalized biometric values that could accommodate a wider range of complex
morphological features than simple angle measures [27]. Detailed measurement systems
analyses were carried out to compare not only the precision of these two morphometrics
systems, but also their susceptibility to bias in the face of lurking variables that could
be readily controlled in working farm environments, as well as their amenability to bias
correction strategies using novel unsupervised machine learning techniques.

2. Materials and Methods

In this study, structural variations in the osseous and cartilaginous features of the
bovine face were utilized as a model to contrast the performance of the normalized length
and projective biometric approaches to scale-free measurement. The face was chosen as a
model over more conventional type (conformation) traits for several reasons. From a theo-
retical standpoint, the face offered a diverse range of geometrically complex morphological
features arranged densely over a compact anatomical region, which provided a compre-
hensive sampling of prospective geometric relationships from a manageable number of
annotated points. Further, skull morphology could be subdivided into localized regions
that facilitated functional comparisons between measurement systems, with some subre-
gions featuring only fixed boney traits, and thus subject only to annotation and projection
errors, and fleshier subregions, wherein annotation of underlying osseous and cartilaginous
landmarks might also be influenced by changes in facial expressions (i.e., -pose). From
a more pragmatic standpoint, the head is highly mobile with respect to all three axes of
movement (pitch, roll, and yaw) even while the cow is otherwise stationary in a headlock,
which facilitated location of a large number of individual animals in a working farm envi-
ronment for repeated sampling. Finally, while comparisons between measurement systems
are intended to be readily generalizable to a broader scope of prospective use cases, there
are emerging utilitarian interests in assessment of livestock faces to extract measures of
facial expression [26,28–34] and morphology [27,34]. The authors hope that this work may
provide more direct methodological insights for the inevitable progression of this growing
body of research towards objective image-based measurements.

2.1. Image Acquisition and Annotation

Animal handling and imaging protocols implemented in this study were approved by the
Colorado State University Institution of Animal Care and Use Committee (IACUC #16-6816A).
This study followed all guidelines for the use and care of agricultural animals used in re-
search outlined in the Colorado State University IACUC Composition and Responsibilities
Policies and the Colorado State University Policy on the Use of Live Vertebrate Animals.

Facial images of 108 mature Holstein dairy cows were collected over a two-week
period on a commercial dairy in July 2017 using an Olympus TG-2 iHS 12MP Waterproof
Camera. Cows were photographed while locked in the feed bunk of their home pen while
standard herd checks were being performed (not longer than 90 min). The distance between
the cow and camera person was allowed to vary from 1 to 3 standard bunk spaces, as
determined by the unmanipulated arrangement of animals in the headlocks at roughly 50%
stocking capacity. To better emulate a feasible experimental protocol, gross variations in
out-of-plane facial angle were controlled by attempting to align as closely as possible the
outlines of the proximal and distal eye orbitals.
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The procedural target was to photograph each cow from both side profiles on three
separate days. Of the 108 cows recorded, complete image profiles were generated for
74 animals. The remaining cows were either not located for a third day of photographing or
had an image discarded farther down the analysis pipeline due issues with image quality
not identified on farm: poor image resolution, shadows, or feed and dirt obscuring facial
landmarks. Missing values appeared randomly distributed across the herd, however, and
not driven by any readily identifiable form of sampling bias. In total, 551 images were
deemed suitable for analysis. Photos were analyzed using the image analysis toolbox in
MatLab R2016a version 9.0.0.341360 (The Mathworks Inc., Natick, MA, USA). A total of
60 unique anatomical landmarks were defined across four distinct anatomical regions:
eye, muzzle, topline, and forehead/jaw. Full details on the protocol used to identify these
anatomical landmarks, and how they were partitioned between anatomical regions of the
face, are provided in supplemental materials. Coordinate locations of these landmarks
were extracted manually by a single digitizer (CM) in two annotation replicates, with
all animal being annotated within an anatomical subregion before coordinate extractions
were repeated.

2.2. Morphometric Algorithm Specification

The first strategy employed here to extract scale free biometrics from these annota-
tions was based on Euclidean Distance Matrix Analysis [14]. In this approach, Euclidean
distances are calculated between all pairwise combinations of landmark points to produce
an informationally complete transformation from 2D coordinates to 1D distances values
without preliminary image alignment. To convert the resulting pixel distance values into
a scale-free measurement independent of extrinsic factors (cow size, focal distance, etc)
and intrinsic parameters (camera resolution, zoom, etc.) influencing image scale, each
distance matrix is normalized by the sum of all distance values in order to divide out the
scaling factor unique to that image [35,36]. Here, to facilitate independent comparisons,
this normalizing term was calculated within each anatomical subregion and applied to the
corresponding distance matrix to produced normalized length biometrics.

While Euclidean distances matrices are simple to compute, the number of normalized
length biometrics produced grows polynomially O(n2) with the number of anatomical
landmarks selected, with many of the resulting distance measures being geometrically
redundant. Dimension reduction techniques may be applied to reduce the overall problem
size, but the resulting aggregate biometrics can be difficult to interpret [14,35,36].

In contrast, the second measurement technique used to produce scale free biometrics
in this study sought to identify a priori facial features that were visually distinct across
the population and break them down into their most basic and interpretable geometric
components. In this readily generalizable approach, vector projection techniques were
used to impute one or more auxiliary coordinate points at the intersection of anatomical
reference lines between landmark features. These auxiliary coordinates were then used
to generate distance measures that more narrowly defined the relative geometric arrange-
ment of landmark coordinates. Such distance measures were then re-expressed as ratios
in order to divide out the image scaling factor, and are collectively referred to here as
projective biometrics.

Using observations from the image database, and considering some conventions from
work on equine facial morphology, projective biometrics were derived to measure a total of
92 unique morphological features across all four anatomical subregions that demonstrated
visually observable levels of variation across the sample population [37]. For some of these
unique features (Figure 1: upper left), orthogonal projections onto anatomical reference
lines produced distance ratios that were trigonometrically equivalent to angle measures
(and in several cases were converted to angle measures to align with conventions in the
lay literature). For other metrics, these anatomical reference lines were used as a more
geometrically (Figure 1: bottom left) or anatomically (Figure 1: right) intuitive means of
contrasting distances using a single locally defined normalization term. For a subset of
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these biometrics, multiple versions were computed to explore the most appropriate choice
of anatomical reference line. Full details on the derivations of all projective biometrics can
be found in supplemental materials.
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Figure 1. Examples of Projective Biometrics. Eye Height Point Proportion (upper left) is an example
of an orthogonal projection that is geometrically equivalent to an angle measure via a trigonometric
transform. Eye Height Proportion (bottom left) provides a more geometrically intuitive definition
of eye height using only a single locally defined normalization term. Nostril-Muzzle Length Ratio
(right) is an example of how projections onto a reference line can provide more anatomically intuitive
distance measures.

2.3. Algorithm Validation

All statistical analyses were carried out in R version 3.5.1 [38]. Comparative perfor-
mance of these two measurement systems was assessed with respect to five characteristics:
(1) within- and between-photo repeatability, (2) bias in biometrics attributed to measures of
image scale and quality, (3) degree of correlation amongst residual error terms, (4) reliability
of composite features produced by dimension reduction techniques, and (5) reliability of
metrics following bias correction using unsupervised machine learning techniques.

2.3.1. Metric Repeatability

Repeatability was assessed for each individual biometric from both measurement
systems via an independent mixed effect model using the lme4 package [39], with nested
random effects for cow, side of the face (to allow for structural asymmetry), and photo.
Models were optimized using REML criterion, and the resulting variance components
used to estimate two forms of repeatability: (1) within-photo repeatability (Equation (1)), a
reflection of resilience to errors in landmark point annotation; and (2) overall repeatability
(Equation (2)), an estimation of the proportion of variability in a single metric extraction
from a sigle photo attributable to the underlying anatomical signal. It should be noted
that sample mean and not the true value of the morphological feature was here used to
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calculate variance terms, and so both these repeatability estimates reflect the precision and
not necessarily the accuracy of candidate biometrics.

RepWP =
σ2

cow + σ2
side + σ2

photo

σ2cow + σ2
side + σ2

photo + σ2error
(1)

RepOA =
σ2

cow + σ2
side

σ2cow + σ2
side + σ2

photo + σ2error
(2)

Provided that there was neither compelling theoretical nor strong empirical evidence
to support an assumption that the repeatability estimates of individual biometrics should be
independently and identically distributed (see Section 2 of results), formal statistical com-
parisons could not be made across the two measurement systems. Qualitative comparisons
were instead made using visualizations generated via the ggplot2 package [40]. Histograms
were generated for overall repeatability estimates within each anatomical subregion, and
a density plot overlaid to compare these results against the within-photo repeatability
estimates. For each individual biometric, however, bootstrapped 95% confidence intervals
for both repeatability estimates are provided in supplemental materials [39].

2.3.2. Resilience to Changes in Image Attributes

To validate the robustness of these measurements systems to bias attributable to varia-
tions in image attributes, two auxiliary metrics were extracted from each image. First, to
confirm the tolerance of biometrics to in-plane variation in facial angles (pitch), Overall
Facial Angle was calculated as the angle formed between the line passing between the
rostral-most points of the eye and nose, and the horizontal plane of the image (Figure 2: left).
Next, to explore the resilience of biometrics to changes in image scale, and thereby compare
the effectiveness of the two length normalization schemes, the Face:Frame Ratio of each im-
age was calculated as the total number of pixels occupied by the cows head, approximated
using the area of the polygon formed by anatomical coordinates, divided by the total pixels
in the image (Figure 2: right).
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In order to identify systematic correlations with changes in image quality, image
attribute estimates were added as fixed effects as in Equation (3) to the mixed models used
to estimate repeatability. The total proportion of variability in each observed biometric
attributed to this fixed effect model was then estimated via the marginal R2 calculated using
the piecewiseSEM package [18,41]. The two measurement systems were then contrasted
via scaled density plots for each anatomical subregion [40]. For each individual biometric,
the full model with fixed effects and a reduced model with only a fixed intercept were
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refit using ML criterion, and a nested model ANOVA test was run to assess the statistical
significance of image attribute variables. The resulting chi-squared and p-value estimates
are provided in supplemental materials, as are the coefficient values estimated for theses
scaled image attribute values.

f ixed e f f ect = Frame : Face Ratio + (Frame : Face Ratio)2 + Face Angle
+(Face Angle)2 + Frame : Face Ratio × Face Angle

(3)

2.3.3. Error Structure Analysis

To explore correlation structures present amongst error terms, mixed models were
again independently fit to each biometric as in the repeatability analysis and residuals
calculated at the level of side within cow [39]. The statsby utility in the psych package was
then used to decompose overall correlation between residual estimates into within- and
between-photo correlations across each pairwise combination of biometrics within a given
anatomical subregion of the face [42]. The additive components to overall correlation were
then computed using Equation (4) in order to compare the relative impact of these two
potential sources of systematic error [42]. To avoid trivial correlations amongst alternative
derivations of projective biometrics, only the best version of each metric with respect
to repeatability estimates were used to create pairwise combinations. To contrast the
performance of the two measurement systems, overall error correlation estimates are
presented via histogram with density lines overlaid (with equivalent scaling) representing
the additive components attributed to within- and between-photo correlation. p-values
assessing the significance of the within- and between-group correlation values for each
individual biometric are provided in Supplementary Materials.

rx,y = etaxWG × etayWG × rx,yWG + etaxBG × etayBG × rx,yBG (4)

2.3.4. Reliability of Dimension Reduction

Dimension reduction techniques are frequently employed to concentrate information
contained in scale-free biometrics down to a more tractable problem size for statistical
analysis. If correlations between biometric measurements are not attributed exclusively to
anatomical signal, however, dimension reduction tools may also consolidate information
from extraneous within- and between-photo factors that impose systematic error structures
between biometrics [14,43]. To assess the susceptibility of these two measurement sys-
tems to this risk, dimension reduction was carried out on biometric measurements within
each anatomical subregion. Due to the non-independence inherent to repeated measure-
ments, standard PCA could not be applied across observational units in this dataset [43].
To better accommodate the nested structure of this dataset, dimensional reduction was
here carried out via Hierarchical Multiple Factor Analysis (HMFA) using the FactoMineR
package [44–46]. The number of basis (loading) vectors generated was set to the total
number of biometric features assessed so as to approximate a PCA result. For anatomical
subregions where the number of candidate metrics was larger than the number of observa-
tional units (a wide embedding problem), an upper limit of 107 dimensions was imposed
by the sample size of cows [5].

To evaluate the repeatability of metrics produced by HMFA analysis, partial scores
were extracted independently for each cow for the left and right side of the face, aggregating
information across nested photo and annotation replicates. Random effects models were
then fit independently to these partial scores for each factor dimension, with cow fit here as
the only random effect. As the previous repeatability analyses revealed the proportion of
variance attributed to side effect (fluctuating asymmetry) to be minimal (generally < 0.1),
repeatability was then calculated at the cow level to approximate the overall repeatability
of each HMFA score. For each anatomical subregion, scatter plots were then generated
comparing these repeatability estimates to the total proportion of variance assigned to each
corresponding basis (loading) dimension [40].
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To more directly evaluate the influence of systematic error structures on the results of
the dimension reduction on the observed metric, HMFA analysis was also carried out on
the residual values generated to evaluate error structure. Any dimensions that explained
at least 5% of the residual variability were retained for the error basis. If no bases met
this criterion, the error basis consisted of only the first principal axis generated by the
HMFA analyses. Canonical correlation analyses were then conducted to compare the
resulting error basis space to each of the individual basis dimensions estimated from the
observed data [5,47]. The resulting correlation between axes for the nominal and residual
measurement estimates, which equate to the cosine of the angle between the error subspace
and observed basis vector, were then applied as a continuous color scale to the scatter plots
generated from the repeatability estimates.

2.3.5. Reliability of Bias Corrected Biometrics

Systematic error structures created between biometrics by lurking variables have the
potential to lead downstream statistical analyses astray. Where repeated measures are
available to provide, through repetition, a reasonable estimate of the true value of a mor-
phometric feature, we hypothesized that these same residual correlation structures between
biometrics might be leveraged by unsupervised machine learning tools to empirically
recover an approximation of the link function between lurking variables and observed
measurements [48]. This might then provide reasonable approximations of measurement
bias in each observation, even when the causative factors cannot be directly inferred or
quantified, which could in turn serve as bias correction terms to improve the accuracy of
variance and BLUP estimates for individual biometrics.

To create encodings of the systematic error structures found in both morphometric
system, we here utilized clustering utilities that we have introduced in previously work
that are available in the Livestock Informatics Toolkit (LIT package) in R [49]. First, fully
nested mixed effect models with no fixed effects were fit to each individual biometric,
and the residual estimates extracted as the difference between the observed measurement
and BLUP estimates at the level of the image replicate in order to isolate error structures
attributable to image annotation. The residuals for all biometrics within a given subregion
of the face were then compiled into a single matrix, wherein residuals for each individual
biometric were centered and scaled to uniform variance. Data Mechanics, an iterative
hierarchical clustering algorithm that can be used to reweight and subsequently share
structural information between the row and column axes of a data matrix, was here used to
simultaneously cluster together images whose latent attributes that impacted the accuracy
of annotation created similar patterns in residual estimates across biometrics, and also
biometrics with similar bias responses across images [50,51]. Clustering was here performed
on a grid of metaparameter values for cluster granularity from 5 to 8 for row clusters and 2
to 5 for column clusters [52]. Heatmap visualizations of the clustering results were then
visually inspected to select to simplest (coarsest) encoding that captured all appreciable
systematic fluctuations in residual estimates [50]. From these results the dendrogram fitted
to the row (image) index of the residual matrix was pruned to create a discrete variable to
serve as a bias correction term for errors in annotation.

To create an optimal encoding of systematic error attributed to image level attributes
(camera position, pose, etc.), the hierarchical nature of error structures within this nested
image data set was leveraged by recursively applying the proposed algorithmic pipeline
for creating an bias correctio term for errors in image annotation. This was conducted by
recalculating residual estimates between observed biometrics measurements and BLUP
estimates calculated at the level of side of the face nested within cow, here using a fully
nested fixed effects model that also contained the bias correction term for errors in image
attributes. Data Mechanics clustering was again applied to the resulting scaled residual
matrix, with the coarsest encoding capable of capturing all heterogeneity in error values
again used to create a discretely encoded variable that would serve as a bias correction
term for image attributes.
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Fully nested mixed effects models were then refit to each individual biometric using
both bias correction terms. From these regression results, the overall repeatability of
each biometric was recalculated, as in the previous methods section. Additionally, the
piecewiseSEM package was again used to calculate the marginal R2, in order to estimate
the total proportion of variance in each observed biometric that was attributed to bias
correction terms and subsequently and thus excluded from the final BLUP estimates [41].
Results are provided for all biometrics from either measurement system, with bootstrapped
confidence intervals, in Supplemental Materials. To compere measurement systems, the
ggplot2 package was used to plot the overall repeatability values for each biometrics before
and after bias correction for each anatomical subregion of the face, wherein the color of
each data point was used to reflect the proportion of total variance attributed to systematic
bias in the observed estimate [40].

3. Results and Discussion
3.1. Metric Repeatability

Perhaps the most striking result of the repeatability analyses was the range of values
that individual biometrics assumed across both measurement systems (see Figure 3). The
majority of within-photo repeatability estimates fell in the good (>0.75) to moderate (>0.5)
ranges, but some biometrics did demonstrate poor within-photo repeatability (<0.5). Given
the diminutive scale of the finer facial features relative to the resolution of the camera
used, it is not surprising that uncertainty in landmark annotations would represent a
non-negligible source of error for this use case, but individual metrics with poor within-
photo repeatability warranted further scrutiny. For the forehead and jaw subregion, poor
within-photo repeatability values appeared to be linked to a subset of landmark coordinates
around the poll (‘T_Slope’) and eye orbital (‘CAN’) that may have been partially obscured
by hair on animals with thicker coats. For both the eye and topline subregions, poor
within-photo repeatability largely corresponded to landmark points that were not defined
at the intersection of two anatomical edges (e.g., where upper and lower eyelids meet) but
were instead defined as the point along a smooth anatomical edge that achieved maximal
displacement from an anatomical reference line (e.g., highest point of upper eyelid). This
was especially true for features where displacement of a feature from its baseline was
not significant for all animals (e.g., cows with a straight/flat nose). Normalized length
biometrics may have been slightly more impacted by such issues in point annotation,
especially for topline traits, where target features were relatively flat and thus the position
of the landmark relative the length of the reference line was more uncertain than the
distance of displacement. While such issues may be avoided in less ambitious annotation
schemes, or in use cases with larger and more distinct features, these results underscore
the importance of preliminary validation work, particularly for measures that rely on
landmarks defined by relative displacement.

Contrasting the distribution of overall repeatability estimates against the density
curves for within-photo repeatability revealed clear and consistent loss in measurement
precision with the inclusion of variables that could not be held constant between photos.
As a result, “single shot” repeatability for biometrics produced from both measurement sys-
tems generally ranged from moderate to poor. The fleshier muzzle and eye subregions were
perhaps the most severely impacted, with relatively few biometrics demonstrating overall
repeatability estimates above 0.5 with either measurement strategy. The muzzle subregion
proved particularly susceptible to the impact of between-photo error, given its compa-
rably strong within-photo repeatability values. As muzzle biometrics largely measured
fleshier cartilaginous features—nostrils, lips, chin—this result could indicate that these
biometrics were influenced by between-day changes in facial expression (i.e., animal pose).
Alternatively, as the muzzle is relatively far away from both the poll (the axis of movement
of the skull) and the boney eye orbital (the anatomical reference used here to control for
image angle) this result could also be attributed to out-of-plane changes in facial angle.
The bonier forehead and topline subregions fared somewhat better, with the impact of



Sensors 2022, 22, 8347 10 of 25

between-day error somewhat attenuated in comparison and some biometrics even achiev-
ing good overall repeatability estimates exceeding 0.75. For these subregions, projective
biometrics demonstrated a slight upward shift in density relative to normalized length
metrics, especially amongst the topline subregion.
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Figure 3. Comparison of within-photo repeatability (density plot) and overall repeatability (his-
togram) for normalized length biometrics (red) and projective biometrics (blue) for the four anatomi-
cal subregions (from top: eye, muzzle, topline, forehead).
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When biometrics suffering from readily identifiable shortcomings in annotation proto-
cols were excluded from consideration, both measurement systems produced repeatability
estimates comparable to previous work on scale free measurements in livestock. Kristjans-
son et al. (2013) and Gmel et al. (2018) reported within-photo repeatability ranging from
roughly 0.5–0.98 in their image-based measurements of leg angles in horses [17,18]. While
the upper bound for within-photo repeatability for facial biometrics was slightly lower
for projective and normalized length biometrics, the lower bound was comparable for all
anatomical subregions but the eye. This is not necessarily surprising given the difference
in scale of the morphological traits considered [17,18]. Kristjansson et al. (2013) and Gmel
et al. (2018) also reported a wider range of between-photo repeatability estimates from as
high as 0.96 down to 0.3 [17,18]. Again, the upper bound for overall repeatability of facial
biometrics was lower for both measurement systems, with the boney topline and forehead
subregions achieving a similar lower bound, but the fleshier subregions trended even lower.
Stock et al. (2017, 2018) reported a narrower range of between-photo repeatability values for
leg angles in sows from 0.63 to 0.82, which might reflect the impact of the relative mobility
of measurement targets on single pass repeatability, but may also have been influenced by
the inclusion of farm and parity as fixed effects in the models used to estimate variance
terms [15,16].

Overall, the results of the repeatability analysis reveal that both measurement systems
were capable of producing morphometrics with adequate or even good repeatabilities from
one annotation of a single photo, but that such biometrics were ultimately in the minority
of candidate metrics underscore the importance of preliminary measurement validation.
For metrics where variations in the underlying static morphology was partially obscured
by fleshier features, multiple images would be necessary to produce reasonably precise
measurements. In this use case featuring morphological traits that were quite small in scale,
the repeatability of all measurements could have been improved through replication of the
landmark annotations—a strategy that could also be employed to bolster measurement
precision in use cases of non-replicable transient features, such as facial expression.

3.2. Resilience to Changes in Image Attributes

Addition of image attribute variables related to image scale and orientation to the
mixed modeling equations provided additional insights into the potential sources of
between-day error. Overall, the proportion of variance attributed to these image attribute
values were negligible for the overwhelming majority of biometrics for both measurement
systems (see Figure 4). Amongst projective biometrics, only a single metric produced a
marginal R value of any note: Nostril Flare Point Proportion—Lower Front. Closer assess-
ment revealed a strong association between this metric and facial angle, which in the images
appears to be the result of tightening of the nostrils associated with snorting amongst a
subset of cows that pulled back in the headlock in response to being photographed. That
no projective biometrics showed strong correlation to Frame:Face Ratio suggests that the
localized normalization technique these measures utilized to produce a scale-free metric
was sufficient to adjust for between-photo changes in image scale.

For normalized length biometrics the majority of marginal R values were again trivial,
with some notable exceptions. A subset of metrics in the forehead and jaw anatomical
subregion produced marginal R values in excess of 0.1. Closer inspection revealed that
annotations of the cranial-most point along the jaw (point ‘M’) were influenced by abduction
of the head towards the chest, with contraction of musculature at attachments along the
jaw altering how far back from the chin the jaw bone could be visualized, thus leading
to a significant association with Overall Facial Angle. This issue appears to have been
attenuated amongst projective biometrics, as the position and angle the line of the jaw
itself, onto which interpolated points were projected, was not affected by these head
movements. This result underscores that, where it can be anticipated a priori, the impacts
of uncontrolled variations in animal pose can be at least partially avoided through careful
design of projective biometrics.
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Figure 4. Scaled density plots representing the proportion of variability in normalized length
(right) and projective biometrics (left) additively associated with Frame:Face Ratio and Face Angle
for the four anatomical subregions of the face.

Of perhaps greater concern, however, were the magnitude of correlations between
image attributes and a notable proportion of normalized length metrics for the eye. Again,
coefficient estimates revealed that Overall Facial Angle and not Frame:Face Ratio drove
these association, and so the efficacy of the global scaling strategy employed by normalized
length measures was not called into question. While it is possible that in-plane variations
in facial angle (pitch) could be correlated to out-of-plane changes in head position (roll and
yaw), it seems unlikely that the subsequent projection errors would have been seen only
in the eye and for no other anatomical subregions. Closer inspection revealed the highest
magnitudes of correlation were generally found between landmark annotations along the
outer eyelid, and that annotations along the line of boney eye orbital generally produced
the lowest marginal R estimates. This suggests that movement of the fleshy features of
the eye between photos may account for these associations. It is possible that reactions
to the photographer might have elicited synonymous changes in head position and facial
expression. Changes in the eyelid could also have simply been compensatory, allowing
the cow to maintain visual focus on the camera person with changes in head position.
Visual inspection of the raw images did not ultimately provide clear evidence for one
explanation over the other, underscoring the difficulty in interpreting normalized length
metrics. That such changes were not also captured in the projective length biometrics is
likely attributable to their informationally incomplete nature. For landmark points of the
eye annotated between each pair of adjacent latitudinal and longitudinal corners, projective
biometrics only included information on the displacement from this anatomical reference
line, whereas informationally complete normalized length measures would have been
affected by both displacement and the position of these points along the length of their
corresponding reference lines. Overall, this result emphasizes that, while the normalization
schemes employed by both scale-free morphometrics systems appear resilient to variation
in distance between animal and camera, imaging protocols should still consider that the
animals themselves may still be influenced by camera position.

3.3. Error Structure Analysis

Correlation analyses revealed strong associations amongst residual estimates for both
measurement systems (see Figure 5). Between-photo error contributed greater additive
correlation to the overall error correlation estimates for the forehead and muzzle subregions,
a distinction that was strongest amongst normalized length metrics. For the eye and topline
subregions, within- and between-photo error were more balanced in their contributions of
additive error correlation. With respect to overall error correlation, projective biometrics
tended to produce proportionally fewer correlations of high magnitude, as evidenced by
thinner histogram tails, than normalized length biometrics. This disparity was the most
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apparent for muzzle and forehead biometrics. Amongst topline and eye biometrics, a
small subset of projective biometrics produced error correlations of higher magnitude
than with normalized length; however, on closer inspection, these results were largely
attributed to linear redundancy in the derivations of length measures estimated along
the same anatomical reference lines using concurrent landmarks, which could be readily
avoided though structured subsetting of such metrics without loss of information.
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Figure 5. Comparison of correlations between overall, between-photo, and within-photo error esti-
mates for normalized length (red) and projective biometrics (blue) for the four anatomical subregions
(from top: eye, muzzle, topline, forehead).

In comparing the performance of normalized length and projective biometrics with
respect to within-photo error correlations, little advantage is seen for any anatomical
subregion save for the eye, where normalized length measures again appear to generate



Sensors 2022, 22, 8347 14 of 25

proportionately higher magnitude correlations. This result is perhaps partially attributable
to differences in how roundness, the most pervasive anatomical feature for the eye, is
geometrically encoded by these two measurement systems. For projective biometrics, the
displacement of a curve from a baseline (roundness proportion) and the relative position
of that maxima point along that baseline (roundness point proportion) form the arms of
a right triangle, and thus are geometrically orthogonal quantities, which in turn aids in
orthogonalizing errors in landmark annotations. Normalized length metrics, on the other
hand, can be visualized as the hypotenuses of the same triangles, the lengths of which are
simultaneously influenced by errors in point annotation in both the x- and y-directions
relative the base, resulting in more diffuse error correlation structures among within-photo
errors (see Figure 6). That this effect is seen so strongly for the eye Is perhaps attributable
to the “stacked” nature of eye annotations. While the latitudinal corners of the eye were
determined by the intersection of the eyelids, the longitudinal corners were defined as the
point of maximal deviation from this baseline. The intermediate eye points were then added
at the point of maximal deviation from the anatomical reference lines defined between
each set of adjacent corners. Thus, errors in annotating the highest and lowest point of the
eye would have been propagated to the annotations of these intermediate eye points by
biasing the reference line, creating structural dependencies in the annotation errors of the
resulting biometrics.
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Figure 6. A visualization of changes in normalized length (right) and projective biometrics (left) with
errors in point annotation along the curve of the lower eye. Top photos represent lateral uncertainty
in annotation of the maximal point deviation of the curve from the baseline. Bottom photos represent
uncertainty in the curve used to place landmark points. In this exaggerated example, these errors in
point annotation are isolated to distinct orthogonal projections, but result in synergistic tradeoffs in
the Euclidean distances used in calculating normalized length biometrics.

Differences in the resilience to between-photo error correlation demonstrated by
these two measurement systems were less consistent. Thicker tails are observed on the
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distribution of additive between-photo correlation for normalized length biometrics in the
forehead and muzzle subregions, but projective biometrics demonstrate slightly thicker
tails with eye and topline biometrics. Multiple sources of error may be contributing to such
error structures. For anatomical subregions with fleshier traits, namely the eye and muzzle
metrics, changes in facial expression between photos may partially account for correlations
amongst error terms. As contractions of facial muscles cause some length measures to
shorten, others must grow longer in compensation, creating systematic error structures
that would be consistent across cows by virtue of their shared muscular anatomy [6].
That changes in the environment between photographs might elicit a response in facial
musculature that would produce systematic changes in the annotations of anatomical
landmarks in the fleshier regions of the face is not really a surprising result. Nor is the
magnitude of these correlations, where they were uncovered, without precedence. In
their analysis of equine conformation using geometric morphometrics, Druml et al. (2015)
found that the 1st and 4th principal axes of their Lippizan shape space did not describe
variations in confirmation, but were instead attributed to variation in neck and leg posture,
respectively, accounting together for roughly 50% of total shape variability [21]. In a
follow-up study, Gmel et al. (2018) confirmed that a number of subjective scores of horse
posture, when added to mixed effect models of these shape space responses, produced
marginal R values in excess of 0.1 [22]. Thus, these results only provide further evidence
that uncontrolled variations in animal pose can serve as nontrivial sources of measurement
bias for scale-free anatomical morphometrics.

Nontrivial between-photo correlations were also found amongst topline metrics, how-
ever, which consisted exclusively of boney traits, and so changes in expression cannot be
the only source of such error correlation. Changes in out-of-plane angles of the face (head
posture) here become suspect. With any changes in roll and yaw of the head along the
axis of the poll between images, projection of the anatomical points on the 3D dimensional
surface of the skull onto the 2D plane of the image will be warped. Indeed, because these
points all lie on the same rigid surface of the skull that is similar in overall configuration
across animals, such movements will induce systematic transformations in their relative
coordinate locations, and thus in turn the coordinate-free distance measures computed
from them [43,53]. A visual representation of this effect is provided in Figure 7. While
a priori knowledge of muscular anatomy might be used to derive projective biometrics
resistant to error correlations due to changes in expression, provided that the shape of a
feature is not simultaneously influenced by multiple muscular attachments contracting in
different directions, neither measurement system could be expected to the accommodate
the complex and nonlinear (nonaffine) changes in the projections of landmark coordinates
onto the plane of the camera with changes in position of the skull. This results therefor
confirms that, for use cases where out-of-plane deviations in camera angle cannot be con-
trolled in the acquisition of images of unrestrained animals, camera position may still serve
as a source of systematic bias for either approach to scale-free measurement.

Regardless of their ultimate cause, high magnitudes of correlations between biometric
error terms are cause for statistical concern. When biometrics are added to the right-
hand side of the model equation as predictor variables, high magnitude error correlations
could enhance overall correlations between covariates, which could in turn cause variance
inflation and model instability. Of perhaps greater concern, however, would be scenarios
where multiple biometrics are added to the left-hand side of the equation as a multivariate
response. This might occur if such biometrics were incorporated into genetic analyses or
simply in multivariate analyses attempting to utilize correlations between biometrics to
improve measurement precision and thus carry out more robust tests of model hypotheses.
Here, the standard iid error assumption would not necessarily be met for all potential sets
of biometrics [54]. Indeed, if the magnitude of additive correlation attributed to error is
large relative to that of the underlying anatomical signal linking two biometrics, failure to
incorporate an off-diagonal term to the error model would only serve to concentrate and
magnify the effects of lurking (confounder) variables, potentially leading to misleading
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statistical inferences. The addition of non-zero error covariate terms to the error model,
however, would greatly increase the number of parameters to be estimated in the resulting
model and thus greatly increase the requisite sample size [54]. If the factors varying between
images (camera position, pose, etc.) could be directly quantified, these sources of systematic
heterogeneity in both measurement systems could be accounted for using far smaller
sample sizes, but in applications with minimally restrained animals the imaging protocol
would be made significantly more complicated in an effort to streamline statistical analyses.
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Figure 7. Demonstration of the impact out-of-plane variations in facial angle can have on the relative
locations of anatomical landmark points. The change in angle between the 3D object and the 2D plane
of the camera on which the image is being rendered can be described by homographic transforms.
This geometric operation results in systematic changes in the relative position of landmark points,
which would in turn produce correlations in between-photo error terms.
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3.4. Reliability of Dimension Reduction

Results of dimension reduction analysis revealed that HMFA did succeed in producing
aggregate scores of facial morphology with good repeatability estimates for both measure-
ment systems (see Figure 8). In comparing the repeatability results across anatomical
subregions, the maximum repeatability values achieved were fairly consistent between
the two measurement systems, but for the muzzle and forehead subregions the repeatabil-
ity values of projective biometrics decayed perhaps marginally slower than normalized
length measures as the percentage of total variability explained by the corresponding
basis dimension decreased. For both measurement systems, individual basis dimensions
explained relatively small proportions of the total measurement variance. This result is
not entirely unexpected, given the number of candidate biometric values with moderate
to poor repeatability estimates and thus by extension little anatomical signal; however, it
is also possible that relationships between the morphological features of the face are not
well approximated by an inherently low-dimensional linear representation, either because
they do not share strong biological associations or because their relationships are nonlinear
in character.

One noteworthy pattern observed in both measurement systems across all anatomical
subregions is that, while the first few basis dimensions produced by the HMFA analysis
yielded scores with both good repeatability and little correlation to the subspace estimated
for the error structure, there are many dimensions with intermediate repeatability values
that are quite close to the error subspace. This may suggest that, while the first few bases
are successfully isolating the underlying anatomical signal from the measurement noise,
these intermediate values may also be concentrating systematic error structures alongside
these more moderate anatomical inter-relationships. This raises methodological concerns,
as most of these intermediate dimensions with acceptable repeatability estimates would
be retained for further statistical analysis when basis dimension is determined by visual
inspection of the corresponding scree plots (provided in supplemental materials).

The concentration of systematic error structures due to changes in facial expression
or camera angle in such HMFA scores would only increase the risk that these lurking
variables might lead to misleading inferences [43]. For example, if one of these scores
concentrated error correlation structures due to nonaffine changes in facial angle across
multiple observed metrics, and if variations in camera angle between photos were not
entirely random—camera persons consistently favored slightly different camera angles,
variations in chute layout between farms made some camera angles more accessible than
others, etc.—this could enhance lurking variables related to farm and scorer effects in
any subsequent statistical models. Alternatively, if, for example, fearful cows tend to
assume a different head position than more even-tempered animals, and if such dimension
reduction techniques concentrated correlated error structures from the resulting errors from
projection of the 3D structures onto the plane of the camera, then genetic selection using
image based measures of these morphometric features might carry with in unintended
selection pressure for behavioral responses of cows to imaging. Given the difficulty of
interpreting any dimension reduction on high dimensional systems, such issues with
confounding variables might easily go unnoticed.

Thus, these results suggest that, while dimension reduction techniques are a valid
approach for both measurement systems, future studies employing this step in analyti-
cal pipelines with such scale-free metrics should exercise additional caution in selecting
the appropriate number of dimensionally reduced features, and should ideally utilize a
repeated measures design on at least a subset of sampled animals in order to facilitate
comparisons of aggregate scores from observed measures against aggregate scores from the
error subspace. For use cases with transient features where true replication is not possible,
such as measures of facial expression, it may be advisable to extract supplemental measures
of static skull morphology on a subset of animals to carry out similar validation procedures
to identify potential lurking variables.
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3.5. Reliability of Bias Corrected Biometrics

Results of the repeatability analyses, summarized in Figure 9, revealed that the in-
clusion of bias correction terms created using simple UML clustering tools succeeded in
improving the reliability of an appreciable proportion of biometrics in both measurement
systems, but efficacy of bias correction did differ between anatomical subregions. The
proportion of total (marginal) variance attributed to encodings of systematic differences
in residual estimates terms was low to moderate (<0.50) for both measurement systems
for the topline and eye subregions. As a result, repeatability estimates for biometrics in
this subregion were improved between 0 and 20%, which increased the proportion of met-
rics with acceptable repeatability (>0.50), but few biometrics achieved good repeatability
values (>0.75). This result is not necessarily surprising given the results of the previous
analyses of error correlation structures, where overall residual correlation estimates were
relatively lower for these two anatomical subregions, which suggests that the algorithmic
pipeline proposed here for bias correction can be effective in applications where systematic
correlation structures may be more are subtle.

Bias correction terms had a far greater impact on repeatability estimates for the eye and
forehead subregions. The proportion of total (marginal) variance attributed to encodings of
systematic error structures here occupied a much wider range of estimates, being as high as
0.85 for some biometrics. This result is not surprising, given that previous analyses of error
structures recovered higher magnitude correlations for both these anatomical subregions,
but it does confirm that these biometrics may be significantly biased by lurking variables
related to annotation and imaging protocols. Addition of bias correction terms improved
repeatability estimates of a notable proportion of biometrics within these anatomical
subregions—some more than 20%—so that a greater proportion of biometrics in either
measurement system could be said to exhibit acceptable (>0.50) or even good (>0.75)
repeatability values. These improvements were not, however, as uniform as in the topline
and muzzle subregions, which warranted further examination.

Improvements in the repeatability estimates for eye biometrics were notably higher
for projective biometrics than for normalized length metrics. Comparison of the encoding
granularities used to create annotation and image error bias correction terms, which are pre-
sented in Table 1, reveal that data mechanics algorithms were for this anatomical subregion
able to recover greater systematic heterogeneity in residual estimates for projective biomet-
rics, which would readily explain the differences in the efficacy of bias correction terms.
Heatmap visualizations comparing the clustering results for the image error encoding
are provided in Figure 10. As normalized length biometrics were previously shown to be
disproportionately impacted by within-image error, one interpretation of this result might
then be that that systematic error in image annotation were here occluded by nested errors
in annotation—errors that do not appear to have been fully captured by the encoding of
residual annotation error, likely due to the nonlinear (trigonometric) relationships that have
already been discussed for anatomical reference points that are defined as the maximal
point of deviation from an anatomical reference line.
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Figure 9. Comparison in the repeatability estimates for each biometric calculated with and without
bias correction terms. The black line super-imposed on each scatterplot represents no change in
repeatability estimates, such that all points that fall above this line represent an improvement in
the reliability of the biometric. Each biometric point is colored by their corresponding marginal R2

estimate, which represents the total proportion of observed variance in the biometric attributed to the
bias correction terms. An appreciable proportion of biometrics show improvements in repeatability
with inclusion of these terms for both measurement systems for all anatomical subregions, but the
performance of projective biometrics was more strongly impacted for the eye and forehead subregions.
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Table 1. Summary of encodings granularities recovered using data mechanics clustering for projective
biometrics and normalized length biometrics for both the annotation and image error bias correction
factors. Complete results of data mechanics analyses are provided in Supplemental Materials.

Projective Biometrics Normalized Length Biometrics

Annotation Error
Encoding Image Error Encoding Annotation Error

Encoding Image Error Encoding

Rows Columns Rows Columns Rows Columns Rows Columns

Eye 8 5 8 4 7 3 6 4

Muzzle 7 4 7 4 8 4 8 5

Topline 7 4 8 4 7 4 7 4

Forehead 5 5 7 5 7 4 8 4

Responses to bias correction also differed between the two measurement systems for
forehead biometrics. While coarser encodings were here recovered for projective biometrics
by clustering analyses when compared with the results for normalized length (see Table 1),
improvements in metric repeatability following inclusion of the bias correction term were
arguably better for projective length, which saw repeatability estimates improved to accept-
able (>0.50) or even good (0.75) for a notably larger proportion of metrics. Interestingly, the
greatest improvements in normalized length metrics were seen amongst metrics for which
the majority (>0.50) of the total variance in the observed measurement was attributed to
bias correction terms, as determined by marginal R2 values. That the observed values of
these biometrics are so heavily influenced by systematic error induced by lurking variables
suggests that, for applications where imaging cannot be replicated, these metrics might
even be directly employed as bias correction terms using a similar encoding pipeline to
allow for nonlinearity in the latent link function. For example, in applications with transient
facial expression, repeated images of the target features of analysis might not be easily
obtained, but if multiple images are acquired from each animals, structural morphometrics
sensitive to variation in camera position might be extracted and this UML pipeline applied
to create bias correction terms for projection error, allowing researcher to apply minimally
invasive imaging protocols while still minimizing the risk of measurement bias.

While differences in the performance of bias correction terms between anatomical
subregions here seems most easily explained by the efficacy of the UML pipeline to recover
latent error structures, this information must also be passed to the mixed effect model
through the fixed effects terms in order to influence the final estimation of the underlying
morphometrics. By utilizing a clustering-based approach, nonlinearity in the latent link
function connecting the observed measurements with the one or more sources of systematic
error in this system could be accommodated without stating a specific model. Such coarsen-
ing of the data, however, may place practical limitations on the acuity of the bias correction
model. In these analyses, clustering granularity was selected subjectively to capture all
systematic heterogeneity that was visually distinguishable by heatmap. Finer encodings
might be used to further minimize loss of information, with any over-fitting of the bias cor-
rection terms ultimately only translating to more conservative estimates of random effects.
Future work, however, might also consider applications of nonlinear manifold embedding
approaches in this bias correction pipeline to create continuous linearized estimates of
latent lurking variables [5]. While such approaches have been used in a range of image
analysis applications, it should be noted that these information compression techniques
can be prone to imposing harmonic artifacts into embeddings of data sets that are not
well sampled across the entire domain, and that such artifacts are not always easily distin-
guished from systematic structures in the data [5,52,55]. Subsequently, embedding-based
approaches may be more appropriate where the image data set can be augmented with
more systematic sampling of factors known to impose biases, such as camera position [5,55].
For data sets lacking this structured sampling, however, a clustering based approach may
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offer a better tradeoff between the performance and the reliability of the bias correction
pipeline. For applications that require biometric measurements of the highest accuracy,
the method and modality of image acquisition is still likely to provide greater payoffs in
measurement performance than these downstream algorithmic remediation techniques,
regardless of the UML techniques utilized in this bias correction pipeline.
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Figure 10. Heatmap visualizations of data mechanics clustering results for between image error for
the eye anatomical subregion. Each row represents an image and each column represent a candidate
biometric. Each cell is colored to represent the scaled residual estimate for a given image for a given
biometric. Results for the projective biometrics (A) not only show greater variability in residual
estimates than for normalized length biometrics (B), but there is considerably greater systematic
heterogeneity captured by the clustering algorithm, which is visualized as distinctive color patters
between clusters as visualized both across the rows and columns of the residual matrix.
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4. Conclusions

The results of these analyses show that both normalized length and projective biomet-
rics are resilient to fluctuations in image scale and are capable of extracting morphometric
measurements from uncalibrated 2D images with moderate to good repeatability. For
applications that require high accuracy measurements of finer scale features, replication of
image annotations may be needed, particularly for landmarks identified by their relative
displacement from anatomical reference lines. Both measurement systems, however, were
susceptible to systematic bias induced by variations in lurking variables that cannot be
held constant between images. We have shown that such systematic error can lead astray
standard multivariate approaches to dimension reduction, which could in turn increase the
risk that statistical inferences gleaned from such datasets could become confounded with
lurking variables. To avoid risk of spurious inference, without increasing the complexity
or invasiveness imaging protocol, additional care must be taken not only in the design
of the biometrics but also the downstream analyses. We have demonstrated that simple
and readily generalizable unsupervised learning tools are capable of working with, not
against, the systematic error structures created in scale free biometrics to infer information
about lurking variables. Encoded variables extracted from these clustering results can
subsequently be incorporated into downstream analyses to control statistically for vari-
ables that cannot be controlled on farm, thereby helping to ensure that the insights and
intuitions gleaned from these emerging PLF data streams can provide a reliable foundation
for future work. While these new algorithmic techniques have been shown to improve the
overall reliability of scale free morphometrics from unstructured data sets, future work
should consider how structured systematic sampling techniques might be incorporated
into image acquisition protocols to further improve the efficacy of these measurement
systems. In particular, subsequent work might consider how this algorithmic pipeline
might be expanded to incorporate targeted application of more costly and invasive 3D
imaging techniques, in order to better overcome systematic biases from variations in camera
position in applications with minimally restrained livestock that require less invasive 2D
imaging tools.
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