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Abstract: Over the last few decades, computer-aided diagnosis systems have become a part of
clinical practice. They have the potential to assist clinicians in daily diagnostic tasks. The image
processing techniques are fast, repeatable, and robust, which helps physicians to detect, classify,
segment, and measure various structures. The recent rapid development of computer methods for
high-frequency ultrasound image analysis opens up new diagnostic paths in dermatology, allergology,
cosmetology, and aesthetic medicine. This paper, being the first in this area, presents a research
overview of high-frequency ultrasound image processing techniques, which have the potential to
be a part of computer-aided diagnosis systems. The reviewed methods are categorized concerning
the application, utilized ultrasound device, and image data-processing type. We present the bridge
between diagnostic needs and already developed solutions and discuss their limitations and future
directions in high-frequency ultrasound image analysis. A search was conducted of the technical
literature from 2005 to September 2022, and in total, 31 studies describing image processing methods
were reviewed. The quantitative and qualitative analysis included 39 algorithms, which were selected
as the most effective in this field. They were completed by 20 medical papers and define the needs
and opportunities for high-frequency ultrasound application and CAD development.

Keywords: high-frequency ultrasound; CAD; image classification; image segmentation; image quality
assessment; datasets

1. Introduction

The first computer-aided diagnosis (CAD) systems date back to the mid-1950s and
are currently an integral part of daily medical work. The development of CAD systems
has been multidirectional, and the scope of the analysis covers data that are one- and
multidimensional. Research on the development of dedicated processing techniques and
the ease of exchanging experiences and measurement results in many centers worldwide
has resulted in computer-aided diagnostics and therapy systems that are commonly used
in clinical practice. The best example is radiology, where many years of research into
the development of these systems resulted in numerous applications that could support
physicians’ work [1]. In addition, the continuous development of imaging techniques is
driving research into the development of new methods for analyzing related data.

The fast development of imaging techniques resulting from technological progress
opens up new opportunities for the accurate diagnosis of skin diseases and the monitoring
of their treatment. Among many other modalities, high-frequency ultrasound (HFUS)
indicates new diagnostic paths in skin analysis, enabling the visualization of superficial
structures [2,3]. Therefore, it has found plenty of applications in dermatology, allergology,
cosmetology, and aesthetic medicine. It is a quantitative tool for measuring skin thickness
or the acoustic impedance of different skin layers [4]. At the expense of a lower penetration
depth, a higher head frequency improves the spatial resolution of the captured images [5].
This makes surface structures, such as fat and muscle layers, blood vessels, hair follicles,
and skin appendages, visible. Moreover, it enables clinicians to easily expose the skin
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layers, taking into account the epidermis, dermis, and the thick band separating them with
reduced intensity (subepidermal low-echogenic band, SLEB), which is characteristic of
inflammatory diseases (e.g., eczema, atopic dermatitis, or psoriasis).

Since HFUS is increasingly used in medical practices [6], the demand for automated or
semi-automated data analysis in this field is growing. Numerous algorithms dedicated to
such processing have already been described in the literature to meet this need. To organize
the existing research, we collected all the remarks concerning the published approaches and
summarized the opportunities for their application. This is the first survey of computer-
aided diagnosis methods for HFUS data. It includes 31 papers that focused on HFUS image
processing, which described 39 valuable algorithms that were included in our quantitative
and qualitative analysis.

To identify the relevant contributions, PubMed was first queried for papers containing
“HFUS” or “High-Frequency Ultrasound” in the title or abstract. This enabled the selection
of 20 papers that were the most recent or diversified in terms of HFUS medical applications.
Since the review of medical applications was not the goal of our study, the survey briefly
summarizes them. They were also an inspiration for the subsequent queries, from which
the non-zero results found were “HFUS segmentation”, “epidermis segmentation ultra-
sound”, “dermis segmentation ultrasound”, “skin lesion segmentation ultrasound”, “high-
frequency ultrasound classification”, and “HFUS image quality”.

Since only a few research institutes have worked on HFUS image processing, in our
searches we used the authors’ names as queries, “Sciolla B”, “Czajkowska J”, “Marosán P”,
or “Kia S”, and their works were reviewed for the HFUS image processing methods.

Finally, we checked the references in the selected papers. Since the HFUS image
analysis methods were not widely described in the literature, we did not exclude any
papers from the survey. However, the poorly validated methods are not included in the
tables summarizing the subsections. The last update to the included papers was made in
September 2022.

The CAD algorithms were divided into six categories based on the search results.
These categories correspond to the subsections in the Methodology section of this survey.
The growth in the number of papers in each category and the years of their publications are
shown in Figure 1. Besides the six already mentioned groups of CAD problems, the timeline
(Figure 1) includes HFUS data repositories, which are an integral part of the development
of CAD systems.

Figure 1. Timeline of the CAD algorithms developed for HFUS imaging analysis and their breakdown
into categories based on application.

All the solutions, followed by the numerical evaluations, were summarized in each
category. The most promising and well-evaluated were marked and indicated as having
potential for future development, along with their underlying limitations and further
requirements.

To sum up, with this survey we aim to:

• show that methods using HFUS for skin analysis are now a developing area of image
processing;

• quantitatively and qualitatively analyze all the developed methods;



Sensors 2022, 22, 8326 3 of 36

• indicate the algorithms that are the most promising or have the potential for clinical
usage in each category;

• discuss the limitations of the current approaches and future directions;
• highlight the specific contributions of the referred works;
• identify challenges in HFUS image processing.

The rest of the paper is structured as follows. Section 2 introduces the HFUS imaging
technique and defines the range of sound wave frequencies considered “high”. A survey of
the HFUS imaging devices applied for skin diagnosis that were described in the medical
and technical works, with a particular emphasis on the latter, follows this introduction.
Although still not commercially used, the potential of HFUS imaging systems for clinical
diagnoses, as presented in the literature, is also discussed.

Since the review of the medical applications of HFUS was not the goal of our research,
only the selected and most important works underlining the variety of HFUS usage in
clinical practice are referred to in Section 3. They are summarized and compiled with the
already developed CAD algorithms, which can support diagnosis in particular areas.

The review’s main section (Section 4) is divided into six subsections, representing the
categories into which the CAD algorithms can be divided. Section 5 presents the HFUS
image repositories and Section 6 is a critical discussion and an outlook for future research.

The structure of our review is visualized in Figure 2.

Figure 2. Review’s structure diagram.

2. High-Frequency Ultrasound Imaging

Ultrasound imaging, being cheap, noninvasive, and accessible, is one of the most
important clinical diagnostic tools [5]. The name ultrasound (sonography) refers to the
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medical imaging technique of applying sound waves of 1–20 MHz frequency to view the
inside of the body. It allows for differentiating tissues with only a 0.1% density difference [7].
The ultrasound penetration depth can reach 30 cm and its application areas continue
to expand.

The development of ultrasonic imaging, together with growing interest in high reso-
lution, opens up new diagnostic areas [8]. The higher probe frequencies (20–100 MHz) at
the expense of a lower penetration depth (12–3 mm) provide relatively high resolutions,
ranging from 80 to 16 µm, which are sufficient for skin structure visualization [7]. Almost
all the HFUS scanners use one piezoelectric element (piezoelectric polymer PVDF or the
copolymer P(VDF-TrFE)) [5,7]. The B-Scan is obtained as a stack of A-Scans reassembled in
a two-dimensional image, where each part of the A-Scan corresponds to a tissue-specific
point situated on the axis of the beam propagation [7].

The 20 MHz limit that separates classical scanners from high frequencies is con-
tractual, and in different studies, it varies from 10 to 30 MHz. Shung [5] referred to
30 MHz; Bezugly [7], Grégoire et al. [9], and Czajkowska et al. [3] placed it at 20 MHz;
Sciolla et al. [10] defined it as 15 MHz; and Bhatta et al. [6] reduced it to 10 MHz. The term
ultra-high-frequency ultrasound (UHFUS) is also used for the range of frequencies between
30 and 100 MHz [11] and the term ultrasound biomicroscopy (UBM) is used for ultrasound
probe frequencies above 50 MHz [6].

Imaging Devices

The objective, quantitative method used to study normal skin and skin pathologies
forms the basis of the development of several commercial systems. At least eight manu-
facturers produce HFUS machines for skin diagnosis and their image data are analyzed
and described in the literature. They are partially listed in [12,13]. The first one is tpm,
Taberna Pro Medicum (Lueneburg, Germany), which provides HFUS scanners with probe
frequencies from 18 to 100 MHz. The offered penetration depth ranges are from 1.6 to
3.2 mm with a maximum axial resolution of 16 µm at 100 MHz for the DUB 100-12 bit
device, and from 3.2 to 15 mm with a maximum axial resolution of 21 µm at 75 MHz for
the DUB SkinScanner75. The analysis of the data acquired with the latter device (with
22 and 75 MHz probes) was described in [2,3,7,14–17]. The second company is Cortex
Technology (Aalborg, Denmark), which provides the Dermascan C system used in [18,19].
There are two available transducers: 20 MHz, with a 60 by 150-micron resolution and
in-depth penetration of 15 mm or a 60 by 260-micron resolution and a 23 mm penetration,
as well as 50 MHz providing a 30 by 60-micron resolution and a 3 mm max penetration.
The third manufacturer referred to in the literature [20,21] is Hitachi (Tokyo, Japan). The
high-frequency machine HI VISION Preirus is equipped with a 5–18 MHz transducer
(EUP-L75). However, due to the frequency < 20 MHz, it is not widely described for skin
diagnosis. The next one is the Dramiński, DermaMed (Gietrzwałd, Poland), which is
equipped with a 48 MHz transducer. It is referred to by [22] as the gold standard. Another
one is the Episcan I-200 that is provided by Longport Inc. (Chadds Fort, PA, USA) with
20–50 MHz transducers, which was applied in [23–25]. Its penetration depth ranges from
22.5 to 3.8 mm for the highest-frequency probe. The seventh system is the Atys Dermcup
developed by Atys Medical (Soucieu en Jarrest, France) that was utilized in [10,26,27]. It is
one of the oldest HFUS devices, with available probes of frequencies from 16 to 50 MHz, a
penetration depth of 0–12 mm, and a maximum axial resolution of 30 µm. Additionally,
FUJIFILM VisualSonics (Toronto, ON, Canada) offers the Vevo 3100 imaging system with a
probe frequency of up to 70 MHz and a resolution of 30 µm. Its application in dermatology
was described in [28] in the assessment of nodular skin melanoma Breslow thickness in
adults. It was also successfully applied in cardiac diagnosis [29]. All the mentioned devices
with their acquisition parameters are listed in Table 1 (the ‘-’ denotes that the company did
not provide detailed information or the equipment is no longer being offered).
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Table 1. HFUS machines available on the market and their acquisition parameters.

Product Frequencies (MHz) Penetration Depth
(mm)

Max. Axial Resolution
(µm)

tpm (Lueneburg, Germany) [30], DUB 100-12 bit 75, 100 3.2, 1.6 21, 16

tpm (Lueneburg, Germany)[30], DUB
SkinScanner75

18, 22, 33, 50, 75 15, 10, 6, 4, 3 72, 57, 42, 31, 21

Cortex Technology (Aalborg, Denmark) [31],
Dermascan C

20, 20 (long), 50 15, 23, 3 60, 60, 30

FUJIFILM VisualSonics (Toronto, ON,
Canada) [32], Vevo 3100, (MX700 transducer)

29–71 up to 36 down to 30

Dramiński (Gietrzwałd, Poland) [33], DermaMed 48 up to 5 16

Longport Inc. (Chadds Fort, PA, USA) [34],
Episcan I-200 50 3.8, 5.4, 7.6, 11.2, 15,

22.4 -

Atys Medical (Soucieu en Jarrest, France) [35],
Atys Dermcup 16–50 up to 12 down to 30

Hitachi (Tokyo, Japan) [36], HI VISION Preirus
(EUP-L75 transducer)

5–18 - -

A comparison of the skin images acquired using a DUB SkinnScanner75, tpm (Lueneb-
urg, Germany) [30] with different transducers (22 MHz and 75 MHz) is shown in Figure 3.
The colored lines partially delineate the most critical areas in the images. The red lines
indicate the probe membrane, which is often visible in HFUS images; the yellow lines
delineate the entry echo layer; the orange lines delineate the SLEB; and the blue lines are
placed at the lower dermis edge.

(a) (b)

Figure 3. Skin images acquired using DUB SkinnScanner75, tpm (Lueneburg, Germany) [30] with
different transducers: (a) 22 MHz, (b) 75 MHz.

In addition to those referred to above, there are different high-frequency ultra-
sound imaging systems described in the literature, which are still not commercially
used [5,8,20,22,37,38]. One of the first was proposed by Berson et al. [37]. The wide-band
17 MHz center frequency transducer enables the acquisition of images with a resolution of
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about 0.08 mm in the axial direction and from 0.2 to 0.3 mm in the lateral direction. Next,
Turnbull et al. [8] proposed the real-time ultrasound backscatter microscope operating
in the 40–100 MHz range, providing an axial resolution of between 17 and 30 µm and a
lateral resolution of between 33 and 94 µm. Devices in the frequency range of 20–80 MHz
were investigated in [38]. High-frequency linear arrays and imaging systems in the
20–50 MHz range were developed in [5] to address the problem of mechanical motion
and fixed focusing appearing in HFUS scanners. The newest work by Csány et al. [22]
introduced a compact system using co-registered optical and ultrasound imaging to
provide diagnostic information about the full skin depth. The maximum penetration
depth of the scanner is 10 mm. In one of the previous works by Csány et al. [39], the
authors also presented a portable ultrasonic device for skin imaging.

3. Clinical Applications

Due to the fact that HFUS imaging is increasingly used in medical diagnosis, there have
appeared different studies describing its possible applications and limitations. According
to the newest critical reviews on HFUS applications in clinical practice [4,13,40,41], it
can be used in dermatology, allergology, aesthetic medicine, dermatological oncology, or
rheumatology. In all these disciplines, the normal skin parameters, that is, layer thickness
or intensities, can be used as a reference to compare with the abnormalities.

The primary dermatological use of HFUS is the assessment of skin cancers, including
the pre-operative diagnosis and early detection of neoplasms [40]. The authors mentioned
the characteristic features of basal cell carcinoma (BCC) manifested in HFUS. Similar to
melanoma, the lesion’s shape correlates with its histologic subtype. The correlation of
the Breslow thickness of melanomas in HFUS with histologic measurements is predicted
to be over 92%. However, the clinical relevance of HFUS in examining cutaneous squa-
mous cell carcinoma (SCC) is less well-defined and limited by the presence of artifacts.
Vergilio et al. [4] mentioned the possible usage of HFUS in the diagnosis of cutaneous lym-
phomas, bullous pilomatricoma, extramammary Paget’s disease, Bowen’s disease, atretic
cephalocele, and infantile hemangiomas. Dinnes et al. [42] assessed the diagnostic accuracy
of HFUS when used to assist with the diagnosis of common pigmented skin lesions and
their possible differentiation from melanoma. On the other hand, Polańska et al. [41]
indicated the role of SLEB thickness measurements in diagnosing skin lymphomas since
they may correspond to the severity of the disease. The probe frequencies in oncological
application range from 15 to 50 MHz and a summary of the extracted tumor features is
presented in [43].

One of the earliest applications of ultrasound is the assessment of inflammatory
skin diseases [40,41]. In scleroderma, due to the increase in collagen deposition, it can
differentiate between the inflammatory and sclerotic phases. Both in psoriasis and atopic
dermatitis (AD), recent studies have indicated a reduction in the SLEB thickness as a
parameter describing the treatment effects. In AD, the SLEB thickness correlates with the
histological degree of epidermal hyperkeratosis, parakeratosis, spongiosis, and the intensity
of inflammatory infiltrates, as well as the provider-assessed EASI (eczema area and severity
index) scores [40,41]. As reported in [41], in patients with AD, the presence of the SLEB
may be accompanied by the lower echogenicity of the other skin layers, and the thin SLEB
area may also be present within healthy skin around the affected region. In psoriasis, apart
from the presence of the SLEB, a thickened and streaky entry echo layer perpendicular
to the entry echo shadows may be detected [41]. HFUS is also used in the diagnosis of
hidradenitis suppurativa, enabling the detection of many lesions missed in palpation. The
newest study by [40] reported a strong correlation between the mean brightness of HFUS
and the lesion CSAMI (cutaneous sarcoidosis activity and morphology instrument) score
in sarcoidosis.

As reported in [40,41], skin thickness is inversely proportional to age, and the skin
thickening in children and young adults may be an important indicator of the presence of
inflammation or other pathological conditions (e.g., morphea or the sclerodermic variant
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of chronic graft). Additionally, in allergology, during the evaluation of a patch test, the
increase in skin thickness correlates with the intensity of the allergic reaction [41].

In cosmetology and aesthetic medicine, HFUS is used for skin-aging assessments,
where the most sought-after features are the arrangement of collagen and elastin bun-
dles, water loss, skin thickness, and presence/parameters of SLEB, which tend to change
with age and are sensitive to botulinum toxin injections or topical vitamin C therapy.
Vergilio et al. [13] presented a comparison of photo-exposed and photo-protected regions
of mature skin and the different aging of the skin in these regions, a comparison of skin
aging with respect to sex, and a comparison of oily and normal/dry-skin aging. The newest
work by [4] complemented the HFUS application of cellulite, dermal fillers, tattoo reactions,
hypertrophic scars, and acne vulgaris. The works cover a wide range of applied frequencies
from 15 to 100 MHz.

According to [40], HFUS allows for differentiation between abnormalities in glabrous
skin in conditions such as Pachyonychia Congenita and other palmoplantar keratodermas.
It can be used to estimate the phase of hair follicle growth, identify the inflammation of
hair follicles, assess hair density, and characterize scalp cysts. It is also applicable in the
diagnosis of nail diseases.

To summarize this section, in Table 2, we presented the medical problems that have
appeared in the literature, which can be overcome by the already developed CAD meth-
ods described in detail in the following sections. According to this summary, the CAD
algorithms can assist in the diagnosis of skin tumors by measuring the depth of their
penetration, extracting specific features from the segmented areas, or even differentiating
between tumor types. They support the dermatological diagnosis of inflammatory skin
diseases by classifying them or measuring skin layer thickness in the affected regions and
their surroundings. The same skin layer segmentation algorithms can be used in aesthetic
medicine, cosmetology, or allergology. In addition to the applications mentioned above, a
HFUS data analysis concerning its accuracy may help in a dedicated training program.

Table 2. Clinical applications of HFUS with dedicated CAD methods.

Application Area Work Description HFUS Device Database CAD

Dermatological
oncology

Wang et al. [44]

assessment of the
ultrasonographic
features of BCC
(differentiation)

MD300S II, MEDA
Co. (Tianjin, China),

20 and 50 MH

42 patients, 46 lesions:
6 high-risk BCC, 40

low-risk BCC

Sciolla et al. [26], skin
tumor segmentation,
Marosán-Vilimszky

et al. [20], Kia
et al. [45] skin lesion

classification

Reginelli et al. [28]

role of HFUS for the
nodular skin

melanoma Breslow
thickness in adults
before surgery by

making a comparison
with histological

features

Vevo, FUJIFILM
Visual Sonics [32]

(Toronto, ON,
Canada), 70 MHz

14 melanocytic
lesions

Sciolla et al. [26], skin
tumor segmentation,
Tiwari et al. [46], skin

lesion classification

Dermatology
and
allergology

Polańska et al. [47]

comparison of
high-frequency

ultrasonography and
histopathology in
atopic dermatitis,
skin echogenicity,

and thickness
analysis

Dermascan C,
Cortex [31] (Aalborg,
Denmark), 20 MHz

16 patients suffering
from AD and 15

healthy individuals
without any signs of

atopic or chronic
diseases

Sciolla et al. [10],
Czajkowska

et al. [15], Szymańska
et al. [48], epidermis,

dermis, and SLEB
segmentation

Polańska et al. [49]

calcipotriol/betamethasone
ointment compared

to narrow-band UVB
in plaque psoriasis,

measurement of
SLEB thickness as an
objective parameter
to assess skin lesions

Dermascan C,
Cortex [31] (Aalborg,
Denmark), 20 MHz

58 consecutive
patients diagnosed

with recurrent
chronic small plaque

psoriasis

Czajkowska
et al. [15], Szymańska
et al. [48], epidermis,

dermis and SLEB
segmentation
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Table 2. Cont.

Application Area Work Description HFUS Device Database CAD

Aesthetic
medicine
and
cosmetic
applications

Crisan et al. [50]

cutaneous changes
induced by topical
use of a vitamin C
complex at facial

level

Dermascan C,
Cortex [31] (Aalborg,
Denmark), 20 MHz

60 Caucasian female
healthy individuals,

aged between 20 and
75 years

Sciolla et al. [10],
Czajkowska et al. [15],
Szymańska et al. [48],

epidermis and
dermis segmentation

Meng et al. [51]
facial skin thickness
in association with

gender, age, and BMI

Aplio i800, Canon
Medical Systems

(Tustin, CA, USA),
24 MHz

118 healthy adults:
forehead, glabella,

temple, eyelid, nasal
dorsum, zygoma,

submandibular, and
neck

Sciolla et al. [10],
Czajkowska et al. [15],
Szymańska et al. [48],

epidermis and
dermis segmentation

Chirikina et al. [52]

water content,
transepidermal water

loss (TEWL), and
thickness in facial

skin

Episcan I-200,
Longport (Chadds

Fort, PA, USA), 18, 35
and 45 MHz

48 healthy patients, 6
regions: cheek, chin,
forehead, lips, neck,

nose

Sciolla et al. [10],
Czajkowska et al. [15],
Szymańska et al. [48],

epidermis and
dermis segmentation

Other

Jain et al. [53]
evaluation of skin
and subcutaneous
tissue thickness at

insulin injection sites
11 MHz

101 patients with
insulin naive type 2
diabetes: upper arm,

upper thigh,
abdomen

Sciolla et al. [10]
epidermis and

dermis segmentation

Gutierrez et al. [54]

inter-observer
reliability of

high-resolution
ultrasonography in
the assessment of
bone erosions in

patients with
rheumatoid arthritis
(RA): experience of

an intensive
dedicated training

programme

MyLab 70 XVG,
Esaote Biomedica

(Genova, Italy),
6–18 MHz

20 consecutive
patients with a
diagnosis of RA

Cipolletta et al. [55]
ultrasound

informative image
selection of

metacarpal head
cartilage

As reported in [40,41], the use of HFUS in the final diagnosis of tumor type and
the differentiation between benign and malignant tumors on an ultrasound pattern is
not completely possible. However, some authors have postulated these options, and
HFUS image analysis may show features that facilitate lesion recognition. Therefore,
some additional research, more clinical data, and strong cooperation between medical and
technical teams are strongly recommended in this area.

4. Computer-Aided Diagnosis Methods

Currently, the development of computer-aided diagnosis (CAD) methods involves
already-developed imaging systems. Therefore, a fast and robust diagnosis based on
medical images is always connected with this type of system, and due to their rapid
development, CAD systems have become a part of routine clinical work [56].

CAD systems are designed to assist doctors in interpreting medical images. They
process digital images such as chest X-rays, computed tomography (CT), mammography,
ultrasound, colonoscopy, etc., to highlight conspicuous sections, indicate pathology, and
segment lesions and classify or measure them, providing decision support. The algo-
rithms for mass detection in mammography [57], lung cancer screening with computed
tomography [58], and the detection of colonic polyps in CT [59] colonography are the most
widely explored CAD algorithm applications. The latest target is COVID-19 diagnosis
support [60] or digital pathology [61].

Different CAD algorithms dedicated to HFUS image analysis have also appeared
in recent decades. They cover the essential aspects of skin diagnosis such as skin layer
and lesion segmentation or HFUS skin image classification. All of them are divided into
categories and are described in the following sections. Additionally, Table 2 presents their
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connections with clinical applications, where the last column indicates the paper describing
the proper algorithm.

Different quality measures were applied depending on the processing task (segmenta-
tion or classification), which covered various aspects of the analysis. Moreover, the authors
used other measures to validate their work so finding a standard solution in these studies
was problematic. Due to this, for the following sections, we decided to consider the most
frequently utilized quality measures to enable easy comparison of the reported results or
the most informative in the case of the absence of the first choice measure.

For image segmentation, there were three measures we utilized. The first one was the
Sørensen–Dice coefficient (Dice index) [62], which measures the similarities between two
sets of data.

The second one was the symmetric mean absolute distance (MAD), calculated as the
mean of the shortest distance between points at the boundary of the segmented object to
the reference mask and vice versa [63]. The last one was the directed Hausdorff distance
(HD), which describes the maximum distance from a point in the first set to the nearest
point in the other.

In addition to these three measures, both Lagarde et al. [27] and Gao et al. [64]
used the correlation coefficient R2 to compare manual measurements of dermis thickness
with automated or semi-automated techniques. Since the authors did not provide any of
the aforementioned segmentation quality measures, the correlation coefficients were also
considered in our analysis.

For image classification, we selected the four measures most frequently referred to in
the cited works: sensitivity (TPR), specificity (TNR), accuracy (ACC), and area under the
ROC curve.

Table 3 describes colour nomenclature, being used for color-coded Tables 4–11, which
are included in the following sections and summarize the CAD methods in the HFUS of
skin tissues. The colored rows indicate the most interesting solutions and the tones indicate
their importance. This mainly reflects the highest accuracy obtained in the summarized
category. The number of analyzed examples was also considered in the case of similar
scores or a significant difference in the size of the studied populations.

Table 3. Colour nomenclature.

Color Description
The most accurate among all the solutions in

this category and evaluated using
numerous datasets

The most or second most accurate among all
the solutions in this category and evaluated

using numerous datasets
The second or third most accurate in this
category and evaluated using numerous

datasets
An interesting work worth mentioning

An interesting work worth mentioning with
different application fields
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Table 4. Summary of skin layer segmentation algorithms for small, specific datasets.

Authors/Implementation Algorithm Segmented Area HFUS Device Database Results

Lagarde et al. [27]

active contour model dermis
Atys Medical (Soucieu en Jarrest,

France) [35], Atys Dermcup,
20 MHz

612 images, different body parts

correlation with manual
measurements

R2 =< 0.0086, 0.6097 >,
semi-manual measurements

R2 =< 0.6575, 0.9406 >

Contribution: the first solution in the HFUS image segmentation area; standardizing the manual dermal thickness measurement procedure; large database; fully automated;
repeatable; Disadvantages: outperformed by further modifications to active contour model; single imaging device

Gao et al. [64]

active contour model dermis Ultrasonix, Sonix RP (Richmond,
BC, Canada), 10 MHz

730 images of breast skin, 23
patients

correlation with manual
measurements R2 =< 0.7, 0.74 >,

difference of skin thickness in
comparison with both experts

< 5%

Contribution: new automated dual-curve evolution technique; large database; fully automated; repeatable; Disadvantages: low transducer frequency, not typical for skin diagnosis;
outperformed by further modifications to active contour model; single imaging device

Sciolla et al. [10]

active contour model, level set dermis (epidermis, SLEB-not
evaluated)

Atys Medical (Soucieu en Jarrest,
France) [35], Atys Dermcup,

50 MHz
20 images, left forearm

median(MAD) = 45 µm,
mean(MAD) = 62 ± 46 µm,

median(D) = 0.94,
mean(D) = 0.93 ± 0.055

Contribution: new non-parametric active contour method; texture criterion combined with the geometric constraint; the highest accuracy among all the classical solutions;
Disadvantages: small database; single imaging device; moderate numerical costs; the contour initialization method was not discussed

Gao et al. [64]/Sciolla et al. [10] active contour model dermis
Atys Medical (Soucieu en Jarrest,

France) [35], Atys Dermcup,
50 MHz

20 images, left forearm

median(MAD) = 65 µm,
mean(MAD) = 99 ± 99 µm,

median(D) = 0.93, mean(D) =
0.82 ± 0.28

Contribution: implementation of previous (state-of-the-art) solution [64] to new data as a reference
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Table 4. Cont.

Authors/Implementation Algorithm Segmented Area HFUS Device Database Results

Chan-Vese et al. [65]/
Sciolla et al. [10]

active contour model dermis
Atys Medical (Soucieu
en Jarrest, France) [35],

Atys Dermcup, 50 MHz
20 images, left forearm

median(MAD) = 150 µm,
mean(MAD) = 160 ± 65
µm, median(D) = 0.9,

mean(D) = 0.9 ± 0.046

Contribution: implementation of the state-of-the-art method [65] to new problem as a reference

Czajkowska et al. [14]

FCM clustering epidermis
DUB SkinnScanner75,

tpm (Lueneburg,
Germany) [30], 22 MHz

13 images

upper epidermis
boundary: mean (HD) =

118 ± 48 µm, lower
epidermis boundary:
mean(HD) = 145 ± 40

µm, mean(D) =
0.848 ± 0.044

Contribution: first method for epidermis segmentation; fully automated; repeatable; Disadvantages: preliminary work; limited dataset; single imaging device;

Czajkowska et al. [15]

level set combined with
FCM clustering epidermis, SLEB

DUB SkinnScanner75,
tpm (Lueneburg,

Germany) [30], 75 MHz

45 images, different body
parts, 45 patients

upper epidermis
boundary:

median(MAD) = 8.5 µm,
difference in skin

thickness in comparison
with both experts < 4%,

median(D) = 0.878,
mean(D) = 0.878 ± 0.041

Contribution: new approach combining FCM and level-set techniques; first method for SLEB segmentation; bigger dataset in comparison with [10]; high accuracy; fully automated;
repeatable; Disadvantages: single imaging device; single disease;

Czajkowska et al. [16]
U-Net epidermis, SLEB

DUB SkinnScanner75,
tpm (Lueneburg,

Germany) [30], 75 MHz

47 images, different body
parts, 47 patients

SLEB segmentation:
mean(D) = 0.86 ± 0.04,

mean(MAD) = 12 ± 9.3 µm

Contribution: first method utilizing CNN for skin layer segmentation; fully automated method; repeatable; Disadvantages: lower accuracy compared to previous method; small
dataset for deep learning; single disease
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Table 5. Deep learning-based approaches for skin layer segmentation in HFUS.

Authors of the Algorithm/ Segmented HFUS
Algorithm/ Optimizer Area Device/Input Database Results

Implementation Image Size

Ronneberger et al. [66]/
Czajkowska et al. [3]

U-Net, CE loss, SGDM epidermis, SLEB DUB SkinScanner75 [30]
75 MHz/128 × 64

380 images [67]: 303 AD, 77
psoriasis

epidermis: median(D) = 0.869,
SLEB: median(D) = 0.815

Contribution: application of state-of-the-art CNN model (in medical image processing) to HFUS data as a reference

Badrinarayanan et al. [68]/
Czajkowska et al. [3]

SegNet, CE loss, SGDM epidermis, SLEB
DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30]

75 MHz/128 × 64

380 images [67]: 303 AD, 77
psoriasis

epidermis: median(D) = 0.737,
SLEB: median(D) = 0.463

Contribution: application of state-of-the-art CNN model (in medical image processing) to HFUS data as a reference

Gu et al. [69]/
Czajkowska et al. [3]

Ce-Net, CE loss, SGDM epidermis, SLEB
DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30]

75 MHz/128 × 64

380 images [67]: 303 AD, 77
psoriasis

epidermis: median(D) = 0.867,
SLEB: median(D) = 0.798

Contribution: application of state-of-the-art CNN model (in medical image processing) to HFUS data as a reference

Czajkowska et al. [3]
SegUnet, CE loss, SGDM epidermis, SLEB

DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30]

75 MHz/128 × 64

380 images [67]: 303 AD, 77
psoriasis

epidermis: median(D) = 0.874,
SLEB: median(D) = 0.829

Contribution: new DNN model utilizing the advantages of U-Net and SegNet model; fully automated; repeatable; the pre-trained CNN models are publicly available; Disadvantages:
outperformed by later solutions; limited diseases; single imaging device

Siddique et al. [70]/
Szymańska et al. [48]

U-Net, CE loss, Adam epidermis, SLEB
DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30]

75 MHz/512 × 256

380 images [67]: 303 AD, 77
psoriasis

epidermis: median(D) = 0.927,
SLEB: median(D) = 0.905

Contribution: application of the most recent CNN model to HFUS data as a reference

Lou et al. [71]/
Szymańska et al. [48]

DC-UNet, CE loss, Adam epidermis, SLEB
DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30]

75 MHz/512 × 256

380 images [67]: 303 AD, 77
psoriasis

epidermis: median(D)
= 0.943, SLEB: me-
dian(D) = 0.930

Contribution: application of the most recent CNN model to HFUS data; the highest accuracy among all the HFUS image segmentation techniques; fully automated method;
repeatable; Disadvantages: limited diseases; single imaging device

Lou et al. [72]/Szymańska et
al. [48]

CFPNet-M, CE loss, Adam epidermis, SLEB
DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30]

75 MHz/512 × 256

380 images [67]: 303 AD, 77
psoriasis

epidermis: median(D) = 0.932,
SLEB: median(D) = 0.915

Contribution: application of the most recent CNN model to HFUS data; the second highest accuracy among all the HFUS image segmentation techniques; fully automated;
repeatable; Disadvantages: limited diseases; single imaging device
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Table 5. Cont.

Authors of the Algorithm/ Segmented HFUS
Algorithm/ Optimizer Area Device/Input Database Results

Implementation Image Size

Chen et. al. [73]/
Czajkowska et al. [74]

DeepLab v3+, Xception, Dice loss epidermis
DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30],

75 MHz/224 × 224

580 images: 303 AD [67], 77
psoriasis [67], 200 tumors epidermis: median(D) = 0.899

Contribution: application of CNN model originated for layered image analysis to HFUS data; extended database including various diseases; fully automated; repeatable;
Disadvantages: outperformed by later solutions; the analysis is limited to the epidermis; single imaging device

Czajkowska et al. [17]

DeepLab v3+, ResNet-50 +FC,
Dice loss epidermis

DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30],

75 MHz/224 × 224

380 images [67]: 303 AD, 77
psoriasis epidermis: median(D) = 0.930

Contribution: application of state-of-the-art model in image segmentation to HFUS data; high accuracy; fully automated; repeatable; Disadvantages: outperformed by other
solutions; the analysis is limited to the epidermis; single imaging device

Czajkowska et al. [17]

DeepLab v3+, ResNet-50 +FC,
Dice loss epidermis

DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30],

75 MHz/224 × 224

580 images: 303 AD [67], 77
psoriasis [67], 200 tumors

epidermis: median(D) = 0.919,
AD − > median(D) = 0.933,

psoriasis − > median(D) = 0.937,
tumor − > median(D) = 0.850

Contribution: application of state-of-the-art model in image segmentation to HFUS data; high accuracy; extended database including various diseases; fully automated; repeatable;
Disadvantages: outperformed by other solutions; the analysis is limited to the epidermis; single imaging device
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Table 6. Skin tumor segmentation summary.

Authors of the Algorithm/
Implementation Algorithm HFUS Device Nb. of Cases/Lesion Type Results

Pereyra et al. [75]

spatially coherent generalized Rayleigh
mixture model

synthetic data/Atys Medical (Soucieu en
Jarrest, France) [35], Atys Dermcup,

25 MHz, 3D reconstruction
30 slices, 2 lesions/phantom only visual analysis provided

Contribution: first approach to skin tumor segmentation in HFUS; synthetic and clinical data; fully automated; repeatable; Disadvantages: lack of quantitative
analysis; highly limited dataset

Sciolla et al.[76]
adaptive log-likelihood level set

Atys Medical (Soucieu en Jarrest,
France) [35], Atys Dermcup, 50 MHz, 3D

reconstruction
8 lesions, 13 phantoms mean(D) = 0.756,

mean(MAD) = 184 µm

Contribution: new adaptive level-set approach; synthetic and clinical data; quite high accuracy

Chan and Vese [65]
and Sarti et al. [77]/

Sciolla et al. [76]

non-adaptive log-likelihood level set
Atys Medical (Soucieu en Jarrest,

France) [35], Atys Dermcup, 50 MHz, 3D
reconstruction

8 lesions, 13 phantoms mean(D) = 0.732,
mean(MAD) = 177 µm

Contribution: application of state-of-the-art method of medical image segmentation for HFUS data analysis as a reference

Sciolla et al. [26]

hybrid geodesic active contour with
Probabilistic Boundary Expansion term

Atys Medical (Soucieu en Jarrest,
France) [35], Atys Dermcup, 50 MHz, 3D

reconstruction
12 lesions: 3 BCC, 9 melanomas mean(D) = 0.78±0.1, mean(MAD) =

200±110 µm

Contribution: new hybrid active contour model for skin lesion segmentation; the highest accuracy among all solutions; Disadvantages: limited dataset; single
imaging device; manual seed-point selection; lack of repeatability analysis

Sciolla et al. [76]/
Sciolla et al. [26]

adaptive log-likelihood level-set
Atys Medical (Soucieu en Jarrest,

France) [35], Atys Dermcup, 50 MHz, 3D
reconstruction

12 lesions: 3 BCC, 9 melanomas mean(D) = 0.74 ± 0.1,
mean(MAD) = 240 ± 140µm

Contribution: application of previous solution to extended dataset as a reference; quite high accuracy

Qiu et al. [78]/
Sciolla et al. [26]

geometric active contour
Atys Medical (Soucieu en Jarrest,

France) [35], Atys Dermcup, 50 MHz, 3D
reconstruction

12 lesions: 3 BCC, 9 melanomas mean(D) = 0.70 ± 0.15,
mean(MAD) = 330 ± 190µm

Contribution: application of previous solution to extended dataset as a reference
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Based on Tables 2 and 4–10, which are presented in the next sections, as well as Figure 4
(summary of individual applications for CAD of skin), we concluded that the most widely
explored area was skin layer segmentation [3,10,14–17,27,48,64,76]. However, the majority
of the works limited the analysis to the epidermis region, which is often crucial for further
automated processing steps but is not sufficient for a complete diagnosis.

Figure 4. CAD applications in HFUS image analysis.
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Table 7. Skin vessel segmentation summary.

Authors of the
Algorithm/Implementation Algorithm HFUS Device Nb. of Cases Results

Mathai et al. [79] distance-regularized level set
Vevo 2100, FUJIFILM Visual Sonics [32]

(Toronto, ON, Canada) [32]/Diasus,
Dynamic Imaging (UK) 10–22 MHz

35 sequences (3500 images)/5 sequences
(1250 images) mean(D) = 0.911 ± 0.019

Contribution: new distance-regularized method for subcutaneous vessel segmentation; extensive database; the highest segmentation accuracy; manual seed-point
selection; lack of repeatability analysis;Disadvantages: single imaging device

Pyciński et al. [80] geometric active contour

DUB SkinnScanner75, tpm (Lueneburg,
Germany) [30], 22 MHz [30]/iU22,

Philips (Amsterdam, Holandia), L12-5
12 MHz

54 HFUS images/12 US images
HFUS: mean(D) = 0.9, min(D) = 0.77,
max(D) = 0.95, US: mean(D) = 0.87,

min(D) = 0.71, max(D) = 0.94

Contribution: new active contour model with edge constraints for subcutaneous vessel segmentation; high segmentation accuracy; universal analysis method (US
and HFUS images); manual seed-point selection; lack of repeatability analysis; Disadvantages: limited database

Table 8. Skin lesion classification summary (part 1).

Authors of the
Algorithm/Implementation Algorithm HFUS Device Nb. of Cases/Lesion Type Results

Kia et al. [81]
multilayer perceptron

DUB SkinnScanner75, tpm (Lueneburg,
Germany) [30]-the authors did not

provide this information

120 images/healthy, benign, BCC,
Melanoma

TPR = 0.98,
TNR = 0.05

Contribution: new application area for multilayer perceptron; Disadvantages: single imaging device; missing acquisition protocol; low specificity

Csabai et al. [82]
AdaBoost/SVM HI VISION Preirus, Hitachi (Tokyo,

Japan), 5–18 MHz (EUP-L75) [36]
248 images: 73 melanomas, 130 BCCs, 45

benign nevi

BCC vs. nevus (SVM):
AUC = 0.90, TNR = 0.45,

Nevus vs. others (SVM): AUC = 0.86,
TNR = 0.19,

Melanoma vs. nevus (AdaBoost):
AUC = 0.88, TNR = 0.26

Contribution: new application area for AdaBoost and SVM; extended dataset compared to previous work; Disadvantages: single imaging device; low specificity

Andrekute et al. [83]
SVM DUB SkinnScanner75, tpm (Lueneburg,

Germany) [30], 22 MHz[30]
160 datasets: 80 melanomas, 80 benign

melanocytic nevi TPR = 0.824, TNR = 0.858

Contribution: new feature set definition for SVM analysis; Disadvantages: single imaging device; limited dataset; low accuracy
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Table 8. Cont.

Authors of the
Algorithm/Implementation Algorithm HFUS Device Nb. of Cases/Lesion Type Results

Kia et al. [45]
DCT + neural network 50 MHz, the authors did not provide

additional information
400 images/healthy, benign, BCCs,

melanomas
TPR(2 groups) = 0.938, TNR(2 groups) =

0.973, AUC(2 groups) = 0.859

Contribution: new application of DCT and neural network for skin lesion classification; Disadvantages: single imaging device; missing acquisition protocol;
two-group analysis

Kia et al. [81]/Kia et al. [45] multilayer perceptron 50 MHz, the authors did not provide
additional information

400 images/healthy, benign, BCCs,
melanomas ACC (4 groups) = 0.917

Contribution: application of previous approach to new classification problem; multiclass analysis; quite high accuracy for 4 groups; Disadvantages: single imaging
device; missing acquisition protocol

Tiwari et al. [46] SVM

DUB SkinnScanner75, tpm (Lueneburg,
Germany) [30], 22 MHz, optical

dermatoscop and spectrophotometer
SimSys, MedX Health (Malton, ON,

Canada) [84]

91 images/41 malignant melanomas, 50
melanocytic nevi

ACC = 0.989, AUC = 0.999, TPR = 0.975,
TNR = 1.000

Contribution: new feature set for SVM classifier; the highest accuracy for 2 groups; Disadvantages: single imaging device; quite small dataset

Marosán-Vilimszky et al. [21] SVM HI VISION Preirus, Hitachi (Tokyo,
Japan), 5–18 MHz (EUP-L75) [36]

310 images/70 melanomas, 130 BCCs,
110 benign nevi

BCC vs. nevus: AUC = 0.921, AUC(LAR)
= 0.957 Nevus vs. others: AUC = 0.914,

AUC(LAR) = 0.953 Melanoma vs. nevus:
AUC= 0.896, AUC(LAR) = 0.933

Contribution: new feature set for SVM classifier; representative dataset; high accuracy for 2 groups; Disadvantages: single imaging device

Table 9. Skin lesion classification summary (part 2).

Authors of the
Algorithm/Implementation Algorithm HFUS Device Nb. of Cases/Lesion Type Results

Huang et al. [85]/Czajkowska et al. [74] DenseNet-201 TL Grad-CAM DUB SkinnScanner75, tpm (Lueneburg,
Germany) [30], 75 MHz [30]

631 images: 200 non-melanocytic skin
tumors, 303 AD, 77 psoriasis, 51 healthy

skin
ACC= 0.975

Contribution: first application of DenseNet to HFUS image classification; DNN model evaluation/interpretation; large dataset; different diseases; Disadvantages:
only 4 different groups considered; single imaging device

Lee et al. [86] SVM Ultrasonix (USA) L40-8/12, 10 MHz
143 images: 37 burn group (i), 33 burn
group (ii), 39 burn group (iii), 34 burn

group (iv)
ACC = 0.93

Contribution: first application of SVM to burns HFUS image classification; high classification accuracy; Disadvantages: phantom study; single imaging device
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Table 10. IQA of HFUS images.

Algorithm HFUS Device/Data Number of Groups ACC F1-Score

VGG16 [87]

DUB SkinnScanner75, tpm
(Lueneburg, Germany)
[30], 24 MHz /17,425

images of facial skin [88]

2 0.8907–0.8999 0.8716–0.8993

DenseNet-201 [85]

DUB SkinnScanner75, tpm
(Lueneburg, Germany)
[30], 24 MHz /17,425

images of facial skin [88]

2 0.8682–0.8802 0.8480–0.8800

VGG16 + MIS [89]

DUB SkinnScanner75, tpm
(Lueneburg, Germany)
[30], 24 MHz /17,425

images of facial skin [88]

2 0.9170 0.9076

VGG16 [87,89]

DUB SkinnScanner75, tpm
(Lueneburg, Germany)
[30], 24 MHz /17,425

images of facial skin [88]

4 0.8284 0.8401

Table 11. HFUS image datasets available in the public domain.

Name Repository Content/HFUS Device Number of Cases Number of Patients

Data for Deep Learning
Approach to Skin Layer
Segmentation in Inflamma-
tory Dermatoses [67]

Mendeley Data [90]

inflammatory skin
diseases, image

segmentation: SLEB,
epidermis; single expert

delineations/ DUB
SkinnScanner75, tpm

(Lueneburg, Germany)
[30], 75 MHz

380: 303 AD, 77 Psoriasis 380

High-Frequency Dataset of
Facial Skin [88] Mendeley Data [90]

facial images,
classification, two experts
annotations; IQA/ DUB

SkinnScanner75, tpm
(Lueneburg, Germany)

[30], 75 MHz

17,425 44

The second most widely explored area was skin tumor
segmentation [20,26,63,75,76,78]. In support of skin tumor diagnosis, there also ap-
peared works targeting HFUS image classification [21,45,46,81–83], with a particular
emphasis on melanocytic lesion classification. However, other classification problems
were also found in the literature [74,86].

Some works addressed the problem of subcutaneous blood vessel segmentation [79,80]
or HFUS image quality assessment [55,89]. A novel trend in CAD algorithms is sharing the
datasets or source code [67,88,91].

4.1. Skin Layer Segmentation

Due to the fact that the segmentation algorithms are among the most explored in
medical applications and the universality of their solutions enables their application in
various areas, the HFUS image segmentation methods, among other CAD solutions, were
historically first addressed in the literature in [27,64]. At the same, they are the most widely
described and evaluated algorithms [10,14,26,27,63,64,92].

According to skin morphology, skin layer segmentation is the most functional area of
interest and the clinical applications of HFUS prove this need [13,40]. In inflammatory skin
diseases, the presence of SLEB and its thickness measurements is an indicator of treatment
effectiveness [19]. The acoustic density of the segmented layers has been considered in
cosmetology and aesthetic medicine [51], and the characterization of the dermis due to age
was addressed in [13].
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4.1.1. Classical Approach or Small Datasets

The first skin segmentation algorithm for HFUS images was developed by Lagarde et
al., and was described in [27]. This study aimed to segment the dermis layer for its thickness
estimation automatically. As the authors claimed, in this application, the analysis helped to
evaluate dermo-cosmetics for assessing both the morphological changes and mechanical
properties of this layer. An important novelty of this work was the standardization of the
manual dermal thickness measurement procedure on B-scan ultrasound images. The layer
boundaries were detected using a modified active contour algorithm [93]. To evaluate
the developed tool, the authors used 612 HFUS images acquired using an Atys Dermcup,
Atys Medical (Soucieu en Jarrest, France) [35], at 20 MHz. The image processing algorithm
was compared with both the manual and semi-manual measurements. In addition, the
intra-operator variability was measured to check whether the computerized results placed
in the range of the expert mistakes.

The second work [64] targeted dermis segmentation to assess skin toxicity measure-
ments. The developed algorithm utilized the benefits of curve evolution under the Rie-
mannian metric [94]. The system was tested on a breast cancer radiotherapy ultrasound
imaging database consisting of 730 HFUS images of 23 patients.

The first application in this area by Sciolla et al. [10] targeted both skin layer and
skin lesion segmentation. This preliminary study was extended in [63]. It examined the
problem of dermis segmentation in 50 MHz images. The practical goal of the analysis was
to study skin photoaging. The joint epidermis and dermis segmentation method applied a
non-parametric active contour method level set, which combined a texture criterion and
an epidermis indicator map with the geometric constraint from the layered morphology.
The SLEB was also characterized in this work based on the segmented dermis area cut
into slices and the statistical analysis of the ultrasound envelope signal. However, its
accurate segmentation was not evaluated in this study. The analyzed dataset consisted of
HFUS images of 76 healthy women acquired on the external face of the left forearm. The
thorough analysis of the results included a comparison with other promising segmentation
methods described in the literature [64,65] utilizing the active contour models. However, the
numerical analysis of the segmentation results was limited to 20 images, which two experts
manually delineated in the dermis part (joint epidermis and dermis). The obtained joint
epidermis and dermis segmentation masks were compared with manual delineation using
MAD and the Dice index. The numerical results obtained for the reference methods [64,65]
are included in Table 4. The rest of the input data were analyzed for the visual score of skin
aging (SCINEXA score [95]).

The extraction, modeling, and quantification of skin layers was the target of the
work [92] by Bryjova et al. The segmentation method utilized a mathematical model of
skin morphology based on the skin layer skeleton, and the study aimed to assess burn
treatment. To verify the segmentation method, the authors used a Mindray M7, Mindray
(Shenzhen, China) machine with an 11 MHz transducer. Since this machine is not typically
dedicated to skin diagnosis, it is not mentioned in the device list in Section 2. A quantitative
evaluation did not follow the somewhat preliminary work.

The preparatory work by Czajkowska et al. [14] in skin analysis targeted wound treat-
ment assessment. The developed methodology consisted of fuzzy c-means (FCM) clustering
followed by signal analysis, where the one-dimensional data were the coordinates of the
pre-segmented epidermis layer. The algorithm was applied to 13 HFUS images acquired with
a 22 MHz transducer. The results were compared with manual expert delineations (provided
by two independent experts) using HD and the Dice index (see Table 4).

The promising preliminary results encouraged the authors to develop the skin layer
segmentation methods, and the next paper [15] we discuss targeted both the epidermis
and SLEB layer analysis. It was the first work in CAD methods of inflammatory skin
diseases based on HFUS images. The developed technique extended the level set [96],
introducing a gradient field based on FCM clustering. The 45 HFUS images employed in
this study were acquired using a DUB SkinnScanner75, tpm (Lueneburg, Germany) [30]
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(75 MHz) and were manually delineated by two experts. The measured thickness of the
segmented bands and the spatial overlaps of two segmented regions were compared with
the measurements and masks resulting from the expert delineations. Statistical analysis
was introduced to evaluate the hypothesis that the obtained results were comparable to
those provided by the experts. The authors concluded that the automated segmentation
results were similar to those generated by the experts. According to the summary in Table 4,
these results outperform those generated by the previously discussed methods. However,
due to the different transducer frequencies resulting in different image resolutions and the
various datasets used in the analysis, a direct comparison of the results should be avoided.
Moreover, the same methodology was verified on the comprehensive dataset (380 images)
in [3], resulting in much lower accuracy (median(D) = 0.544).

The fast development of knowledge-based methods introduced by deep neural net-
works (DNN) has enabled their implementation in HFUS image segmentation. The prelim-
inary work in this area [16] utilized the U-Net model developed by Ronneberger et al. [66]
to segment the epidermis and SLEB in 75 MHz ultrasound images. It was an extension of
the previous work [15] by these authors in the area of CAD of inflammatory skin diseases.
To increase the number of training samples, the authors divided each image into several
subimages, treating each of them as a separate input. The authors ensured that a single
patient’s subimages were not separated into training and testing sets. The obtained results
are comparable to those previously described in the literature [10,15,63]. Despite the DNN
solutions being addressed in the next section, due to the small dataset considered in this
work, we decided to discuss the work [16] here.

Skin layer segmentation was also an intermediate step for the skin lesion detection
described in [20]. Similar to [97], the segmentation step was carried out in a few stages. It
utilized median filtering, Otsu thresholding, heat map construction, and the parametrized
active contour model [94]. Since the authors focused on skin tumor segmentation, their
work did not validate the skin layer segmentation aspect.

All the already mentioned skin layer segmentation methods are summarized in
Table 4. They all provide acceptable accuracy; however, the experiments were limited
to small datasets, and the different acquisition parameters used do not allow for their direct
comparison.

4.1.2. Deep Learning-Based Solutions

The main problem with implementing DNN for image segmentation is the lack of
training data. In addition, access to more extensive datasets containing expert delin-
eations [88] opens up a new area in image analysis, understanding, and segmentation. The
continuation of the work by [16] in the field of HFUS image segmentation in the CAD of
inflammatory skin diseases was described in [3]. The paper presented a novel framework
for both epidermis and SLEB analyses. The developed SegUnet model was extended by a
pre-processing step utilizing the FCM results and L* a* b* color space [98] as the network in-
puts. The SegUnet architecture used the encoder–decoder model proposed by Ronneberger
et al. [66] and a batch normalization layer, which was adopted from SegNet [68]. As the au-
thors claimed [3], it adjusted and scaled the activation, made the segmentation results more
stable, and increased the neural network performance. The analyzed dataset [67] consisted
of 380 HFUS images of 380 different patients with inflammatory skin diseases: AD (303)
and psoriasis (77). The data were acquired using a DUB SkinnScanner75, tpm (Lueneburg,
Germany) [30] at 75 MHz. The data were annotated and manually delineated by a single
expert; however, the outcomes were verified by another expert. In their experiments, the
authors compared the designed model with others described in the literature as accurate
in layered object segmentation [69]. The considered Ce-Net model [69] was successfully
applied for retina layer segmentation in OCT images.

It is worth mentioning here that the similarity of OCT images of the skin or retina
to skin HFUS data suggests that the methods used for their analysis [99–102] could be
adapted to the segmentation of skin HFUS images. Similar, the algorithms targeting



Sensors 2022, 22, 8326 21 of 36

skin segmentation in hist-pat images [103–105] can be an inspiration for HFUS dedicated
frameworks.

The experiments described in the work by [3] included numerical analysis of the
different DNN models depicted in the literature. Those with the potential for skin layer
segmentation are listed in Table 5, where the usage of DNN as a tool for skin layer segmen-
tation is summarized. All the models [3] were trained from scratch, and two variants of
input data were evaluated. The first analyzed the original RGB images, whereas the second
modified the input space, as described above. This modification improved the segmenta-
tion results for most investigated models (CE-Net, U-Net, and SegUnet). To increase the
number of training data, the input images were augmented by introducing random geo-
metric transformations (reflection in the horizontal direction, ±10-pixel translation in both
directions, ±10◦ rotation). However, the authors did not provide a quantitative analysis
of the influence of the augmentation step. Each training process consisted of 200 epochs,
and a discussion concerning interrupting the training process using a validation set was
also skipped. They trained the network by optimizing the cross-entropy (CE) loss through
the stochastic gradient descent with a momentum (SGDM) optimizer and training data
were shuffled before each training epoch. The batch size was 8, and the initial learning rate
equaled 0.001 for all the analyzed DNN models.

The application of the newest U-shaped models, basic U-Net by Ronnenberger
et al. [66], DC-UNet [71], and CFPNet-M [72], to epidermis and SLEB segmentation can be
found in [48]. The authors analyzed the influence of the size of the images used for network
training, augmentation technique, optimization method, region of interest (ROI) selection,
and binarization threshold on the final segmentation accuracy. During the experiments,
they used external k-fold cross-validation and analyzed the impact of the k value on the
obtained results. Based on the outcome of the investigations, we can conclude that surpris-
ingly, the ROI reduction did not continuously improve the segmentation results. Moreover,
the authors recommended the Adam optimizer, which outperformed the SGDM in the final
segmentation results. An interesting observation is connected with the augmentation step,
according to which the limited rotation works better for this type of image (layered). The
best results obtained by each of the models investigated in this work [48] are included in
Table 5.

The next work by Czajkowska et al. [74] described epidermis segmentation as a part
of the HFUS skin image classification framework. The analyzed image set was extended
(compared to [3,48]) by 200 images of non-melanocytic skin tumors. However, because the
SLEB layer was not present in patients with skin tumors, it was omitted in this analysis.
The epidermis segmentation step created a skin layer map defining the region of interest,
which was then correlated with the DNN network (applied for classification) response.
Among many other solutions, the authors selected the DeepLab v3+ model [73] with a
pre-trained Xception [106] backbone as the most accurate solution.

The last work in this area [17] also limited the segmentation step to the epidermis
region. The authors [17] focused on an accurate, robust, and repeatable segmentation
including details at the object borders. For this, they combined deep models with the fuzzy
connectedness (FC) analysis developed by Udupa et al. [107] for fine segmentation. Similar
to [48], the authors considered the ROI selection step and the experimental results favored it
in this case. The pre-processing step targeting the ROI selection utilized a DeepLab v3+ [73]
network built on a pre-trained backbone for feature extraction. From the three analyzed
backbone models, the authors selected a 50-layer residual backbone (ResNet-50) as the most
efficient in a series of experiments. The same architecture was chosen for the final epidermis
segmentation step. To justify the FC parameters, they utilized the interpolated Dice index
heatmap. In the experiments, they considered different state-of-the-art techniques [3]
trained over the benchmark database [88]. Additionally, they applied FCN-AlexNet and
FCN-8 s, pre-trained on CamVid and ImageNet datasets with different optimizers (SGDM
and Adam) and loss functions (CE and Dice loss). Table 5 presents the most promising
results out of all the experiments.
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4.1.3. Skin Layer Segmentation Summary

Skin layer segmentation was the most widely explored aspect of the CAD systems
described in this paper. The essential findings in this area can be summarized as follows:

• Two main branches were visible in this field: deformable models and deep neural
networks.

• Due to the different application areas, ultrasound machines used during image acquisi-
tion, and various frequencies of the transducers, a direct comparison of the algorithms
and quantitative analysis of their results was hard or even impossible.

• A few classical methods deserve special attention: [10,15,17,48]. The first two [10,15]
applied level-set techniques, which resulted in a Dice index equal to 0.94 and 0.878,
respectively, which is a high result for medical applications. The Dice index equal to
0.878 described in [15] places this work far behind [10]. However, the obtained mean
absolute distance value (8.5 µm) was, in this case, much lower than that calculated
by Sciolla et al. (45 µm), and this parameter seems to be more relevant for clinical
diagnoses.

• Among all the CNN-based solutions, that in [48] is particularly noteworthy, as the
authors applied the common U-shape models for both the epidermis and SLEB segmen-
tation. The obtained accuracy (median(D) ≥ 0.93) for the DC-UNet model developed
by Lou et al. [71] is at the level of clinical acceptance.

• Most of the listed solutions were dedicated to specific medical problems and it was
hard to check their generalization ability.

• Since the authors did not present the whole datasets or representative samples visu-
alizing the differences in the analyzed images, it was hard to assess the adaptability
of the described methods to other types of data. For example, the level-set method
described in [15] when applied to a bigger dataset (380 images [67]) in [3] resulted
in a median Dice index equal to 0.727 for the epidermis and 0.54 for the SLEB. For
the comprehensive dataset analyzed in [17], which included different diseases, the
CNN-based segmentation results were lower than for the inflammatory one.

• The algorithms were trained and tested using the same scanners, and analyses of the
various scanners are required for clinical usage.

• CNN-based analysis (especially using pre-trained models) requires image size reduc-
tion and the resulting mask needs to be enlarged to the initial size. This post-processing
step can strongly influence the final accuracy. In [48], this step was skipped. The
reader might assume that the resulting masks were compared with expert delineations
in the initial space; however, he/she cannot be sure.

• Most reviewed solutions were fully automated and repeatable.
• The CNN model trained for skin layer segmentation, as well as the analyzed dataset

described in [3], are available via Mendeley Data and enable the repeating of the
experiments.

4.2. Skin Tumor Segmentation

Apart from skin layer analysis, HFUS imaging has opened up new possibilities
in diagnosing skin tumors. The information on the tumor depth, vascularization, and
morphology of adjacent tissues is the perfect complement to classical dermatoscopy. Fast,
accurate, repeatable, and robust segmentation of skin tumors seems to be the natural
direction of the developed CAD algorithms. Unfortunately, only a few papers have
addressed this problem [10,20,26,76].

The segmentation of skin lesions in 2D and 3D ultrasound images was first described
in [75]. The paper addressed the problem of jointly estimating the statistical distribution
and segmenting lesions in skin ultrasound images. To model the tissues, the authors
applied a heavy-tailed Rayleigh mixture based on the single-tissue model provided by
Pereyra et al. [108] for modeling the ultrasound echoes in skin tissues. The novel approach
incorporated the Markov random field (MRF) to model the spatial correlation of the
considered biological regions and the Bayesian model for segmentation. The twofold
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validation method introduced synthetic and clinical data and the numerical results are
available in Table 6.

The second work [10] by Sciolla et al., was a preliminary study and targeted non-
homogeneous skin tissue segmentation in HFUS 3D images of the skin. The adaptive
log-likelihood (AdLL) 3D level-set segmentation algorithm maximized the log-likelihood
of a segmented contour. The performance of the developed methodology was evaluated
for eight lesions diagnosed using an Atys Dermcup, Atys Medical (Soucieu en Jarrest,
France) [35] 50 MHz system. Since the Dermcup device is equipped with a single transducer
element, the 3D images are made of scans acquired along two orthogonal axes with the
controlled transducer position. To provide a quantitative analysis of the developed method,
the authors additionally produced synthetic 3D skin images. The segmentation results
were compared with the expert delineation provided for single orientation and interpolated
between slices. A summary of the obtained results can be found in Table 6.

An extension of this work was presented in [26]. It considered the two most common
types of skin cancer: melanoma and basal cell carcinoma. The 3D HFUS image segmen-
tation algorithm utilized a hybrid geodesic active contour with both area and boundary
constraints. The developed probabilistic boundary expansion term was based on feature
asymmetry (FA) according to [94] and the boundary term was curvature dependent. The
parameters of each method were optimized to obtain the best average Dice index over
the analyzed dataset. Similar to [76], the weak point of the processing framework was
the manual seed-point selection (or ROI specification [76]) and the lack of discussion of
its influence on the final segmentation results. The methodology was evaluated based on
the 50 MHz 3D clinical images acquired using the Atys, Atys Medical (Soucieu en Jarrest,
France) imaging system (three BCC and nine melanomas). As the authors mentioned,
the set of 3D data consisted of 1800 2D images. The performance of the segmentation
framework was compared with the manual expert delineations (prepared similarly to [76])
and the results are included in Table 6.

The problem of seed-point selection was solved in [20]. Based on the segmentation
results mentioned in Section 4.1.1, the fully-automated framework utilized FCM clustering
and a two-component heat map to find the lesions. The final segmentation step was
based on the active contour model designed by Chan and Vese [65]. The evaluation step
considered two data sources: a commercial high-frequency ultrasound imager HI VISION
Preirus, Hitachi (Tokyo, Japan [36]), with 5–18 MHz EUP-L75 transducer and a custom
system based on a manually scanning single-element transducer (V317, Olympus, (Tokyo,
Japan)) [39,109], which included 60 images. The dataset was divided into 40 images used for
parameter adjustment and 20 for validation. The evaluation step was limited to comparing
the segmentation results obtained by the manual and automated seeding selection without
discussing the primary segmentation technique.

The newest framework developed by Marosán-Vilimszky et al. [21] utilized the
benefits of the seeding selection step and segmentation algorithm described in [20] for the
skin lesion classification problem and compared it with the semi-automated approach.

A dataset concerning skin tumors was also analyzed in [17] but the segmentation step
was limited to the epidermis layer and was discussed in Section 4.1.2.

An interesting extension of the works mentioned above was [110]. The authors
presented an automated melanocytic skin tumor thickness estimation method based on a
time-frequency analysis of US radio frequency signals. The image data were acquired using
a DUB SkinnScanner75, tpm (Lueneburg, Germany) [30] (22 MHz probe). The sensitivity
and specificity of the automated measurements compared with the histologic results were
96.55% and 78.26%, respectively, and compared with the manually measured US thickness
were 75.86% and 73.91%.

Skin Tumor Segmentation Summary

The main findings in this area can be summarized as follows:
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• Due to the small datasets and time-consuming manual expert analysis, the developed
methodologies were limited to classical approaches.

• Similar to skin layers, the most promising were the active contour models, from which
the highest accuracy resulted in the hybrid geodesic active contour with a probabilistic
boundary expansion term described in [26].

• The small testing set and image acquisition limited to a single scanner, together with
low accuracy, do not allow for its clinical usage at this stage.

• Most of the developed approaches required manual starting point selection and their
repeatability in connection with this choice was not discussed in the papers.

4.3. Skin Vessel Segmentation

In addition to neoplastic lesions, the analysis of which is usually the most widely
described in the literature or works addressing the challenges in the diagnosis of inflamma-
tory skin diseases, incidences of which increase every year, the latest CAD systems also
include algorithms for the segmentation of blood vessels [79,80] in HFUS images.

The first work by Mathai et al. [79] targeted the segmentation and tracking of small
and medium hand vessels based on UHFUS images (above 50 MHz). The developed
GPU-based approach enabled fast submillimeter 2D vessel contour localization. It was
a combination of a local phase analysis providing robust edge detection and a distance
regularized level set for contour segmentation followed by an extended Kalman filter
(EKF) for the tracking step. The authors utilized a bilateral filter to smooth the slight
amplitude noise, preserving the vessel boundaries. Next, the clustering approach [111]
was used to find the seeds to track over sequential B-scans. The validation step included
35 UHFUS sequences (100 images each) acquired using a Vevo 2100, FUJIFILM Visual
Sonics [32] (Toronto, ON, Canada) machine equipped with a 50 MHz transducer and 5
HFUS sequences (10–22 MHz, 250 images each) from Diasus, Dynamic Imaging (UK).
Using common metrics, the segmentation results were compared with the annotations
provided by two graders (the authors did not mention whether the graders were experts or
non-experts). The vessel segmented in all B-scans of a sequence, which indicated that the
tracking was successful.

As the authors reported, the obtained mean Dice scores for the UHFUS images were
mean(D) = 0.917 ± 0.019 against the first grader and mean(D) = 0.905±0.018 against the
second grader, which were better than the inter-grader scores. For the HFUS data, the
obtained scores were comparable with the inter-grader analysis.

The second work [80], a preliminary study by Pyciński et al., addressed the problem of
vessel segmentation in both HFUS and US images and the overall goal of the study was a
fusion of both these modalities. The segmentation step utilized color space transformation,
anisotropic filtering, and WFCM (weighted FCM) clustering, followed by the geometric
active contour [65], providing the final segmentation results. The basic registration covered
only in-plane translation as the images were collected from the same anatomical plane.
This was based on the correspondence of the centroids of the previously segmented regions.
During the experiment, 54 HFUS images acquired using a DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30] with a 22 MHz transducer and 12 images using an iU22,
Philips (Amsterdam, Holandia) with a linear transducer L12-5 of frequency 12 MHz were
considered. The segmentation accuracy was estimated by comparing the obtained results
with the manual expert delineations. The mean Dice index was equal to 0.9 for the HFUS
data and 0.87 for the US data, respectively. The validation of the image fusion was limited to
a subjective expert judgment. A similar image registration problem was taken up by [112],
where the authors registered HFUS images of finger vascular tissue over time and measured
its deformations under an ultrasound transducer.

Both the mentioned works [79,80] are summarized in Table 7.
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Skin Vessel Segmentation Summary

The accurate segmentation and visualization of superficial veins are essential in di-
agnosing skin lesions and the most crucial findings in this field can be summarized as
follows:

• Only two works targeted HFUS image segmentation with the highest accuracy re-
ported by Mathai et al. [79] using the level-set technique.

• There appeared to be more algorithms concerning vessel segmentation using the
classical US (<20 MHz) [113], which can also be applied to HFUS image data. In [80],
the same active contour-based framework was utilized for ultrasound images acquired
with different transducers (12 and 22 MHz) and other US machines.

• Accurate superficial vein segmentation can be utilized for inter-modality image regis-
tration.

• The developed approaches required manual seed-point selection and their repeatabil-
ity in connection with this choice was not discussed in the papers.

4.4. Skin Lesion Classification

In addition to the segmentation methods, image classification techniques were among
the most explored in the CAD systems. The developments in this area have made it possible
to classify skin diseases, with the most significant emphasis being on skin tumors.

4.4.1. Skin Tumors

The classification of HFUS images was first mentioned in the work [81] by Kia et al.,
where the authors focused on distinguishing between healthy and cancerous tissues and
benign and malignant lesions, as well as categorizing basal cell carcinomas and melanomas.
The AI-based framework started with pre-processing steps including color scale conversion
and contrast enhancement. Next, the Canny edge detection step was applied, followed
by morphological operations and ROI selection. The obtained regions were then used
for the feature extraction and classification phases. The designed multilayer perceptron
(MLP) network utilized the normalized mean squared error (MSE) as a transfer function.
The evaluated database consisted of 120 images, resulting in a sensitivity of 98% and a
specificity of 5%, which is clinically unacceptable. There was also a lack of information
concerning the sizes of the individual groups. Additionally, the authors did not provide
visual examples of the sample images, and it was hard to determine how complicated the
classification problem was. Since the authors of [81] did not include information concerning
the HFUS device, this field in Table 8, which summarizes the classification approaches, was
completed based on our own experience.

The second work in this area by Csabai et al. [82] targeted distinguishing common
skin lesions (BCC, melanoma, nevus). The three-step algorithm utilized a semi-automated
active contour model to segment the lesion. However, the influence of the segmentation
results on further classifications was not discussed. Next, which has been widely explored
in the literature, the object features (both shape- and intensity-based) were calculated to
describe the segmented area. The ROC curve enabled the selection of the most powerful
features and classifiers (AdaBoost or support vector machine, SVM). The image data were
collected using a HI VISION Preirus, Hitachi (Tokyo, Japan [36]), 5–18 MHz (EUP-L75
transducer). The obtained results were promising but, as the authors stated, were still
unacceptable for clinical usage (see Table 8).

Melanocytic skin tumors were also an interest of Andrekute et al. [83]. The study
involved 119 patients with malignant melanoma (MM), 48 cases, and benign melanocytic
nevi (MN), 71 cases, confirmed histopathologically, from which 160 ultrasound datasets
were acquired. The ROI segmentation algorithm utilized previous developments by the
authors [110], and the tumor segmentation step applied parametric integrated backscatter-
ing signals, highlighting the different intensity object boundaries evaluated in [110]. The
next step, the feature extraction step, included twenty-nine parameters (acoustical, textural,
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and shape), from which an informative set was selected and used in the SVM classifier. The
obtained classification results are summarized in Table 8.

Three years later, Kia et al. [45] developed a skin image classification algorithm based
on a discrete cosine transform (DCT), followed by a singular value decomposition (SVD)
and neural network with two hidden layers (10 neurons each) and a CE loss function. The
extended (compared to [81]) database of 400 HFUS samples included melanomas, basal cell
carcinomas, squamous cell carcinomas, actinic keratosis, atypical nevi, benign melanocytic
nevi, blue nevi, and seborrheic keratosis. However, the classification step was limited to
four groups, as in [81], or two groups, healthy and suspected.

The skin lesion classification problem was also taken up by Tiwari et al. [46] (an exten-
sion of [110]), where the authors investigated the different classification models, logistic
regression (LR), linear discriminant analysis (LDA), support vector machine, and naive
Bayes, to analyze multimodal image data. The hybrid technique utilized the benefits of
dermatoscopy, high-frequency ultrasound, and spectrometry in supporting the diagnosis
of cutaneous melanoma differentiation between melanocytic naevus and melanoma. The
analyzed dataset consisted of 50 nevus and 41 melanomas for which the three mentioned
modalities were acquired. The classical framework included ROI selection, feature extrac-
tion, and a classification step. The experiments proved the improvement of classification
performance by combining three imaging modalities compared to a combination of any
two. The SVM classifier outperformed all the considered methods, resulting in an accuracy
equal to 0.989 and an area under the ROC curve equal to 0.999.

The newest work by Marosán-Vilimszky et al. [21] was the last to focus on nevus. The
analyzed HFUS recordings included 310 lesions comprising 70 melanomas, 130 basal cell
carcinomas, and 110 benign nevi. The designed framework started with the fully-automated
segmentation step described in [20] and the provided evaluation included a comparison of
two semi-automated techniques, from which the best performance ensured the largest area
rectangle-based technique (LAR). The rectangle created on the freehand drawing was used
here as the seed. From the segmented regions and the surrounding tissues, the authors
extracted 93 features (textural- and shape-based) from which they finally selected 62 for
the SVM-based classification step. Compared to the similar work by Csabai et al. [82], the
authors obtained [21] better classification results. It is worth mentioning that the authors
shared all the code used in this work on GitHub [91]. Non-melanocytic skin tumors were
also considered in [74]. However, in this work, the classification problem was broader
and the authors focused on different skin lesions including tumors and inflammatory skin
diseases. Thus, the analyzed dataset consisted of 631 HFUS images classified into four
groups: non-melanocytic skin tumors, psoriasis, atopic dermatitis, and healthy skin. Since
the most challenging task was the classification of inflammatory skin diseases, skin tumors
were an additional group for the analysis and were not the target itself. The developed
framework utilized deep neural networks and the authors considered the five different
CNN models that offered the most promising effectiveness in the experiments. All the
models were pre-trained on the ImageNet database [114]. The numerical evaluation utilized
the ROI selection introduced as a pre-processing step and two augmentation methods.
An exciting novelty of this work was the model evaluation section. The CNN model was
selected by applying the Grad-CAD [115] algorithm and pre-segmented ROI skin layer
map. The best model was this one as it resulted in the highest accuracy and focused on
the same image area as the specialist. In this case, it was DenseNet-201 pre-trained on
ImageNet, with augmentation (horizontal reflection and ±10-pixel translation in both
directions), which was fed by the extracted ROI.

4.4.2. Skin Burns

Although monitoring burn treatment and measuring its depth over time is still chal-
lenging, there is only one work targeting this problem described in the literature [86]
that utilized the benefits of HFUS. The lack of these solutions may be related to the low
penetration depth of HFUS not being appropriate for deep burn assessment. The presented
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approach enabled the real-time classification of burn depth in US images. The dataset of
skin tissues with various degrees of burns was obtained from ex vivo porcine experiments
using an Ultrasonix (USA) L40-8/12 linear array probe at 10 MHz (a frequency lower than
in other skin applications) and included 143 images. The burns ranged from superficial-
partial to full-thickness and were divided into four categories. The developed framework
applied textural features for the SVM classifier and resulted in an overall classification
accuracy equal to 0.93. The obtained results are included in Table 9 as a separate category
that is highlighted in blue.

4.4.3. Skin Lesion Classification Summary

Skin lesion classification was the second most explored research area in HFUS process-
ing and the main findings can be summarized as follows:

• Two solutions prevailed in the analyses: SVM (with both textural and shape-based
features) and neural networks, with a particular emphasis on classical multilayer
perceptron networks.

• Since the datasets for the image classifications were less time-consuming to collect,
the described experiments considered larger samples compared with the skin lesion
segmentation experiments.

• Although all the authors outlined the potential of HFUS for dermatological diagnosis,
the best-reported results [46] were obtained for multimodal analysis utilizing an
HFUS (22 MHz), optical dermatoscopy, and a spectrophotometer. For 91 multimodal
samples, the accuracy of the melanocytic lesion classification (malignant melanoma
and melanocytic nevi) was equal to 0.989 and the AUC was close to one.

• For the analysis of single modality (400 images, 50 MHz), noteworthy results (AUC
equal to 0.917) were reported by [45] in the four-group classification: healthy skin,
benign nevi, BCC, and melanoma. For the two-group analysis (310 benign and
malignant lesions), the best solution was provided in [21], with an AUC equal to 0.953.

• An extension of the skin tumor analysis was conducted by [74], which included
non-melanocytic skin tumors in the differential diagnosis of different skin lesions.

4.5. Other Applications

Water loss is a particular problem that plays a vital role in many medical and beauty
treatment applications [52]. The evaluation of water content was the area of interest of
Chirikhina et al. [23,52]. Their first work [52], being less technical, was referred to in
Section 3. The second one [23] presented a machine learning-based skin characterization
method, which utilized a combination of contact capacitive and HFUS imaging for com-
plementary information. The work aimed to measure skin water content and skin layer
thickness in different skin sites (mainly facial). For the HFUS data acquisition, the authors
used an EPISCAN I-200, Longport (Chadds Fort, PA, USA) system [34], with a 50 MHz
transducer. Although the authors proposed a multimodal approach, the two mentioned
modalities were analyzed separately. For the skin contact capacitive image classification,
they utilized pre-trained deep neural network models, whereas the HFUS images were
analyzed using different classifiers utilizing luminosity values. Another examined HFUS
image classification method considered texture features and the DNN model as the particu-
lar feature selector. Unfortunately, the described findings were not supported by numerical
analysis.

4.6. Image Quality Assessment

Apart from classical CAD algorithms, the two most recent works [55,89] on HFUS data
analysis targeted the broadly defined image quality assessment (IQA). The main goal of IQA
techniques is to reduce noise and artifacts, which influence the geometry of visualized struc-
tures and may lead to misclassification, false-positive detections, over/under-segmentation,
and consequently, the inaccurate results of the measurements [89]. The issue of image
artifacts and their effect on data quality in critically ill subjects were described in [24]. The
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outcome of this study was 1761 HFUS (20 MHz) images of 137 patients at risk of pres-
sure ulcers, which were acquired and evaluated. At least one group of artifacts (bubbles,
texture problems, layer non-differentiation, or reduced area of view) was found in 83%
of images but they mainly did not interfere with the evaluation. The artifacts that the
operator needs to recognize quickly during scanning because of their adverse effect on
HFUS evaluation are layer non-differentiation, texture problems, and reduced area of view.
Czajkowska et al. [89] added to this group of artifacts with the US probe or impurities con-
tained in the ultrasound gel; frames captured when the ultrasound probe was not adhered
or incorrectly adhered to the patient’s skin; images with contrast that was too low for a
reliable diagnosis or captured with too little gel volume-improper for epidermis layer detec-
tion; and data with disturbed geometry, as well as HFUS frames with common ultrasound
artifacts such as acoustic enhancement, acoustic shadowing, or beam-width artifacts.

Since in [24] the operator observed the scans as they were generated and saved the
best for later analysis, most of the problems described in [89] did not appear in [24]. On
the other hand, the framework described in [89] was fully automated and the selected
good-quality frames were successfully used in CAD systems.

The latest works in medical IQA are based on deep neural networks [116–118] ap-
plied to retina images [116], heart MRI [118], or abdominal ultrasound [117]. A similar
methodology was used in [55,89] for HFUS image classification.

The algorithm described in [55] targeted reducing the analyzed dataset of HFUS of
hyaline cartilage at the metacarpal head level to the informative part. The B-scans were
acquired using the 22 MHz transducer with a penetration depth of 15 mm. The authors
introduced the CNN first for the HFUS data analysis. However, the application area was
not connected with skin diseases and is not discussed in detail in our study. Briefly, the
developed framework was evaluated on 48 healthy subjects, 40 in the training and testing
of the algorithm and 8 in the reliability analysis, and the proposed method introduced the
VGG16 [87] model to solve the classification problem.

The already mentioned framework [55] was, however, an inspiration for [89], where
the authors focused on the HFUS image classification of healthy skin. The study’s goal
was an automatic selection of the correct frames from the acquired image series in the
CAD system. The IQA prevented further processing errors connected with inaccurate
data analysis. The publicly available [88] dataset consisted of 17425 HFUS frames of
the facial skin of 44 healthy volunteers denoted by two experts (in total, three times) as
noisy-inaccurate, non-informative, and good quality. The authors evaluated different
algorithms to classify them into two (as correct or incorrect) or four groups (including two,
‘almost’ correct and ’mostly’ incorrect). The numerical analysis included the VGG16 [87]
model recommended in [55], as well as the DenseNet-201 [85] model, both pre-trained on
ImageNet [114] and then used in transfer learning. Additionally, the authors proposed
a novel framework connecting the CNN with fuzzy set theory (Mamdani Interference
System, MIS [119]).

A critical issue connecting the two mentioned IQA works [55,89] is the expert an-
notation analysis preceding the main experiments. According to [120], the intra- and
inter-observer agreements were interpreted using unweighted Cohen’s kappa [121] and
confusion matrices.

The summary of IQA algorithms for facial HFUS [89] image processing is given in
Table 10. It includes the range of the results obtained utilizing the referred methods and
the information concerning the number of considered classes (two or four). Based on this
information, the VGG16 model and its combinations with other machine learning methods
are the most promising. However, since there are only two works described in the literature,
the IQA of HFUS requires further investigation in the future.

5. Data Repositories

In the era of the continuous development of artificial intelligence methods, one of the
main limitations is access to training data. The publicly available datasets containing labeled
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(for classification), annotated (for classification and detection), or manually delineated (for
segmentation) images are the driving force for inventing new algorithms or enabling the
training of already developed complex models. Although sharing data is an increasingly
popular trend and publishers encourage this, only two HFUS image datasets are available
in the public domain (see Table 11). Most of the referred papers described the repositories
collected by the authors in [15,20,21,23,26].

The two shared datasets are [67,88]. Both are available with a CC BY 4.0 license in
the Mendeley Data repository. The first one [67] consists of 380 HFUS images of dif-
ferent patients with AD (303) and psoriasis (77). The file names make it possible to
distinguish between the types of visualized diseases. Therefore, they can be used as
labels for further classification tasks. Yet, the authors did not include such information
in the repository description. The data were acquired using a DUB SkinnScanner75, tpm
(Lueneburg, Germany) [30] with a 75 MHz transducer. The images have the same size of
2067 × 1555 × 3 pix (RGB) with four different resolutions (lateral × axial): 0.0019 × 0.085,
0.0024 × 0.085, 0.0031 × 0.085, and 0.0019 × 0.085 mm/pix. Entry echo epidermis and SLEB
layer expert delineations are provided for each image. However, the descriptions were
from a single expert only. Additionally, the authors shared the SegUnet model developed
in [3] that was pre-trained on the referred dataset for the epidermis and SLEB segmentation.
Besides the work by [3], the set was also used in [17,48] in the experiments on HFUS image
segmentation and partially in [74], which targeted HFUS data classification.

The second one [88] includes HFUS images of facial skin. The data were acquired
using the same scanner (DUB SkinnScanner75, tpm (Lueneburg, Germany) [30]) but with
a lower frequency transducer of 24MHz. The original size of the acquired images was
3466 × 1386 × 3, whereas due to the limited space, the shared image data are of the size
224 × 224 × 3. This corresponds to the input image size required by the applied CNN
models [74]. However, the authors claimed that the actual data would be shared for indi-
vidual requests. The images were collected during four sessions with 44 postmenopausal
patients in 3 different facial locations. Each registered series includes the image data suit-
able for further diagnosis (technical, using CAD software, or medical) and non-informative
images. Three experts described the images’ usefulness and the labels are included in the
repository. Similar to the previous dataset, the repository contains CNN models trained to
solve the classification task described in [89], that is, to divide the dataset into two groups
(informative and non-informative).

The skin HFUS datasets are summarized in Table 11. It also has to be mentioned that
according to the data availability statement currently required by most of the publishers, the
authors of the most recent papers included it in their works [4,86]. However, as the authors
stated, the data are available from the corresponding author upon reasonable request.

6. Conclusions and Future Direction

The paper summarizes CAD algorithms for dermatology, allergology, cosmetology,
and aesthetic medicine, utilizing HFUS image data. The most frequently used solutions
are discussed and the ones with potential for further development and clinical application
are selected.

Since 2005 when the first solution was published, plenty of work has appeared, mainly
focusing on three groups. They include HFUS image segmentation, skin layers and skin
tumors, and HFUS image classification, where the majority of methods focus on pigmented
lesions (malignant melanomas, benign melanocytic nevi) or non-melanocytic nevi (such
as BCC). The most practical approaches in these three groups and the highest obtained
accuracies are summarized in Figure 5. The two methods that deserve special attention are
epidermis segmentation based on DC-UNet [48] and image classification using multilayer
perceptron networks [45], which were evaluated using numerous datasets, and the machine
learning approaches presented in that study enable further training with new data samples.

In addition to those mentioned above, the described solutions include inflammatory
skin disease assessment by image classification, where an early differentiation between
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psoriasis and atopic skin dermatitis is especially crucial [74]; subcutaneous vessel segmenta-
tion [79], which is applicable in further tracking and image registration methods; skin burns
assessment [86]; and water content evaluation [23], which is important in cosmetology and
aesthetic medicine.

There also appeared works targeting image quality assessment [55,89], a substantial
pre-processing step in CAD systems, which complemented the previously mentioned
works. Additionally, among the many other solutions, two deserve special attention [3,89]
since they describe the publicly available data repositories [67,88].

Figure 5. Summary of the most developed areas of CAD of skin diseases in HFUS.

According to all the descriptions and Tables included in this work, we can conclude
that the CAD algorithms in the area of HFUS-based skin analysis have developed dynami-
cally and have the potential to be robust and accurate in clinical practice. Yet, there is still
room for development. As reported in [56], the fast development of CAD systems requires
strong cooperation between clinical and technical experts. The clinical usages of HFUS
are widely described in the literature and supported by clinical tests [4,40]. However, this
modality is still not commonly used in medical practice. This results in few experts and
clinics being able to prepare annotated or delineated image data for the further develop-
ment of computerized methods. However, increasing interest in the medical community
of HFUS for skin analysis, together with emerging solutions in automated HFUS image
processing, should increase the number of datasets dedicated to CAD development and,
consequently, the developed methods.

Based on our observations, the highest potential is for algorithms that utilize machine
learning, and similar to other implementation areas, they should also be developed in this
field. However, the already mentioned data access problem constitutes a severe limitation.
In this case, semiautomatic techniques known from other segmentation problems can help
(active contour models, level set, etc.).

The most crucial avenue for future work is the complex CAD solution, including image
classification and segmentation, in each of the considered diagnostic fields: dermatology,
dermatological oncology, and allergology. However, these three paths can be treated
separately. The system should be able to diagnose skin diseases, that is, classify the skin
lesion, estimate its size, and quantitatively and qualitatively describe it and the surrounding
tissues. Therefore, an accurate skin layer and lesion segmentation algorithm should be the
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first of the tools developed. Unfortunately, the already described solutions only include
selected layer or lesion analysis, therefore, they are limited to single applications.

Further development can start by utilizing the already implemented segmentation
techniques that the HFUS machine developers provided. Both the DUB SkinnScanner75,
tpm (Lueneburg, Germany) [30] and the Dermascan C, Cortex (Aalborg, Denmark) [31]
enable automated skin layer segmentation (epidermis and dermis). The study by Alsing
et al. [122] compared the manual and automatic skin layer segmentation provided by the
Dermascan C with manual expert delineations. The results differed by 20% and the results’
quality was worse than that described in the literature for CAD methods. However, none
of the cited segmentation methodology authors compared their results with existing ones.
Moreover, these results can be used as a pre-processing step for further automated analysis.

The problems with access to the HFUS image data have resulted in the over-adaptation
of the algorithm to one device. All the described methods were evaluated using a single
machine and are not universal solutions. This is at odds with the recently promoted idea
of cloud systems, where the image data are provided irrespective of their origins. It is
now possible to utilize CT or MRI datasets, for which many CAD solutions have been
described in the literature and implemented commercially. HFUS data exchange between
scientific centers and publishing databases could significantly speed up the development
of solutions for their analysis.

The analysis of many modalities also has excellent potential, as confirmed in [46].
Methods utilizing dermatoscopy and HFUS in a single diagnosis will provide the user with
a complete diagnostic picture and should be the next direction to take for future works.

To sum up this survey, we can suggest a few questions and open problems that were
not discussed in the reviewed papers, however, they need to be addressed in future works
in this area:

• Considering the differences in multiple manual delineations, what is the segmentation
accuracy and size of the validating dataset that confirms the clinical acceptance of the
automated processing method?

• Assuming that for HFUS image data, the acquisition protocol and the way of data
collection influence the registered images, is it possible to design a segmentation or
classification algorithm that results in similar values (segmentation masks or classi-
fication results) for the same patient examined by different physicians? What is an
acceptable level of hypothetical difference?

• Is it possible to create a universal system that is able to process HFUS images from
different clinical applications and is there such a need at all?

• Is it possible to precisely define the current and most crucial needs for CAD methods
in HFUS image analysis?
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18. Mikiel, D.; Polańska, A.; Żaba, R.; Adamski, Z.; Dańczak-Pazdrowska, A. Usefulness of high-frequency ultrasonography in
the assessment of alopecia areata–Comparison of ultrasound images with trichoscopic images. Adv. Dermatol. Allergol. 2022,
39, 132–140. [CrossRef] [PubMed]
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