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Abstract: The automatic detection of individual pigs can improve the overall management of pig
farms. The accuracy of single-image object detection has significantly improved over the years with
advancements in deep learning techniques. However, differences in pig sizes and complex structures
within pig pen of a commercial pig farm, such as feeding facilities, present challenges to the detection
accuracy for pig monitoring. To implement such detection in practice, the differences should be
analyzed by video recorded from a static camera. To accurately detect individual pigs that may be
different in size or occluded by complex structures, we present a deep-learning-based object detection
method utilizing generated background and facility information from image sequences (i.e., video)
recorded from a static camera, which contain relevant information. As all images are preprocessed
to reduce differences in pig sizes. We then used the extracted background and facility information
to create different combinations of gray images. Finally, these images are combined into different
combinations of three-channel composite images, which are used as training datasets to improve
detection accuracy. Using the proposed method as a component of image processing improved
overall accuracy from 84% to 94%. From the study, an accurate facility and background image was
able to be generated after updating for a long time that helped detection accuracy. For the further
studies, improving detection accuracy on overlapping pigs can also be considered.

Keywords: pig detection; image processing; deep learning; video monitoring; static camera;
background; facility; occlusion

1. Introduction

Over the years, the demand for pigs has increased worldwide. According to the OECD,
the global pork consumption rate, in tons, has increased from approximately 63,000 kilotons
in 1990 to 108,000 kilotons in 2021 [1]. As demand rises, the number of pigs within each
farm increases, accordingly, thereby increasing the difficulty of pig management. Thus,
managing each pig individually to their health and welfare needs is not an easy task.
To reduce management workload, many studies have reported the use of surveillance
techniques to address health and welfare problems [2–36]. Therefore, the use of object
detection [37] to detect pigs by means of a surveillance camera can reduce the management
workload within a pig pen.

Single-image object detection technology can effectively enable pig detection, as it
exhibits significant improvement over the years of technological advances. Approaches
such as YOLO [38–42], which satisfies real-time detection speed on an embedded board,
improve detection accuracy in certain cases wherein target objects are non-occluded and
sufficiently large. However, the object detection technology locates the appearance of
each object within an image [38]. Consequently, whenever a pig object is occluded by
a complex facility (e.g., a feeder), it cannot be sufficiently identified by existing object
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detectors, thus reducing the overall detection accuracy [27,34–36]. As pigs are regularly
within the proximity of feeder facilities for nourishment, they are frequently occluded
in pig pen images [11,28]. Other large objects, such as ceiling pipes that connect feeder
facilities, may also occlude pigs. Object detection challenges primarily occur owing to
differences in pig size and facility occlusion (Figure 1). For explainability purposes, the
object detector used throughout this study is referred to as tinyYOLOv4 [41] although the
proposed method can be applied to any deep learning-based object detector.
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Figure 1. The pig detection results for a commercial pig pen with a tilted-view static camera. Figure 1. The pig detection results for a commercial pig pen with a tilted-view static camera.

In an actual Hadong farm, since a top-view camera that covers an entire pig pen is
difficult to install, a tilted-view camera is installed. However, object detection difficulty
arises from differences of pig sizes by the distance from the pig and the camera or occluded
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pigs by feeder or facility. As shown as Figure 1a, if tinyYOLOv4 is used to process pig object
detection, pigs that are far in distance from the camera, object detection is difficult as the
pig object size is small. Additionally, different errors occur for cases like pigs that are close
to the camera as even they create two detection boxes for a pig or facility occluded pigs
create detection errors. As shown as Figure 1b, the proposed method can solve the error
cases due to the difficulties on pig size differences and object occlusion by transforming
perspective and identifying the location of the facility.

Because the cameras installed in pig pen are static, stationary facilities and objects
(e.g., walls, feeders, and pipes) remain constant throughout the footage. Therefore, the
stationary facility object like walls, feeder, or pipes all stay constant within the long period
of time that the camera films. However, pig objects themselves continuously move and
change position. Although the improvement from updating the background and facility
information for each frame may be miniscule, accuracy may increase substantially as
these changes accumulate. Therefore, the continuous fine-tuning of the background and
facility information can improve object detection performance [25,29]. Furthermore, as the
duration of footage increases, the accuracy of extracted information should also increase.

If the deep learning model can specify locations of occluding objects within a surveil-
lance image, as well as learn the corresponding information, detecting pigs behind those
objects is possible [25,29]. We therefore present methods for deep learning-based object
detection utilizing extracted background and facility information from images of a pig pen
environment that contains various complex structures. The method includes a process that
resizes different pig objects through the warp perspective method, receives the results of
object detection, uses those results in image processing, and reuses the results of image
processing to supplement object detection, thereby improving accuracy. Specifically, the
system continuously receives box-level object detection results using a deep-learning-based
detector from video data generated via static camera, updates the background extraction
parameters, and acquires continuously improved pixel-based background images.

The extracted information is used to create different combinations of gray images.
Subsequently, the gray images are combined into different combinations of three-channel
composite images, which are used as training datasets to improve detection accuracy. The
original image’s facility texture is one-channel, and usually colored similarly to flooring.
However, by adjusting the color compositions of the background, facility, and foreground,
deep learning can successfully differentiate between the corresponding features, thus
increasing detection accuracy. The input image (Figure 1b) of the object detector is altered
to mitigate the error caused by differences in pig size and occluding objects.

Therefore, main objective of the study is to improve the detection accuracy of pig
objects occluded behind facility and small objects that are located far from the source
camera by revising the pig object sizes to be similar in size and generating background
and facility image created from a video recorded on a static camera of the environment for
a long period of time

2. Related Works

This study aims to solve the accuracy reduction problem that occurs from object occlu-
sion. Although many studies have been conducted to improve pig monitoring technology
within a pig pen, many environmental variables are involved. Early studies focused on
improving pig monitoring using image processing methods. The detection of pigs within
images at the pixel level [4,5] was considered. Moreover, 24 h surveillance of pig move-
ments has been attempted via video sensors [6,7] and a similar approach was employed to
estimate the locomotion of pigs within a pen [8]. However, factors such as differences in
lighting conditions [9] may interfere with foreground detection. The adaptive thresholding
of an image for foreground detection has also been introduced [10]. Aggressive behav-
ior [11,12] or any movement with an angular histogram [13], was examined. The detection
of multiple pigs standing still within a pig pen can be achieved in different ways [14,15].
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As deep learning methodology has improved over the years, the use of this technology
in pig monitoring has increased. The detection of pigs under surveillance video [16] with
suboptimal conditions [17] was studied to improve accuracy. Attempts have been made
to detect posture [18] and count each pig within a pen [20] using deep learning. This
technology allows for improved management of health issues in pigs [22–24,26]. More
sophisticated methods have been introduced to address pig monitoring issues [27,31,32].
For instance, detection of pig posture was studied on a more specific level [28,33]. Testing
the pig object detection under lighter hardware is also considered for overall process
speed [34]. Reducing image noise can increase overall image quality, thus improving the
detection accuracy for pig monitoring [35,36]. There are more pig farm images on different
pig pen environments like a camera is installed with top-view [19] or tilted-view [21,30],
but facility has not presented. There are also researches that detect pigs occluded by
facility with tilted-view as well [25,29], but background and facility information has not
been utilized.

While many studies improve pig monitoring within a pig pen with their individual
methods, our method uses a static camera that fine tunes different images that can be
used to identify different aspects within a pig pen (i.e., facility and background. Most
other studies use single “independent” image to improve pig monitoring, but our method
utilize the characteristics of “continuous and consecutive” images (i.e., video) that have
static background and facility. Recent studies that dealt with pig detection methods
chronologically is as shown as Table 1.

Table 1. Some of the recent results for group-housed pig detection (published during 2013–2022).

Background and Facility
Information Utilization Year Detection

Technique
Accuracy
Reported Reference

No

2013 Image Processing 88.70% ※ [3]
Image Processing 93.30% ※ [4]
Image Processing 89.80% ※ [5]

2014 Image Processing - [6]
Image Processing 99.00% ※ [7]
Image Processing 89.90% ※ [8]

2015 Image Processing 95.48% ※ [9]
Image Processing - [10]

2016 Image Processing 88.60%~94.50% ※ [11]
Image Processing 90.20%~95.70% ※ [12]
Image Processing - [13]

2017 Image Processing - [14]
Image Processing 94.47% ※ [15]

2018 Deep Learning 89.58% ※ [16]
Deep Learning - [17]

2019 Deep Learning - [18]
Image Processing +

Deep Learning 86.80% ※ [19]

Image Processing +
Deep Learning 92.00%~95.00% ※ [20]

Image Processing +
Deep Learning 77.10%~98.10% ※ [21]

2020 Deep Learning 94.70% ※ [22]
Deep Learning 96.50%~97.60% ※ [23]
Deep Learning 98.00%~99.80% ※ [24]
Deep Learning 67.70%~87.40% ※ [25]

Image Processing +
Deep Learning 95.00%※ [26]
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Table 1. Cont.

Background and Facility
Information Utilization Year Detection

Technique
Accuracy
Reported Reference

2021 Deep Learning 94.33%※ [27]
Deep Learning - [28]
Deep Learning 58.00%~84.00% ※ [29]
Deep Learning 93.1%※ [30]

Image Processing +
Deep Learning - [31]

Image Processing +
Deep Learning 92.45% ※ [32]

Image Processing +
Deep Learning - [33]

2022 Deep Learning 99.44% ※ [34]
Deep Learning - [35]

Image Processing +
Deep Learning 82.80%~99.50% ※ [36]

Yes 2022 Image Processing +
Deep Learning 94.45% * Proposed

※ The accuracy may vary due to the test dataset which the detection accuracy is based on. * The accuracy is for
a difficult case that contains more than 20 pigs occluded behind facility within a pig pen.

3. Proposed Method

Occlusion of pigs behind objects or facilities leads to detection errors. To solve the
issue, this study proposes a method that solve accuracy reduction caused by facilities
within a pig pen using image processing methods. To obtain the detection boxes, the object
detector is applied to the input image from a continuous video feed recorded by a static
camera. The pixel-level background and facility images are then continuously improved
using detection boxes. Finally, composite images are created to train an object detector.

A long surveillance video can be deployed on a pig pen to achieve continuous fine-
tuning, wherein each video frame updates the background and facility images by a small
amount. Each small updates are built up to be more accurate background and facility
images by changing the background and facility images by one pixel value for all the pixels
within an image with the proposed method.

We used the background and facility images to build composite images trained for
tinyYOLOv4. Composite images may be categorized as one-channel or three-channel.
A one-channel composite image is obtained by extracting foreground, background, and
facility information by manipulating pixels, thus granting the benefit of identifying its
location and differentiating its information. A three-channel composite image is a concate-
nation of three one-channel composite images, allowing for more diversity in the textures
of target objects.

The proposed composite image framework enables tinyYOLOv4 to efficiently learn
features of pigs occluded by facilities, thus increasing the detection accuracy of all pigs
regardless of occlusion. Figure 2 illustrates the overall structure of the proposed method;
wherein composite images are generated to minimize false-negative and false-positive
errors. The figure shows that this method continuously improves the accuracy of image
processing and deep learning.
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Figure 2. Overview of proposed method StaticPigDet.

3.1. Perspective Transformation

One obstacle that hinders accurate object detection is the differences in size of target
objects owing to distance from the camera. To mitigate this issue, we incorporated an au-
tomatic perspective transformation. The warp perspective transformation method [43],
an image processing method, deforms the input pixel grid to fit the output pixel grid
by changing the sizes of pixels within. With this process, the object detection difficulty
due to differences in pig sizes was alleviated. To establish the transformation points, we
applied our automatic perspective transform method. First, we calculated the slopes of
the warping points on either side. We then padded the intersection points between the
slope and the top and bottom edges, where the original image’s resolution is exceeded.
These locations were used to select new warping points. Finally, perspective transformation
was ap-plied to the eight new warping points to generate a new transformed image. The
result is shown in Figure 3, and Figure 4 shows the block diagram corresponding to the
Perspective Transformation.
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3.2. Background and Facility Generation

In this study, locating the background and facility was an essential step for extracting
the corresponding textures. However, identifying an object from a single image is tricky
task. Generally, pig objects within a pig pen exhibit passive, if any, movement. Given this
characteristic, the background and facility images can be improved via gradual changes.
After a certain frame, a sufficient level of background and facility images can be generated.

Subsequently, pixels that continuously appear within detected boxes are classified as
not affecting the background and are substituted with the current frame’s average pixel.
However, as the actual background does not remain fixed, the background image needs to
be gradually updated according to each subsequent frame. To settle the issue, each pixel on
current frame, excluding the detection box region, is compared with previous frame’s each
pixel. If current frame’s pixel is higher than previous frame’s pixel on the same location,
then background’s pixel is raised by one, otherwise if less, lowered by one. With long period
of frames, background image can be generated by using tinyYOLOv4 detection result using
video data that contains pig objects. Finally, we generate the difference image by calculating
difference between pixel on current frame image and current frame’s background image.
The image is necessary to use on facility image generation module to identify the location
of foreground on pig object. Figure 5 shows the block diagram corresponding to the
Background Generation.



Sensors 2022, 22, 8315 8 of 22Sensors 2022, 22, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 5. Background Generation block diagram. 

As explained previously, false positives may occur for objects occluded behind facil-
ities. Accordingly, this paper proposes an image generation method to identify facility 
locations using the proposed background generation approach. Within each image, a fa-
cility is defined as a region where pigs are not potentially located owing to occlusion. As 
visually identifying the presence of occluded objects is difficult, the region information of 
the difference image is employed. 

First, the initial pixel value of the entire facility image is set to the maximum value of 
255. Subsequently, the average pixels of the entire difference image, as well as those of its 
detected box regions, are calculated. Generally, average pixel values within pig object re-
gions are higher than that of the background region. Therefore, if a box region’s average 
pixel is lower than that of the overall image, the detected box may be a false positive, and 
should be exempted from the update. If a pixel value within the box is higher than the 
box’s average, the pixel value in the facility image is reduced by 1, as it is considered a pig 
region. Furthermore, all foreground pixels in the pig region are set to 255 and 0 if other-
wise. As the generated background image may contain noise, and cannot be perfectly 
identical to the current background, calibration is performed on a certain interval of 
frames. If insufficient pixel changes occur, the result can be considered temporary noise. 
Therefore, any pixel values higher than 245 are reset to 255, along with their immediate 
neighboring regions. For the experiment, the interval was set to 10,000 frames. Figure 6 
shows the block diagram corresponding to the Facility Generation. 

Figure 5. Background Generation block diagram.

As explained previously, false positives may occur for objects occluded behind facilities.
Accordingly, this paper proposes an image generation method to identify facility locations
using the proposed background generation approach. Within each image, a facility is
defined as a region where pigs are not potentially located owing to occlusion. As visually
identifying the presence of occluded objects is difficult, the region information of the
difference image is employed.

First, the initial pixel value of the entire facility image is set to the maximum value
of 255. Subsequently, the average pixels of the entire difference image, as well as those of
its detected box regions, are calculated. Generally, average pixel values within pig object
regions are higher than that of the background region. Therefore, if a box region’s average
pixel is lower than that of the overall image, the detected box may be a false positive, and
should be exempted from the update. If a pixel value within the box is higher than the box’s
average, the pixel value in the facility image is reduced by 1, as it is considered a pig region.
Furthermore, all foreground pixels in the pig region are set to 255 and 0 if otherwise. As the
generated background image may contain noise, and cannot be perfectly identical to the
current background, calibration is performed on a certain interval of frames. If insufficient
pixel changes occur, the result can be considered temporary noise. Therefore, any pixel
values higher than 245 are reset to 255, along with their immediate neighboring regions.
For the experiment, the interval was set to 10,000 frames. Figure 6 shows the block diagram
corresponding to the Facility Generation.
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3.3. NPPS and Composite Image Generation

After the difference image is generated, foreground images can also be generated
on the same frame. These images are used to locate pig objects with respect to pixels.
Consequently, not only are pig objects identified but non-pig regions can also be suppressed
using the thresholding technique. This technique sets a certain global threshold for pixel
values to differentiate between background and foreground pixels. We propose the non-pig
pixel suppression (NPPS) method, which sets individual thresholds for each pixel. This
enables adaptive thresholding in accordance with different environmental variables, such
as lighting. In the first frame of the image, all thresholding is initialized using Otsu’s
algorithm. Detection boxes are then used to determine whether each threshold should
be incremented or decremented. If a pixel within the detection box has a higher value
than its corresponding difference image pixel, the threshold decreases by 1. Conversely,
if a pixel outside the detection box has a lower value than its corresponding difference
image pixel, the threshold increases by 1. If the threshold is outside the appropriate range,
pixels may be incorrectly identified. Therefore, minimum, “min_thresh”, and maximum,
“max_thresh”, threshold values were set as limits to the threshold range. Figure 7 shows
the block diagram corresponding to the NPPS.

Using the generated background, foreground, and facility images, we implemented
composite image generation to eliminate false positives resulting from occluded objects.
Subsequently, the contrast-limited adaptive histogram equalization (CLAHE) method [44]
was employed to maximize the pixel differences between the background and pig objects.
To apply CLAHE, we set ClipLimit (a threshold value for the histogram smoothing process)
to 0.6, and TilesGridSize (which determines the block sizes to be divided) to (2, 2), in
accordance with [27]. Then, a composite image was generated for training.

All generated images were padded by 32 pixels to replicate occluding walls at the
bottom of the image. Although CLAHE was applied to Image A, pixels corresponding to
the facility and padding region were set to 255. The CLAHE-applied image replicates the
effect of illumination as the average foreground pixel value increases. Thus, the facility is set
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to 255 for convenience. Image B exhibits a difference in time, and the pixels corresponding
to the facility and padding region were set to 0. The difference image is used to suppress
the background, thus emphasizing the pig object. Because Image C corresponds to the
foreground, all foreground pixels were reset to their original values, whereas those in the
padding region were set to 0. Thus, all background and facility effects were removed to
isolate the original pig object. Image D is an inverted foreground image, where foreground
pixels were set to 0 and all other pixels were reset to their original values. Thus, the shape
and edges of the foreground were emphasized while learning the flooring texture.
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Figure 7. Non-Pig Pixel Suppression block diagram.

The 3-channel composite image is made from selecting three 1-channel composite
images from the four proposed images and concatenating them channel-wise. This method
allows one image to contain the benefit of three 1-channel images during training. The
proposed four 1-channel composite images and the 3-channel composite image gener-
ated from concatenating three 1-channel combination. Figure 8 shows the block diagram
corresponding to the Composite Image Generation.
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4. Experimental Results

This experiment was conducted on the Barun pig pen, located in Hadong-gun,
Gyeongsangnam-do, Korea and all the video data were obtained from the scenarios sched-
uled by the commercial pig pen, not from any artificial scenario for this study. Seventy
pigs were monitored by a camera with a range that encompasses half the pig pen, split
diagonally (Figure 9). All data were collected using a Hanwha QNO-6012R [45] surveillance
camera, at a height of 2.1 m on a pole in the center of the pig pen, pointing approximately
45◦ obliquely. Video data with 1920 × 1080 resolution were acquired at a speed of 30 FPS
(Frames per Second), and the Warp Perspective image processing technique [43] was ap-
plied to regularize the size of pig objects. The training dataset contained 1600 composite
images, whereas the testing dataset contained 200 composite images. To avoid overfitting,
the train and test dataset was divided randomly. The ratio of the dataset was 8:1 with
train and test, respectively (1600:200 in terms of images). In addition, multiple composite
images were used with foreground/background/facility information and trained them as
explained in Section 3.3. To remediate the time cost associated with processing, all images
were resized to a 512 × 288 resolution, meeting the real-time requirement of 30 FPS. The
deep learning model was trained on a PC with an AMD Ryzen 5950x 16-core processor,
GeForce RTX 3090 (4352CUDA cores, 11GB VRAM) GPU, and 32 GB of RAM, in Ubuntu
18.04-LTS OS. To train the model, the number of iterations was set to 6000, and learning
rate was set to 0.00261. The model was tested on a Jetson TX-2 [46] dual-core Denver 2
64-bit CPU, quad-core ARM A57 complex, NVIDIA Pascal™ architecture with 256 NVIDIA
CUDA cores, and 8 GB 128-bit LPDDR4 to test its performance on an embedded board.
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Figure 9. Experimental setup with a tilted-view surveillance camera (shown as red color) to cover
a pig pen with feeder facility (shown as blue color).

First, improved pixel-based background images were acquired by continuously in-
putting the box-unit object detection results through applying tinyYOLOv4 [41] to the
video data. Figure 10 illustrates the background updating over time. Evidently, the back-
ground image gradually becomes clearer as noise is removed. Figure 11 displays the facility
information collected from the pig pen. The algorithm for facility generation (see Figure 6)
corrects the gaps and unclear contours caused by noise, thus improving the clarity of the
facility image. Finally, a foreground image corresponding to the pig object is generated
using the input and background images. Figure 12 indicates that this image also improves
over time as the background image becomes more accurate. This pattern illustrates how
the background image accuracy affects the foreground image accuracy.
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Figure 13 displays the results of four one-channel images generated from the input,
background, foreground, facility, and CLAHE images. As 3-channel composite image
is generated from concatenating three 1-channel images, the generated three-channel
composite image exhibits different colors (Figure 13). Each one-channel image is shown via
gray channel, whereas each three-channel image is shown via color channels.
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Tables 2 and 3 present an accuracy comparison between the baseline (tinyYOLOv4 [41]
and tinyYOLOv7 [42]) and proposed StaticPigDet. AP0.5 (average precision with 0.5 IoU)
is a performance index used to measure object detection accuracy in benchmarks such as
PASCAL VOC. Specifically, it indicates the average precision based on an intersection over
union (IoU) of 0.5. Precision is calculated using the TP (true positive) and FP (false positive)
cases, whereas recall is calculated using the TP and FN (false negative) cases. Subsequently,
the average precision based on IoU is calculated using the inverse properties of precision
and recall.

Within the training dataset, “Color Image” denotes the original color images obtained
by camera, whereas “Composite Image” comprises the images generated by the composite
method. The model is tested on each three-channel composite image types and each 3-
channel composite image dataset contain 200 images, which is each named “Composite
Image A”, “Composite Image B”, “Composite Image C”, “Composite Image D”. The
“Composite Image A + B + C + D” includes a total of 1600 images, with four images for each
of “Composite Image” subsets forementioned and four images for each of four one-channel
images generated from the input as mentioned in Figure 13. The model was tested on the
reconstructed three-channel composite images. As a result, the proposed method improved
accuracy by 5–10% on the overall test dataset compared to the baseline models. Likewise,
overall TP, FP, FN, precision, and recall also improved.
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Table 2. Detection accuracy results for Hadong dataset with tinyYOLOv4 [41].

Type Train Dataset
(Hadong)

Test Dataset
(Hadong) TP FP FN Precision Recall Accuracy

(AP0.5)

Baseline Color Image Color Image 3729 517 864 0.88 0.81 84.39

Proposed
StaticPigDet

Composite
Image

A + B + C + D

Composite Image A 3885 385 385 0.91 0.91 94.02
Composite Image B 3916 398 354 0.91 0.92 94.19
Composite Image C 3882 272 388 0.93 0.91 94.44
Composite Image D 3868 332 402 0.92 0.91 94.45

Table 3. Detection accuracy results for Hadong dataset with tinyYOLOv7 [42].

Type Train Dataset
(Hadong)

Test Dataset
(Hadong) TP FP FN Precision Recall Accuracy

(AP0.5)

Baseline Color Image Color Image 3967 2135 626 0.65 0.86 86.70

Proposed
StaticPigDet

Composite
Image

A + B + C + D

Composite Image A 3709 500 561 0.88 0.87 91.83
Composite Image B 3725 491 545 0.88 0.87 92.24
Composite Image C 3672 373 598 0.91 0.86 91.78
Composite Image D 3585 392 685 0.90 0.84 91.04

Many images collected from surveillance camera create different error cases. These
error cases include pig object occlusion behind feeder facility and occlusion behind ceiling
pipes. Many pig objects were not detected, resulting in FN results. By applying the compos-
ite image methodology, most, but not all, of these errors were resolved. Figure 14 presents
the detection results for Composite Image A, wherein each error case was designated from
the results. Although cases of body-separated occlusion wherein a pig object was split by
an occluding feature, were handled accordingly, cases where part of the pig was cut off
entirely, or pigs occluded each other, remained causes of error.
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Figure 14. Detection results for Hadong with object detectors [41] (Baseline vs. Proposed) that shows
solved cases and unsolved cases.

For further analysis, we trained 200 composite images of each type to examine their in-
dividual effects on training. Overall detection accuracy was higher than that of the baseline
color images but lower than that of the composite image dataset (See Tables 4 and 5).

Table 4. Detection accuracy results for individual composite image dataset A~D with tinyY-
OLOv4 [41].

Train Dataset
(Hadong)

Test Dataset
(Hadong) TP FP FN Precision Recall Accuracy

(AP0.5)

Composite Image A Composite Image A 3632 479 638 0.88 0.85 89.88
Composite Image B Composite Image B 3657 819 613 0.82 0.86 86.77
Composite Image C Composite Image C 3686 810 584 0.82 0.86 87.78
Composite Image D Composite Image D 3463 656 807 0.84 0.81 83.77

Table 5. Detection accuracy results for individual composite image dataset A~D with tinyY-
OLOv7 [42].

Train Dataset
(Hadong)

Test Dataset
(Hadong) TP FP FN Precision Recall Accuracy

(AP0.5)

Composite Image A Composite Image A 3620 1034 650 0.78 0.85 86.46
Composite Image B Composite Image B 3703 1544 567 0.71 0.87 87.45
Composite Image C Composite Image C 3668 812 602 0.82 0.86 88.30
Composite Image D Composite Image D 3621 815 649 0.82 0.85 86.60

As pig pen environments exhibit significant differences, an effective deep learning
model should achieve sufficient accuracy for different pig pen. To evaluate our proposed
method’s robustness, we tested all models on pig pen images taken from the Chungbuk
National University. The pig pen comprised a 4.9 m × 2.0 m × 3.2 m tall pigsty. To
obtain the images, we installed an Intel RealSense camera (D435 model, Intel, Santa Clara,
CA, USA) [47] on the ceiling. Tables 6 and 7 present a detection accuracy comparison on
training from the Hadong dataset and testing on the Chungbuk dataset. Although latter
environment did not feature significantly occluding feeding facilities, deep learning models
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trained from the Hadong dataset still showed decreased object detection accuracy for the
Chungbuk dataset. Compared to the baseline model, however, the proposed method could
increase the detection accuracy up to 15% (from 75.86% to 90.25% with tinyYOLOv4, from
63.15% to 77.76% with tinyYOLOv7), thus showing the proposed method’s robustness
on other pig pen environment. Each detection cases for Chungbuk test dataset shows
improvement, but not all cases are solved as shown as Figure 15.
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Table 6. Detection accuracy results for Chungbuk dataset with tinyYOLOv4 [41].

Type Train Dataset
(Hadong)

Test Dataset
(Chungbuk) TP FP FN Precision Recall Accuracy

(AP0.5)

Baseline Color Image Color Image 764 42 958 0.95 0.44 75.86

Proposed
StaticPigDet

Composite
Image

A + B + C + D

Composite Image A 1543 1276 179 0.55 0.90 81.30
Composite Image B 1526 919 196 0.62 0.89 77.41
Composite Image C 1509 235 213 0.87 0.88 88.71
Composite Image D 1472 112 250 0.93 0.85 90.25

Table 7. Detection accuracy results for Chungbuk dataset with tinyYOLOv7 [42].

Type Train Dataset
(Hadong)

Test Dataset
(Chungbuk) TP FP FN Precision Recall Accuracy

(AP0.5)

Baseline Color Image Color Image 1270 2168 452 0.37 0.74 63.15

Proposed
StaticPigDet

Composite
Image

A + B + C + D

Composite Image A 1280 1612 442 0.44 0.74 65.41
Composite Image B 1282 1220 440 0.51 0.74 68.77
Composite Image C 1248 979 474 0.56 0.72 65.71
Composite Image D 1371 709 351 0.66 0.80 77.76

FPS (Frames Per Second) is widely used as an execution speed for video applications,
and higher speed in FPS implies a faster processing speed. In other words, if the execution
time of object detection is 30 FPS or more, it is considered as real-time. Finally, the result of
multiplying the accuracy and execution speed can be used as an integrated performance
index, wherein a higher value indicates a higher integrated performance.

For each video frame, we need to execute Image Fetch (on CPU), Perspective Transform
and NPPS & Composite Image Generation in the proposed method (on CPU), tinyYOLO
(on GPU), NMS (i.e., Non-Maximum Suppression to delete similar boxes [38–42] (on CPU),
and Background Generation and Facility Generation in the proposed method (on CPU),
sequentially. For real-time processing, we use multi-core programming (on a multi-core
CPU) and pipeline techniques to overlap multiple frames processing. With the incorpora-
tion of multi-core programming and pipeline techniques as shown in Figure 16, the CPU
and GPU computation can be overlapped over multiple frames thus raising throughput on
continuous video frames.
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Table 8 compares the integrated performance of tinyYOLOv4 and tinyYOLOv7. Com-
pared to the baseline model, the proposed method increases accuracy under real-time
requirements, which yields an improved performance on a TX-2 board [46]. This indi-
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cates that the proposed method can be implemented on an embedded board to achieve
a real-time requirement of 30 FPS while improving accuracy.

Table 8. Comparison of average performance for Hadong pig pen on a TX-2 [46].

Method Accuracy
(AP0.5)

Speed
(FPS)

Integrated Performance
= Accuracy × Speed

tinyYOLOv4
[41]

Baseline 84.4 36.3 3063.7
Proposed 94.5 36.1 3411.4

tinyYOLOv7
[42]

Baseline 86.7 34.6 2999.8
Proposed 92.2 34.2 3153.2

5. Prospects for Further Research

While the study mainly solves issue of pigs occluded by facility within a pig farm,
there are many issues still left to solve. One of the issues on decreasing detection accuracy
is occlusion caused by multiple pigs overlapping each other. Figure 15 shows many FP
created from pigs overlapping one another and sometimes creating detection boxes on
wrong location as well. This issue can be addressed with other methods like ensemble [27]
or attention [48] module. The ensemble model [27] method allows using two models with
complementary information, which may be useful when detecting overlapping pigs by
training the second model on overlapping pigs and combining their features. Attention [48]
may also help as it can focus its detection process on region with overlapping features on it.

Another problem to be studied is the accuracy difference between tinyYOLOv4 [41]
and tinyYOLOv7 [42]. According to prior work, tinyYOLOv7 shows higher detection
accuracy on COCO dataset that has 80 classes compared to tinyYOLOv4, which shows
opposite data on Table 8. Additional research will be done to analyze the reason behind
lower accuracy on the more recent model with pig dataset that has one class.

6. Conclusions

Accurate object detection is crucial when obtaining useful information by monitoring
pigs on actual farms. However, despite recent advances in the accuracy of object detectors
for single images, there are still problems (i.e., False Negative errors, and False Positive
errors) occurring due to overlapping phenomena such as invisible parts of the pigs covered
by facilities.

In this study, we proposed a method to improve the accuracy of deep learning-based
pig detectors by utilizing the characteristic of video data (i.e., a sequence of images) and
image processing techniques obtained from static cameras installed in pig pens. In other
words, the cyclic structure method can continuously improve the accuracy of object de-
tection by employing received results for image processing and applying these image
processing results to correct the output of object detection. Consequently, a background
image can be improved by continuously receiving box unit object detection results and
updating the background extraction parameters, thus locating occluding objects such as
feeding facilities. Finally, it is possible to generate composite images that has information
of each background and facility location within an image and it can reduce the FN and
FP errors for the single image by verifying and correcting the object detection result us-
ing the facility information. Addressing the problem of accuracy reduction problem on
facility occlusion cases shows novelty as previous research on pig object detection has not
done before.

Our proposed method improved accuracy from 84% to 94% compared to the baseline
tinyYOLOv4. It also exhibited an improvement in accuracy from 76% to 90% for an external
dataset, compared with the baseline tinyYOLOv4. In both cases, accuracy was improved
without compromising processing speed, thus maintaining the real-time requirements.
This shows practical significance as it can also be used in any farm having any sort of
occluding facility with static cameras with high detection accuracy that meets the real-time
requirement. In a future study, we intend to conduct an experiment on additional accuracy
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improvement methods, such as ensemble models [27] or directly inputting the image
processing results into the detector in the form of an attention map. Furthermore, although
our study alleviated the decrease in accuracy owing to occlusion, it did not address the case
wherein pigs occlude each other. Therefore, our subsequent research will aim to address
this issue.
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33. Ocepek, M.; Žnidar, A.; Lavrič, M.; Škorjanc, D. DigiPig: First developments of an automated monitoring system for body, head,
and tail detection in intensive pig farming. Agriculture 2022, 12, 2. [CrossRef]

34. Kim, J.; Suh, Y.; Lee, J.; Chae, H.; Ahn, H.; Chung, Y.; Park, D. EmbeddedPigCount: Pig counting with video object detection and
tracking on an embedded board. Sensors 2022, 22, 2689. [CrossRef] [PubMed]

35. Bo, Z.; Atif, O.; Lee, J.; Park, D.; Chung, Y. GAN-Based video denoising with attention mechanism for field-applicable pig
detection system. Sensors 2022, 22, 3917. [CrossRef]

36. Ji, H.; Yu, J.; Lao, F.; Zhuang, Y.; Wen, Y.; Teng, G. Automatic position detection and posture recognition of grouped pigs based on
deep learning. Agriculture 2022, 12, 1314. [CrossRef]

37. Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object detection with deep learning: A review. IEEE Access 2018, 99, 3212–3232. [CrossRef]
38. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
39. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
40. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
41. Bochkovskiy, A.; Wang, C.; Liao, H. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
42. Wang, C.; Bochkovskiy, A.; Liao, H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.

arXiv 2022, arXiv:2207.02696.
43. Open Source Computer Vision: ‘OpenCV’. Available online: http://opencv.org (accessed on 20 September 2022).
44. Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization; Academic Press Inc.: Cambridge, MA, USA, 1994.
45. Hanwha Surveillance Camera. Available online: https://www.hanwhasecurity.com/product/qno-6012r/ (accessed on

30 September 2022).
46. NVIDIA. NVIDIA Jetson TX2. Available online: http://www.nvidia.com/object/embedded-systems-dev-kitsmodules.html

(accessed on 30 September 2022).
47. Intel. Intel RealSense D435. Available online: https://www.intelrealsense.com/depth-camera-d435 (accessed on 30 Septem-

ber 2022).
48. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkareit, J.; Jones, L.; Gomez, A.; Kaiser, G.; Polosukhin, I. Attention is all you need. In

Proceedings of the NeurIPS, Long Beach, CA, USA, 4–9 December 2017; p. 30.

http://doi.org/10.1016/j.biosystemseng.2019.02.018
http://doi.org/10.3390/s19173738
http://doi.org/10.3390/s19040852
http://doi.org/10.3390/app10196991
http://doi.org/10.1016/j.compag.2020.105580
http://doi.org/10.1038/s41598-020-70688-6
http://doi.org/10.1016/j.compag.2020.105391
http://doi.org/10.3390/s20133710
http://www.ncbi.nlm.nih.gov/pubmed/32630794
http://doi.org/10.3390/app11125577
http://doi.org/10.1016/j.compag.2021.106417
http://doi.org/10.1016/j.compag.2021.106213
http://doi.org/10.1016/j.compag.2021.106140
http://doi.org/10.1016/j.cag.2021.01.004
http://doi.org/10.3390/ani11051295
http://www.ncbi.nlm.nih.gov/pubmed/33946472
http://doi.org/10.3390/agriculture12010002
http://doi.org/10.3390/s22072689
http://www.ncbi.nlm.nih.gov/pubmed/35408302
http://doi.org/10.3390/s22103917
http://doi.org/10.3390/agriculture12091314
http://doi.org/10.1109/TNNLS.2018.2876865
http://opencv.org
https://www.hanwhasecurity.com/product/qno-6012r/
http://www.nvidia.com/object/embedded-systems-dev-kitsmodules.html
https://www.intelrealsense.com/depth-camera-d435

	Introduction 
	Related Works 
	Proposed Method 
	Perspective Transformation 
	Background and Facility Generation 
	NPPS and Composite Image Generation 

	Experimental Results 
	Prospects for Further Research 
	Conclusions 
	References

