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Abstract: Cooking at home is a critical survival skill. We propose a new cooking assistance system 

in which a user only needs to wear an all-in-one augmented reality (AR) headset without having to 

install any external sensors or devices in the kitchen. Utilizing the built-in camera and cutting-edge 

computer vision (CV) technology, the user can direct the AR headset to recognize available food 

ingredients by simply looking at them. Based on the types of the recognized food ingredients, suit-

able recipes are suggested accordingly. A step-by-step video tutorial providing details of the se-

lected recipe is then displayed with the AR glasses. The user can conveniently interact with the 

proposed system using eight kinds of natural hand gestures without needing to touch any devices 

throughout the entire cooking process. Compared with the deep learning models ResNet and Res-

NeXt, experimental results show that the YOLOv5 achieves lower accuracy for ingredient recogni-

tion, but it can locate and classify multiple ingredients in one shot and make the scanning process 

easier for users. Twenty participants test the prototype system and provide feedback via two ques-

tionnaires. Based on the analysis results, 19 of the 20 participants would recommend others to use 

the proposed system, and all participants are overall satisfied with the prototype system. 

Keywords: augmented reality; Magic Leap One; smart kitchen; AR cooking 

 

1. Introduction 

Home cooking can be both a healthy hobby and a sustainable activity. Nevertheless, 

the traditional cooking experience tends to be tedious and unenjoyable, especially for 

those who are unskilled in the kitchen. Using recipes has been the traditional way to teach 

and learn how to cook, but this may lead to several practical issues. The first issue is to 

find recipes for ingredients you already have in the house. Locating available ingredients 

and matching them with the right recipes is not straightforward, but it is an eco-friendly 

practice of reducing food waste. Another issue is to read and follow a recipe in the process 

of cooking. Switching back and forth between preparing the food and reading the recipe 

is neither convenient nor safe.  

Fortunately, augmented reality (AR) technology can superimpose a virtual demo 

video on an actual kitchen scene so the user can follow a recipe more easily. In addition, 

computer vision (CV) technology can sense the actual kitchen environment so that food 

ingredients in a refrigerator or cabinet can be detected and recognized automatically. Best 

of all, both AR and CV technologies can be integrated in an all-in-one AR headset with a 

built-in camera to significantly enhance the cooking experience. 

Numerous apps are available to help with cooking by suggesting recipes or provid-

ing detailed instructions using either a tablet or smartphone in kitchen. However, these 

modern gadgets can neither perceive the actual environment nor follow the user around 

the kitchen. Alternatively, some novel smart kitchens are designed to save time and en-

ergy spent on cooking. Typically, they demand that users install several Internet-
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connected sensors, cameras, projectors, and displays in the kitchen, which makes their 

deployment challenging and expensive.  

To improve the cooking experience, we propose an AR cooking assistance system 

that simply requires the user to put on an all-in-one AR headset called Magic Leap One 

[1]. As shown in Figure 1, the user can command the built-in camera on the AR headset 

to locate and classify food ingredients automatically by merely glancing at them. Accord-

ingly, corresponding recipes are suggested based on the types of the recognized food in-

gredients. Then a step-by-step video tutorial of the chosen recipe is displayed using the 

AR glasses, without blocking the real view of the kitchen. The whole process can be con-

trolled by hand gestures, meaning that users do not need to hold any remote controller or 

touch any physical button. The proposed AR cooking system aims to provide users with 

an easy-to-use interactive recipe and an easy-to-understand cooking guide through the 

use of an AR headset. 

  

(a) (b) 

Figure 1. Proposed AR cooking assistance system. (a) Ingredient recognition by a built-in camera 

on AR headset, (b) interactive step-by-step demo video controlled by natural hand gestures. 

Cooking at home comes with numerous challenges such as classifying food ingredi-

ents, searching for potential recipes, and following the recipes for cooking. The contribu-

tion of this paper is finding the solutions for these issues, implementing the algorithms, 

and integrating them in an all-in-one AR headset. The proposed AR cooking assistance 

system has the following advantages: 

1. Users do not need to install any external devices in the kitchen. All they need is an 

all-in-one AR headset that costs about 550 USD. 

2. Without holding a smartphone or tablet to aim at a specific food ingredient, the user 

can direct the built-in camera on the AR headset to detect and recognize multiple 

food ingredients by simply looking at them. 

3. No matter where the user moves in the kitchen, the demonstration video is always 

in the field of view (FOV) of the user. 

4. The demonstration video is superimposed on the real-world scene without blocking 

the line of sight of the actual cooking. 

5. Without holding any remote controller or touching any physical button, the user can 

control the proposed system through non-touch interaction using natural hand ges-

tures. 
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The remaining parts of the paper are structured in six sections. Section 2 discusses 

the state-of-the-art works related to smart kitchen or AR cooking. Section 3 describes the 

methodology and implementation of the proposed AR cooking system. Section 4 explains 

the deep learning models for food ingredient detection and recognition. Section 5 presents 

the user study of the prototype system. Section 6 discusses the analysis results of users’ 

questionnaires. Lastly, the conclusions and future works are reported in Section 7.  

2. Related Work 

Plenty of research works and projects have been proposed, such as a smart kitchen 

based on the Internet of Things (IoT) [2], user centric smart kitchen [3], AREasyCooking 

[4], and CounterIntelligence [5]. Projects regarding smart kitchens typically require the 

use of a large number of sensors to detect kitchen appliances, ingredients, and other ob-

jects that are necessary for cooking [6]. These sensors include temperature sensors, hu-

midity sensors, IR flame sensors, and passive infrared sensors. All these sensors are usu-

ally connected to Internet so the smart kitchen can be controlled with a user’s smartphone 

for easier access. Similarly, other IoT-based smart kitchens have been proposed to ensure 

safety through the detection of liquefied petroleum gas [7,8] or CO2 [9] leaks, as well as 

fire monitoring [10]. Nevertheless, the requirement of numerous Internet-connected sen-

sors means that the IoT-based smart kitchen has not become very popular. 

The goal of a smart kitchen is to take away the stress of cooking [11]. A user-centric 

smart kitchen [3] is a support cooking system that consists of three modules: tracking food, 

identifying food materials, and recognizing cooking actions. Three optical cameras are 

used to identify the food materials while a thermal camera is used to monitor the stove’s 

heating condition. Besides recognizing the environment, these sensors are also used to 

recognize cooking actions. Both materials and cooking actions are analyzed to determine 

the current cooking status. The end of the cooking task is determined by recognizing the 

final cooking action. 

Another research direction for cooking assistance is AR. AREasyCooking [4] is an 

application that uses AR to help people to cook by utilizing eye and voice controls. The 

first process is to recognize an ingredient based on its appearance using a neural network 

model or scan the barcode on a canned food. Then, recipes are selected from a database 

based on the detected ingredients. The recipes are in a text format and can be supple-

mented with images or videos. Voice control and eye control are used to interact with the 

video aids. Some keywords are used to trigger certain actions through voice recognition.  

In addition, Hasada et al. [12] focus on three types of cookware and compare three 

AR display methods: images with text, video, and 3D animation, using Microsoft Ho-

loLens [13]. Zhai et al. [14] identify five major aspects with which cooking novices need 

assistance: food preparation, cooking method, ingredient usage, time control, and process 

understanding. Five corresponding auxiliary guidance tools are displayed using the Ho-

loLens to assist unskilled users in cooking. Alternatively, Reisinho et al. [15] present a 

serious hybrid board game to enhance children’s cooking skills by simulating the cooking 

processes through AR. Ricci et al. [16] design an AR-enabled kitchen machine to guide 

users in the cooking activity using the HoloLens 2. Lastly, Styliaras [17] reviews the use 

of AR in food analysis and promotion through products and orders. Similarly, Chai et al. 

[18] review food-related applications and research works using AR/MR in the food indus-

try. 

Smart kitchens and AR cooking are two different ways to make cooking easier and 

more effective, but these ideas can also be integrated to build a more complete system. 

CounterIntelligence [5] is an AR smart kitchen combining features of an AR cooking en-

vironment with those of a smart kitchen. AR features are applied via the use of projectors, 

while the smart kitchen features are implemented through the use of LEDs and infrared 

thermometers. Contents inside a refrigerator are projected outside, and an interactive 

step-by-step recipe is projected onto kitchen cabinets. LEDs are deployed in order to find 

cooking equipment more easily, and the infrared thermometers are used to display the 
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temperature of running water in a sink. Alternatively, Balaji et al. [19] propose a smart 

kitchen wardrobe that can monitor and detect grocery products inside. Samsung focuses 

on the design of smart refrigerators, called food AI [20], combining AI and image recog-

nition. The smart refrigerator keeps track of the items inside and their expiration dates, 

thus helping users to solve the problem of waste food.  

Table 1 compares the pros and cons of the proposed system and nine other related 

works. Compared to other smart kitchens or AR cooking methods, the proposed system 

requires only a pair of all-in-one AR glasses, called Magic Leap One [1], without the need 

to install any external sensors or devices in the kitchen. In addition, the user can direct the 

built-in camera on the AR headset to locate and classify food ingredients by just looking 

at them. Then, suitable recipes are suggested based on the types of the recognized food 

ingredients. Subsequently, the AR glasses display a step-by-step video that demonstrates 

each cooking step in the chosen recipe. No matter where the user moves in the kitchen, 

the demonstration video is always in the field of view of the user without blocking the 

real kitchen scene. Best of all, the whole process can be controlled by natural hand gestures 

so that users can cook without needing to hold any device or controller in their hands. By 

using the proposed non-touch interactive system, users can make sure both hands are 

clean during the whole process of cooking. 

Table 1. Pros and cons of the proposed research and nine other related works. 

Project Type Hardware Pros Cons 

User-Centric Smart 

Kitchen  

[3] 

Smart Kitchen 
Three optical cameras;  

one thermal camera 
Accuracy recognition 

Working area is small; 

items have to stay in 

the camera’s FOV 

Smart Kitchen using 

IoT 

[7] 

Smart Kitchen 

Lots of sensors for gas, flame, 

weight, humidity, tempera-

tore; IoT 

Gas leakage detection 

Need to install many 

Internet-connected 

sensors in kitchen 

Real-Time Kitchen 

Monitoring 

[8] 

Smart Kitchen 

Many sensors for gas, humid-

ity, temperature;  

smartphone; Arduino; IoT 

Control switches, fans, and 

lights over Internet 

Need to install many 

Internet-connected 

sensors in kitchen 

IoT based Kitchen  

[10] 
Smart Kitchen 

Lots of sensors for gas, tem-

peratore, PIR; Smartphone; 

IoT 

Fire detection; 

person detection 

Need to install many 

Internet-connected 

sensors in kitchen 

Smart Kitchen 

Wardrobe [19] 
Smart Kitchen 

Smartphone; 

Arduino; IoT 

Monitoring the groceries in 

the cupboard 

Need a sensor for each 

container 

Counter 

Intelligence 

[5] 

AR and  

Smart Kitchen 

Camera, projector;  

infrared thermometer; 

LED on handles and faucets 

Information projected on 

physical surface;  

LED embedded items 

LED items can be easy 

to miss if not in direct 

line of sight 

AREasyCooking  

[4] 
AR 

Smartphone; 

tablet 

Voice control;  

eye control; 

barcode reader  

Lighting affects eye 

controls; Noise affects 

voice control 

Interactive MR 

Cooking Assistant 

[14] 

AR HoloLens 

Timeline; timer; 

demo video; 

seasoning tips; 

tick marks 

Lack of ingredient 

recognition and corre-

sponding recipe sug-

gestion 

AR Kitchen Ma-

chine [16] 
AR 

HoloLens 2; 

Tablet 

Humanoid avatar  

with animations 

AR markers required 

for tracking 

Proposed Research AR 

Magic Leap One  

(an all-in-one AR headset, no 

other device required) 

Ingredient recognition;  

recipe recommendation; 

step-by-step guide video; 

hand gesture interaction 

Headset overheating; 

users cannot wear pre-

scription glasses  
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3. Implementation Methods 

The Magic Leap One is the target AR headset for the proposed cooking assistance 

system. A PC with Windows 10 is used as the development platform of the proposed AR 

cooking application. The software engine used to create the proposed application is the 

Unity 2020.1.6f1 because of its cross-platform compatibility with the Magic Leap One. The 

Lumin SDK [1] is adopted to connect the Unity and the Magic Leap One to create an AR 

interface based on hand gesture recognition. From the user’s perspective, the proposed 

cooking assistance system requires only a pair of all-in-one AR glasses without the need 

to install any external sensors or devices in the kitchen. The total cost of the solution is 

about the price of the Magic Leap One, which has been reduced to 550 USD in 2022. 

As shown in Figure 2, the methodology of the proposed AR cooking system can be 

fundamentally divided into three main phases: food ingredient scanning, recipe recom-

mendation, and a step-by-step cooking video tutorial. In the first phase, a user can simply 

glance over food ingredients on the kitchen table or in the refrigerator, and the built-in 

camera on the AR headset can detect and recognize them automatically. In the second 

phase, a list of best-fit recipes is provided and sorted according to the proportion of es-

sential food ingredients that are available. Then, the user can choose a recipe from the list. 

In the third phase, the AR glasses are utilized to display a step-by-step recipe with a video 

tutorial on how to perform each cooking step. To guarantee that the user’s hands are clean 

throughout the cooking process, all three phases of the proposed AR cooking system can 

be controlled via the user’s natural hand gestures in real-time, without the need to hold a 

controller in their hand. 

 

Figure 2. Three main phases of the proposed AR cooking system: food ingredient scanning, recipe 

recommendation, and step-by-step cooking video tutorial. The whole process can be controlled via 

hand gestures. 

Figure 3 shows the complete flowchart of the proposed AR cooking system. At the 

beginning, users can choose between two options on the title screen via hand gestures. 

The first option is for users that already have a recipe in mind. In this case, a list of all 

available recipes is provided, and the user can directly choose a recipe from the complete 

recipe list. Another option is for users who want to cook using food ingredients available 

in the house. In this case, the user needs to scan available food ingredients on the kitchen 

table or in the fridge using CV technology. The front view of the user is captured by the 

built-in camera on the AR headset and analyzed by a deep learning approach to locate 

and classify food ingredients automatically. The training and recognition of the deep 

learning models are thoroughly explained in Section 4. The scan process can be repeated 

until sufficient food ingredients are recognized. In the next phase, the proposed system 

suggests a list of recipes according to the types of the recognized food ingredients.  
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Figure 3. Flowchart of the proposed AR cooking assistance system. 

Once sufficient food ingredients are detected and recognized, the user is provided 

with a list of suggested recipes based on the recognized ingredients. The list consists of all 

recipes with at least one required main ingredient detected and is sorted according to the 

proportion that is computed as the number of the available essential ingredients divided 

by the number of the required ingredients:  

Proportion = 
(����� ���� ����������� ����������) ∩ (����� ���� ����������� ��������)

����� ���� ����������� ��������
 * 100% 

Figure 4 provides an example in the case of only eggs being detected. Minor ingredi-

ents, such as flour, oil, and seasoning, are assumed to be always available. The proportion 

of each recipe is computed and shown on the right side of the recipe name. Using the cake 

recipe as an example, eggs are the only main ingredients needed, hence representing a 

proportion of 100%. On the other hand, the main ingredients for the omelette recipe are 

eggs, green onions, and spam—a proportion of 33%. Then, the user can choose a recipe 

from the list by hand gestures. The hand gesture is different for each recipe, so an icon of 

the corresponding gesture is displayed on the left side of the recipe name.  
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Figure 4. List of recommended recipes sorted according to the proportion of essential ingredients 

that are available. 

After selecting a recipe, the user is offered an overall recipe screen with a picture of 

the finished product and the detailed instructions, as shown in Figure 5. With the whole 

picture in mind, the user can then start practicing the recipe by following the step-by-step 

procedures. In each cooking step, a video tutorial is provided to help the user prepare 

meals. As shown in Figure 6, a series of steps is displayed on top of the AR headset’s field 

of view with a red highlight on the current working step. A corresponding video clip 

demonstrates how to carry out the cooking tasks in each step. The video window’s default 

location is in the upper middle of the AR headset’s field of view, which always follows 

the user’s head movements. The AR headset automatically blends virtual foreground and 

real background images together so the video window is semi-transparent on the fore-

ground, and the user can see a little bit of the real scene beneath. Optionally, the user can 

choose if they want to move the video window to any other designated position to prevent 

the video window from blocking the real view of the kitchen scene behind it. At all times, 

the user can decide when to move on to the next step of the recipe via hand gestures. 

 

Figure 5. Overall screen showing the recipe for white cake. 
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Figure 6. Step-by-step video tutorial for the recipe for white cake. The video clip is semi-transparent 

on the foreground so the user can see a little bit of the real scene (tiles on kitchen wall) beneath. 

Hands are usually busy and must remain clean in the process of cooking. Instead of using 

a touch screen or holding a controller in the hand, bare-hand gestures are recognized to control 

the cooking tutorial and the video playback in the proposed system. An API provided by the 

Magic Leap One, called Lumin SDK [1], is utilized to classify hand gestures on images cap-

tured by the built-in camera on the AR headset. It supports eight discrete hand gestures from 

either hand, including “C-Gesture”, “L-Gesture”, “Open Hand-Gesture”, “Finger Up-Gesture”, 

“Fist-Gesture”, “OK-Gesture”, “Pinch-Gesture”, and “Thumbs Up-Gesture”. In addition, it also 

includes a state where no hand gesture is recognized. As shown in Table 2, the “Open Hand-

Gesture” is used to lock the recipe window on any designated corner to prevent it from block-

ing the view of the real environment. The “OK-Gesture” is used to trigger the scanning of food 

ingredients. It is also used in case the user wants to move on to the next step of the recipe. In 

contrast, the “L-Gesture” is used if the user wants to move back to the previous step of the 

recipe. The “Pinch-Gesture” can be used to click on buttons or to select a recipe from the recipe 

list. In addition, it can be used to move the step-by-step recipe until it is locked into the right 

place. The “Fist-Gesture” stops a video from playing, and the “Finger Up-Gesture” plays the 

corresponding video along with the recipe. The “Thumbs Up-Gesture” can be used to take a 

picture while in the scanning screen for food ingredient recognition and can be used in the 

title screen to select the button to open the recipe list. It is also used in the recipe list menu to 

start a step-by-step recipe. Finally, the “C-Gesture” is reserved to exit the system after the cook-

ing is finished. By using these hand gestures, the proposed AR cooking guide is a fully non-

touch interactive system. 

Table 2. Eight hand gestures and their functions. 

Gesture Function 

C-Gesture 

 

Close the application 

L-Gesture 

 

Move to previous step of recipe 

Open Hand-Gesture 

 

Lock step-by-step recipe into place 
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Finger Up-Gesture 

 

Play video 

Fist-Gesture 

 

Stop video from playing 

OK-Gesture 

 

Start scan  

Move to next step of recipe  

Pinch-Gesture 

 

Move recipe when locked to place  

Thumbs Up-Gesture 

 

Take picture for scanning 

Open recipe list on title screen  

Start recipe in recipe list menu 

4. Deep Learning Model for Food Ingredient Recognition 

With the advance of CV technology, many deep learning models based on the CNN 

(Convolutional Neural Network) can be utilized to recognize food ingredients in an im-

age. Usually, the models assume that the target object is the only subject located at the 

center of the image. To detect and recognize numerous objects with multiple categories in 

an image, it is necessary to apply models to the image at multiple locations and scales. A 

location and scale with a high prediction score are considered a detection. This repetitive 

process makes them inefficient and inconvenient for food ingredient scanning in our ap-

plication. 

On the other hand, the deep learning model called YOLO (You Only Look Once) [21] 

is an object detection algorithm that applies a single CNN to the entire image. It divides 

the image into regions and predicts bounding boxes and probabilities for each region. The 

YOLO model returns not only prediction scores for each category but also a few bounding 

boxes and their confidence scores. The merits of the YOLO model are the real-time speed 

and the capability to locate numerous objects and classify multiple categories at the same 

time. For this reason, the proposed AR cooking system adopts the latest version of the 

YOLO, called YOLOv5 [22].  

The YOLO models have been incrementally improved over earlier versions; thus, the 

network architecture of YOLOv5 is highly complicated. As shown in Figure 7, it can be 

generally divided into three stages: the backbone, the neck, and the head. First, the back-

bone of the YOLOv5 incorporates the cross-stage partial network (CSPNet) [23] into the 

Darknet for feature extraction. The focus layer is designed to reduce layers, parameters, 

and memory, as well as to increase the speed of the forward and backward propagation. 

The spatial pyramid pooling layer is used to remove the fixed size constraint of the net-

work. Second, the neck of YOLOv5 adopts the path aggregation network (PANet) [24] to 

boost information flow for feature fusion. It can increase the location accuracy of the de-

tected object by utilizing accurate localization signals in lower layers. Third, the head of 

YOLOv5 generates three different sizes of feature maps to predict classes and bounding 

boxes in multiple scales. 
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Figure 7. Network architecture of YOLOv5 with three stages: the backbone for feature extraction, 

the neck for feature fusion, and the head for object prediction. 

In the training stage, we rely on a food ingredient dataset, called Q-100 [25], consist-

ing of 905 images which are divided into 3 parts: training, validation, and testing. The 

training part comprises 631 images (70%), the validation part comprises 179 images (20%), 

and the testing part comprises 95 images (10%). The dataset comes with an average of 3.8 

annotations per image, with a total of 3408 annotations. As shown in Figure 8, there are 

11 classes in this dataset including sprout, beef, chicken, egg, pork, garlic, onion, kimchi, 

onion, potato, and spam. The training process is performed using Python on Jupyter. 

In the recognition stage, the constructed network with pre-trained weights can be 

used directly for food ingredient detection and recognition. The DNN module in the 

OpenCV supports YOLOv5. However, Unity only supports scripts written in C# and can-

not natively run the OpenCV code in C and C++. A third-party asset, called OpenCV for 

Unity [26], is employed to integrate OpenCV with Unity so the recognition of food ingre-

dients can be carried out based on the pre-trained model.  
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Figure 8. Training dataset containing 11 food ingredients. 

The YOLOv5 model is trained on the Q-100 food ingredient dataset for 100 epochs, 

and it takes 9.5 h to complete. The training time can be shortened significantly if a power-

ful GPU is used instead of only a CPU. Figure 9 demonstrates the results of the training 

and validation of the YOLOv5 on the Q-100 food ingredient dataset. The upper row shows 

the results of training, while the lower row shows the results of validation. The horizontal 

axis of each subgraph represents the number of epochs. The vertical axis of each subgraph 

represents the box_loss (error of location), obj_loss (error of detection), cls_loss (error of clas-

sification), precision, recall, and mAP (mean average precision), respectively.  

precision = True Positives/(True Positives + False Positives)  

recall = True Positives/(True Positives + False Negatives) 

mAP = 
�

�
∑ ���

�
���  , where ��� = average precision of class k 

F-score = 2*precision*recall/(precision+recall) 

A true positive is a correct detection made by the model, a false positive is a detection 

made by the model that turned out to be incorrect, and a false negative is when something 

is not detected or is missed. A model is good if it has high precision and high recall. A trade-

off between precision and recall is determined heuristically in the proposed application. 

 

Figure 9. YOLOv5 results of training (upper row) and validation (lower row). 
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Figure 10 shows the confusion matrix of the recognition over 11 types of food ingre-

dients. We can see that eggs can be detected with the highest accuracy of 96%. Most other 

food ingredients can be recognized with an accuracy well above 60%, except for chicken, 

pork, and beef. These meat ingredients usually come in different shapes and a variety of 

packages, thus resulting in lower accuracy. There is a trade-off between precision and re-

call. To more precisely evaluate accuracy, an F-score is computed as the harmonic mean of 

precision and recall. Overall, the YOLOv5 achieves an F-score of 0.61. To improve the accu-

racy of the recognition, we have tried other deep learning models such as ResNet [27] and 

ResNeXt [28]. Table 3 compares the performance, speed, delay, and capability of these 

deep learning models. Generally, ResNet and ResNeXt models improve the accuracy with 

an F-score of 0.78. However, they can only classify one ingredient at a time, and the ingre-

dient is expected to be the only subject in the image. It is troublesome and time-consuming 

for users to aim at each food ingredient and classify them one after another. On the other 

hand, YOLOv5 can detect and recognize multiple food ingredients at the same time. To 

make the food scanning process more user-friendly, our AR cooking system adopts 

YOLOv5 to locate and classify food ingredients efficiently. 

 

Figure 10. Recognition accuracy and confusion matrix of 11 food ingredients. 

Table 3. Performance, speed, and capability of three deep learning models. 

Method Precision Recall F-Score Delay (ms) Capability 

ResNet [27] 0.76 0.81 0.78 32 Can only classify one ingredient 

at a time ResNeXt [28] 0.75 0.81 0.78 104 

YOLOv5 [22] 0.59 0.64 0.61 125 
Can locate and classify multiple 

ingredients at the same time 

For simplicity, the prototype AR cooking system currently focuses on vegetarian rec-

ipes. Figure 11 shows some results of the detection and recognition of food ingredients 

using YOLOv5. It can be seen that YOLOv5 can locate and classify multiple ingredients 

most of the time. However, there are still times when some ingredients are not detected, 

such as the partially occluded onions, and some ingredients are classified wrongly, such 

as the confusion between a potato and an egg.  
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Figure 11. Results of YOLOv5 detection and classification of food ingredients. 

5. Case Study 

Twenty people participated in the testing of the prototype system and gave feedback 

regarding how easy the system was to use via a usability questionnaire (UQ as shown in 

Appendix B). Of these 20 participants, 12 were male and 8 were female. Their technical 

skills and backgrounds were recorded via another background questionnaire (BQ as 

shown in Appendix A). Before real cooking, participants were given a preparation time 

of 10 min to become familiar with the Magic Leap One headset, the real kitchen, and the 

cooking equipment. They were given a printout (Table 2) of eight hand gestures that can 

be recognized, as well as their functions, so they did not need to memorize all the hand 

gestures. Afterwards, the participants were asked to wear the AR headset with the pro-

posed AR cooking system installed and proceeded to use it for cooking assistance to pre-

pare meals. To ensure fairness, everyone was asked to follow the same recipe for white 

cake. Participants were given ingredients to cook, and as an incentive, the finished prod-

ucts (cakes) were theirs to keep. Due to the limited number of AR devices, one participant 

at a time used the proposed AR cooking system, and it took about an hour for the cooking 

task to be completed. 

Before participants used the proposed system (usually, while they waited for their 

turn), they were asked to fill out a background questionnaire (BQ as shown in Appendix 

A). This questionnaire was used to gauge how proficient they were in cooking and their 

experience with AR. After they completed the cooking task using the proposed system, 

they were requested to fill out a usability questionnaire (UQ as shown in Appendix B). 

This questionnaire was used to measure the ease of use of the proposed system. All ques-

tions in both questionnaires were designed according to the five-point Likert scale, which 

contains five response options (strongly disagree, disagree, neutral, agree, strongly agree). 

In total, each participant filled out two questionnaires with optional open feedbacks and 

suggestions on how the system can be improved. 

After the results from both background questionnaires (BQ) and usability question-

naires (UQ) were collected, we made statistical charts in order to get a more concrete idea 

of the participant’s answers. By assigning five rating scores (1~5) to the five response op-

tions (strongly disagree, disagree, neutral, agree, strongly agree) in the five-point Likert 

scale, Figure 12 shows the mean and confidence interval (alpha = 0.05) for each question 

in the background questionnaire. Half of the participants either agreed or strongly agreed 

to having an extensive knowledge of cooking (BQ1), and more than half of the participants 

cooked often (BQ2). The majority of the participants were confident in following a simple 

recipe, while only one participant disagreed with this (BQ4). We can also see that more 

than half of the participants enjoyed homemade meals more than take-out food (BQ5). 
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However, half of participants bought takeout more than they made homemade food 

(BQ9).  

A correlation analysis was conducted over the questions in the background question-

naire. A correlation coefficient (a value between −1 and 1) represents how strongly two 

variables are related to each other. As a correlation coefficient approaches 1, it indicates 

that there is a positive correlation. This implies that as one variable increases, so does the 

other. The opposite holds true as well—as a correlation coefficient approaches −1, it indi-

cates that there is a negative correlation, which implies that as one variable increases, the 

other decreases. The most significant positively correlations (0.98) were for BQ5, “I prefer 

eating homemade food over eating takeout”, and BQ6, “I enjoy cooking”. This suggests that 

when one enjoys cooking more, one prefers to eat more homemade food than take-out 

food. 

 

Figure 12. Background questionnaire results: mean and confidence interval (alpha = 0.05). 

After assigning five rating scores (1~5) to the five response options (strongly disagree, 

disagree, neutral, agree, strongly agree) in the five-point Likert scale, Figure 13 shows the 

mean and confidence interval (alpha = 0.05) for each question in the usability question-

naire. Most (19 of the 20) participants agreed or strongly agreed that the proposed system 

was easy to use (UQ1), while 18 of the participants agreed or strongly agreed that it was 

easy to learn how to use the system (UQ3). In addition, the majority of participants agreed 

or strongly agreed that they would use the system again (UQ2). Most of the participants 

did not feel any discomfort or awkwardness when using the system (UQ9). All 20 partic-

ipants were satisfied with the end product of the white cake (UQ12), and they were also 

satisfied with the proposed AR cooking system (UQ13). Meanwhile, 19 participants 

would definitely recommend the system to others (UQ11).  

A correlation analysis was conducted with the questions in the usability question-

naire. This indicated that UQ11, “I would recommend the system to others”, and UQ12, “I am 

satisfied with the end product”, had a perfect positive correlation coefficient. This suggests 

that if a user was satisfied with what they had cooked, they were more willing to recom-

mend the system to others. In addition, UQ12, “I am satisfied with the end product”, and 

UQ13, “Overall, I am satisfied with the system”, had a perfect positive correlation. This im-

plies that if a user was satisfied with what they had cooked, they were satisfied with the 

system as well. 
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Figure 13. Usability questionnaire results: mean and confidence interval (alpha = 0.05). 

Finally, we also analyzed the correlation between participants’ cooking background 

and their experience with using the proposed AR cooking system. The most significant 

correlation coefficient (0.97) was for BQ4 “I am confident in following a simple recipe” 

and UQ2 “I would use the system again”. This suggests that the more confident the user 

was in following a recipe, the higher the chance they would like to use the proposed sys-

tem again, mainly because the proposed system is a step-by-step recipe guide. However, 

if they did not want to use the proposed system again, that means they might have devel-

oped a negative view of the cooking guide system, and hence their confidence in following 

a recipe may be reduced. On the other hand, the most significant negative correlation co-

efficient (-0.94) was for BQ6, “I enjoy cooking”, and UQ5, “I needed prior knowledge in 

order to use the system”. If no prior knowledge is required to use the system, this means 

the system is easy to use, and if the system is easy to use, the user will enjoy cooking more. 

This matches the goal of the proposed system to make people enjoy cooking. The opposite 

is also true: if one needs prior knowledge in order to use the system, this means the system 

is hard to use, and thus the user will not enjoy cooking.  

6. Discussion 

Instead of dining out or buying ready-to-eat food, cooking your own meal is cheaper 

and healthier. Home-cooked meals gives you greater control over the ingredients and cal-

ories in your meals, thus improving weight management, fulfilling personal needs, and 

reducing illness risk. According to the feedbacks from the received questionnaires, we 

confirm that the proposed AR cooking guide system is feasible and practical for cooking 

assistance. Most participants had no trouble learning and using the proposed system. In 

total, 19 of the 20 participants would recommend the system to others to use (UQ11). All 

participants were satisfied with their end products from their baking (UQ12), and all par-

ticipants were overall satisfied with the system (UQ13) (either strongly agreeing or agree-

ing).  

Regarding the optional feedbacks, most participants stated that once they were used 

to the hand gestures, the system gradually became easier to use as time goes on. In addi-

tion, the demonstration video for each cooking step was helpful because worded steps 

can be a bit vague. Several participants believe that making the whole process non-touch 

is the best feature because having clean hands is an important part of cooking. A non-

touch interactive system assures users that their hands touch only the food ingredients, 

and they can cook while not having to touch anything else. Some participants express that 

being able to lock the video window in a designated position is another handy feature. 
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This way, it does not interfere with the field of view of the real scene behind, and the user 

can look back and forth between the virtual video tutorial and their physical working area 

in order to cook efficiently. In particular, two participants reported that they prefered to 

be able to minimize the video window in certain cooking steps.  

Regarding the optional suggestions for improvement, some participants felt that the 

hand gesture recognition was too sensitive. Sometimes, the system recognized hand ges-

tures accidentally when the participant was actually doing something else, which resulted 

in unnecessary hassles. In addition, since some hand gestures look alike, the recognition 

system occasionally misidentified a hand gesture as something else and executed the 

wrong function. The gesture recognition needs to be more intuitive and less sensitive. A 

careful tuning of the thresholds could be helpful to achieve a better trade-off between 

precision and recall. Moreover, instead of recognizing static hand gestures solely based 

on an image, recognizing dynamic hand actions based on a short-term video has the po-

tential to reduce confusion and should be more robust and reliable. Furthermore, two par-

ticipants suggested having the system recognize both hands instead of one hand, which 

can lead to more combinations of gestures that are essential for cooking action recognition. 

Besides, a participant also suggested some recipe steps could be improved to sound less 

vague, especially in terms of measurements. A participant also mentioned that “softer 

colors” would be a better choice to improve the visualization of the interface.  

In addition to the 10 min preparation time, participants took about 50 min to follow all 

the steps, mix the ingredients, and bake the cake in the oven, all assisted by the proposed AR 

cooking system. It is interesting to note that one hour is normally the time it takes for an expe-

rienced baker to bake a cake. Even if less than half of the participants had experience of baking 

a cake (BQ8), the proposed AR cooking system was useful and effective in helping unskilled 

people to complete the cooking task within the expected time limit. All participants were suc-

cessful in the baking of their cakes. No destructive mistakes occurred during our experiments. 

Even if a few participants needed to restart the demo video in some cooking steps due to mis-

understandings of the procedures, all participants were satisfied with the cake they made. 

One problem encountered in our experiment is that users could not wear prescription 

glasses with the original Magic Leap One. According to the website of Magic Leap, a prescrip-

tion insert is available, but it is custom-made for each user and requires additional purchase. 

Another problem is the overheating of the AR headset with prolonged use, which can be felt 

by the user wearing the headset and possibly causes dizziness for some people.  

7. Conclusions 

We propose a new prototype AR system for cooking assistance in which a user only 

needs a pair of all-in-one AR glasses without having to install any external devices or sensors 

in the kitchen. We try to overcome some common troubles in cooking, implement the algo-

rithms, and integrate them in an all-in-one AR headset. The user can direct the AR headset’s 

built-in camera to detect and recognize food ingredients by simply glancing over them in the 

refrigerator or on the kitchen table. Accordingly, the types of the recognized food ingredients 

are used to match appropriate recipes. Then, the proposed system provides and displays in-

teractive demo videos on how to carry out each cooking step in the chosen recipe. All pro-

cesses can be controlled via the user’s natural hand gestures in real-time, without the need to 

hold a controller in the hand. Compared with the deep learning models ResNet and ResNeXt, 

YOLOv5 achieves lower accuracy for ingredient recognition, but it can locate and classify mul-

tiple ingredients at the same time and thus greatly simplify the scanning process for users. 

Twenty people participated in the testing of the prototype system, provided feedback via 

questionnaires, and suggested improvements. All participants were overall satisfied with the 

prototype system, and 19 of the 20 participants would recommend others to use it; hence, the 

usability of the proposed AR cooking assistance system is confirmed. 

The prototype could be extended in the future by including more interactive recipes. 

The list of suggested recipes could also provide more information such as nutrition facts 

and calorie counts. In addition, implementing a scalable database to manage the addition 
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of recipes for better tracking and storing should make the system more complete. Moreo-

ver, the more accurate recognition of a wider variety of food ingredients is another poten-

tial area for future research. Finally, the system could be enhanced by recognizing dy-

namic hand gestures, monitoring cooking actions, detecting procedural mistakes, and 

guiding users to prevent or recover from potential failure. 
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Appendix A 

Table A1. Participant Background Questionnaire. 

 
Strongly 

Disagree 
Disagree 

Neither Agree 

nor Disagree 
Agree 

Strongly 

Agree 

1. I have extensive knowledge of 

cooking 
     

2. I cook often      

3. I have familiarity with AR de-

vices 
     

4. I am confident in following a 

simple recipe 
     

5. I prefer eating homemade 

food over eating takeout 
     

6. I enjoy cooking      

7. When I cook, it’s usually with 

the aid of a recipe 
     

8. I have experience baking a 

cake 
     

9. I buy takeout more than I 

make homemade food 
     

(Optional) Gender: _________________. 

Appendix B 

Table A2. Participant Usability Questionnaire. 

 
Strongly 

Disagree 
Disagree 

Neither Agree 

nor Disagree 
Agree 

Strongly 

Agree 

1. The system was easy to use      

2. I would use the system again      

3. It was easy to learn how to use 

the system 
     

4. I was able to use the system 

without any difficulties 
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5. I needed prior knowledge in 

order to use the system 
     

6. I was able to carry out system 

functions without difficulties or 

errors 

     

7. It was easy for me to remem-

ber the hand commands 
     

8. I found the system awkward 

to use 
     

9. I experienced discomfort (nau-

sea/headaches/etc.) when using 

the system  

     

10. I like the user interface      

11. I would recommend the sys-

tem to others 
     

12. I am satisfied with the end 

product 
     

13. Overall, I am satisfied with 

the system 
     

(Optional) Any suggestions to improve the system: ____________________________________. 
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