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Abstract: The magnetometer is a vital measurement component for attitude measurement of near-
Earth satellites and autonomous magnetic navigation, and monitoring health is significant. However,
due to the compact structure of the microsatellites, the stray magnetic changes caused by the complex
working conditions of each system will inevitably interfere with the magnetometer measurement. In
addition, due to the limited capacity of the satellite–ground measurement channels and the telemetry
errors caused by the harsh space environment, the magnetic data collected by the ground station
are partially missing. Therefore, reconstructing the telemetry data on the ground has become one
of the key technologies for establishing a high-precision magnetometer twin model. In this paper,
firstly, the stray magnetic interference is eliminated by correcting the installation matrix for different
working conditions. Then, the autocorrelation characteristics of the residuals are analyzed, and the
TCN-SE (temporal convolutional network-squeeze and excitation) network with long-term memory
is designed to model and extrapolate the historical residual data. In addition, MAE (mean absolute
error) is used to analyze the data without missing at the corresponding time in the forecast period
and decreases to 74.63 nT. The above steps realize the accurate mapping from the simulation values
to the actual values, thereby achieving the reconstruction of missing data and establishing a solid
foundation for the judgment of the health state of the magnetometer.

Keywords: magnetometer; actual magnetic data; stray magnetic; different working conditions;
TCN-SE network

1. Introduction

Geomagnetic navigation is a critical autonomous navigation method for near-Earth
spacecraft, which has strong real-time, concealment, and interference suppression. Geomag-
netic navigation uses the three-axis magnetometer installed on the spacecraft to measure
the geomagnetic intensity in three directions that are not coplanar in space below 1000 km,
and compares it with the nominal geomagnetic model to determine the orbit and attitude
of the satellite [1]. Therefore, the health status of magnetometers is very important for
satellite navigation and attitude determination. However, due to the limited capacity of the
satellite–Earth measurement channels and the telemetry errors caused by the harsh space
environment, the magnetic data are often missing, which makes it difficult to study the laws
of magnetic data and establish accurate models using historical data. Thus, establishing an
accurate complement model is a prerequisite for building a geomagnetic model.

The international geomagnetic reference model (IGRF) [2] and the world geomagnetic
field model (WMM) are the commonly used geomagnetic models. They are based on
the Gaussian spherical harmonic analysis theory, and building the expression between
the geomagnetic vector elements and the geographical location. Then, the researchers
comprehensively utilize the observation data from the marine magnetic survey, ground
station magnetic survey, aeromagnetic survey, and satellite magnetic survey to solve
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the Gaussian coefficients of the model based on the standard least squares method. Al-
though these models can comprehensively describe the distribution characteristics of the
geomagnetic field, they ignore the local details such as the external field of the geomagnetic
field and lithosphere. In addition, the geomagnetic measurement is affected by the stray
current in different directions emitted by satellite components under various working
conditions. Accordingly, the missing values cannot be directly supplemented by the IGRF
and WMM models.

Marco et al. [3] predicted the subsequent missing points from the data before the
missing points by the autoregressive moving average model, but this does not make full
use of the subsequent data of the missing points and the overall utilization of the data is low.
Zhu et al. [4] used the SVM algorithm to predict missing data, however, the SVM method
cannot fill in a large number of missing data effectively. Considering the strong nonlinear
fitting ability of the neural network, the authors of [5] established the BP neural network
to predict the lost data and had effective results for filling the missing value. However,
the BP network is not a time series model and it did not perform feature extraction and
signal-to-noise ratio improvement, which is difficult to achieve high precision requirements.
Li et al. [6] obtained the probability distribution of missing data by analyzing the statistical
characteristics, and used the maximum likelihood to estimate the most suitable values.

Due to the periodic rotation of the satellite around the Earth, the data sampled by the
sensors often have autocorrelation. Therefore, it is a better way to adopt the time series
models with historical memory as the prediction model.

At present, the traditional autoregressive prediction technology has been mature,
including autoregressive moving average (ARMA) [Baptista M ] and autoregressive in-
tegrated moving average (ARIMA) [7,8]. These statistical models are widely used in
the industry. However, they can only be linearly expressed and the signal must be as-
sumed to be stationary. The Kalman filter [9,10], least squares support vector machine
(LS-SVM) [11,12], and other methods have been studied for a long time and the theories
are mature. Therefore, they have been applied in many fields to solve time series prediction
tasks. However, these methods can only deal with short-term autocorrelation tasks and are
difficult to model long-term dependence of time series.

In recent years, with the rapid development of deep learning, the time series prediction
method based on deep learning theory has been highly studied.

The authors of [13] used historical information of time series to predict future Turkish
electricity load by a recurrent neural network (RNN). The authors of [14] adopted long
short-term memory (LSTM) as a one-step prediction model for satellite telemetry data,
and proposed an adaptive threshold algorithm to obtain the best threshold. It achieves
telemetry data anomaly detection finally. The authors of [15] proposed a model combining
a two-channel convolutional neural network (CNN) and LSTM. They used this model to
predict short-term photovoltaic power and achieved better results. However, LSTM has the
disadvantages of difficult model training, long training time, and unstable gradients in long-
term dependence modeling. Temporal convolutional network [16] is a one-dimensional
convolutional neural network. Compared with LSTM, TCN has more stable gradients, a
flexible receptive field, and a shorter training time. Studies have shown that the network
has achieved better results in audio synthesis [17], word language modeling [18], machine
translation [19], and other fields.

In this paper, considering stray magnetic fields in different directions under vari-
ous working conditions, the linear model is first used to correct the installation matrix.
Moreover, since the residuals between the actual value and corrected simulation values
in the installation coordinate system have autocorrelation, and to avoid the establishment
of complex physical models and a large number of calculations, establishing a temporal
model with historical memory ability is an effective and practical method that conforms to
the residual characteristics.
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2. Data Description and Calibrating Installation Matrix
2.1. Coordinate Systems

Before showing the data and calibrating method, we introduce several coordinate
systems involved in this paper.

1. J2000 coordinate system: As shown in Figure 1, the origin is at the center of the Earth,
the X axis points to the vernal equinox, the Y axis is in the equatorial plane and
perpendicular to the X axis, and the Z axis points to the North Pole.

2. Orbital coordinate system (VVLH): The origin of the orbital coordinate system is
located at the satellite centroid, the Z axis points to the Earth center, the X axis is in
the orbital plane and perpendicular to the Z axis, and the Y axis is determined by the
right-hand rule.

3. Body coordinate system: The origin of the body coordinate is located at the satellite’s
center of mass, the X axis points to the satellite’s flight direction, the Z axis is in
the satellite’s longitudinal symmetry plane, and the Y axis is perpendicular to the
satellite’s longitudinal symmetry plane.

4. Installation coordinate system: The installation position of the magnetometer varies
from satellite to satellite. The three-axis installation coordinate system of the magne-
tometer is obtained by multiplying the body coordinate system by the installation
matrix. The coordinate system is shown in Figure 2.

Figure 1. J2000 coordinate system. The cyan line is the satellite orbit.

2.2. Geomagnetic Field Measurement

The geomagnetic field measurement can be expressed as,

MA = (RAB ∗ RBO ∗ ROI) ∗MIGRF + ξ̃

= ( ˆRAB + ˜RAB) ∗ ( ˆRBO + ˜RBO) ∗ ( ˆROI + ˜ROI) ∗ (MIGRF + M̃IGRF) + ξ̃
(1)

where MA and MIGRF are the magnetic vectors under the installation coordinate system
(the fluxgate magnetometer measurement coordinate system) and J2000 inertial coordinate
system (obtained by the IGRF model, which is established in Satellite Tool Kit), respectively.
M̃IGRF is the influence of the lithosphere and external field, which is not considered in the
IGRF model. ROI , RBO, and RAB are the transformation matrices of the inertial coordinate
system to the orbital coordinate system, orbital coordinate system to body coordinate
system, and body coordinate system to the installation coordinate system, respectively.

ˆRAB, ˆRBO, and ˆROI are the main parts of the three which are evaluated at the ground station
and ˜RAB, ˜RBO, and ˜ROI are the errors. ξ̃ is the error term. Since the orbit error is less than
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10 m and the attitude determination precision of the star tracker is on the order of angular
seconds [20], the ˜RBO and ˜ROI can be ignored. The above formula can be simplified as,

MA = ( ˆRAB ∗ ˆRBO ∗ ˆROI + ˜RAB ∗ ˆRBO ∗ ˆROI) ∗ (MIGRF + M̃IGRF) + ξ̃ (2)

where ˆRAB, ˆRBO, and ˆROI are not affected by working conditions and are the determined
matrices. Excluding the considered part, the residual error MRS (as shown in Figure 3) is,

MRS = MA − ˆRAB ∗ ˆRBO ∗ ˆROI ∗MIGRF

= ˆRAB ∗ ˆRBO ∗ ˆROI ∗ M̃IGRF + ˜RAB ∗ ˆRBO ∗ ˆROI ∗MIGRF

+ ˜RAB ∗ ˆRBO ∗ ˆROI ∗ M̃IGRF + ξ̃

(3)

Figure 2. Orbital coordinate system, body coordinate system, and magnetometer installation coordi-
nate system.

Figure 3. The residuals between the actual data and the simulation data in the installation coordinate
system correspond to the subfigure in Figure 4.
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The sources of residual error are as follows. The multiplicative or additive combination
of these influences constitutes the residual error.

1. Satellite body components: The current of solar panel, battery and magnetic torque,
and hard and soft magnetic materials on the satellite generate magnetic fields [21].
These disturbances change with attitude, showing a time-related regularity. This part
is the source of stray magnetism.

2. External magnetic interference (not included in IGRF model): (1) The local anomaly
of the lithosphere: it mainly comes from the short wavelength magnetic field caused
by the geological characteristics of the Earth’s surface (mountains, oceans, minerals,
etc.) [22]. (2) External field: the space current system above the Earth’s surface, which
is mainly distributed in the ionosphere, that is, the upper atmosphere ionized by solar
high-energy radiation and cosmic ray excitation [23]. The impact of this item can reach
dozens of nT [24]. These two terms show periodic changes with orbital periods.

3. IGRF fitting error. This part is minimal. Ref. [25] shows that the accuracy of the
spherical harmonic coefficient of the eighth-order IGRF-11 is 0.1 nT.

4. Effects of temperature change: (1) Uneven expansion of the satellite and the changes
in the installation coordinate system, which has a slight impact. (2) Thermal drift,
which is relatively large. Ref. [26] shows that the maximum drift of the magnetometer
reaches 200 nT between 0 and 40 ◦C. This effect of temperature changes regularly with
the satellite in the Earth’s shadow area or sunshine area.

2.3. Data Description

The data processed in this paper are all three-axis vector moduli of the geomagnetic
field. In this paper, a total of 10 days of on-orbit magnetic data are collected and 5722
discrete points are obtained by a sampling frequency of 128 s. Figure 4 shows the actual
sampled data, and the enlarged subfigure shows part of the modulus of the actual data and
the simulation data in the installation coordinate system (before calibrating). The overall
varying ranges are [15,492.92 nT, 42,431.39 nT] and [17,769.52 nT, 44,356.67 nT], respectively.

Figure 4. The father graph shows the on-orbit magnetic data. We select one segment for showing
details of the actual data and the simulation data in the installation coordinate system, which are
labeled in orange and blue curves, respectively.

Because of the complex space environment, remote sensing errors may happen, which
results in abnormal values marked in red circles, as shown in Figure 4. The steps for
handling such outliers are as follows,
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1. Use the method in Algorithm 1 to detect abnormal sampling points:
2. The outliers detected in step 1 are deleted, and then supplemented by our imputation

method proposed in Figure 5.

Algorithm 1: 3σ outlier detection method

for sample point Mi do
µ and σ are the mean value and the variance of all the sampling points.
if Mi > µ + 3 ∗ σ or Mi < µ− 3 ∗ σ then

Mi is outlier;
end

end

Moreover, due to the missing points caused by communication blocking, 505 points
are missed, and the maximum missing interval is 24 points, which will provide a basis for
the following model parameter setting.

Figure 5. Complement algorithm flow chart.

Figure 3 shows partial residual errors described in Formula (3). The overall range is
[−537.97 nT, 1644.46 nT]. Ref. [27] used the extended Kalman filtering method to simulate
the real magnetic measurement data of ERBS and GRO satellites, and the orbit determi-
nation error was 10–40 km under the condition of measurement error of 400 nT. Based on
engineering experience, the error range obviously cannot meet the engineering require-
ments.

When the satellite directs the Earth and the Sun, respectively, the satellite body tem-
perature is different, resulting in different degrees of thermal deformation and different
effects on ˜RAB and ξ̃. At the same time, the difference in satellite attitude makes the stray
magnetism in different directions have different effects on ξ̃ under the installation system.
Therefore, we first deal with the additive and multiplicative errors caused by working
conditions in Formula (3).



Sensors 2022, 22, 8277 7 of 19

2.4. Calibration of Installation Matrix

The corresponding times of directing the Sun and the Earth are obtained from the
satellite orbit model established in STK. As for the time in the conversion period, it only
accounts for 0.17% in one period, and the corrected simulation values in the installation
coordinate system of the conversion period by calibrating directing Sun installation matrix
do not generate large errors. So we will not calibrate separately. In this paper, three multi-
variate linear regression models are used to correct the installation matrix corresponding to
the X-Y-Z three-axis vectors , and the overall format is (matrix format),

ˆMA_X

ˆMA_Y

ˆMA_Z

 = ˆRAB
′ ∗ ˆRAB ∗ ˆRBO ∗ ˆROI ∗

MIGRF_X

MIGRF_Y

MIGRF_Z

+

ξX

ξY

ξZ

 (4)

where
[ ˆMA_X , ˆMA_Y , ˆMA_Z

]T are the actual value of the three-axis magnetic vector,
[MIGRF_X , MIGRF_Y , MIGRF_Z] are the three-axis magnetic vector under the inertial system,
and [ξX , ξY , ξZ] are the error vectors. All the above vectors are one-dimensional data of
1× n, and n is the number of actual values. The ˆRAB

′ is the calibrated installation matrix
(3× 3) from the body system to the installation system, and [ ˆRAB, ˆRBO, ˆROI] are equal
to the ones in use and are all sizes of (3× 3). The three linear regression models follow
the assumptions:

1. The three-axis magnetic vectors [MIGRF_X , MIGRF_Y , MIGRF_Z] are not related to
each other;

2. The [ξX , ξY , ξZ] are independent and identically distributed;
3. The three-axis vectors [MIGRF_X , MIGRF_Y , MIGRF_Z] are not related to the random

term [ ξX , ξY , ξZ], that is, Cov(MIGRF_ij, ξi) = 0, i ∈ [X, Y, Z], j = 1, 2, . . . , n.

Since there is no analytical solution when [MIGRF_X , MIGRF_Y , MIGRF_Z] ×
[MIGRF_X , MIGRF_Y , MIGRF_Z]

T is not an invertible matrix, it takes a lot of time when
the number of data increases, especially when calculating the inverse matrix. So we use
SGD (stochastic gradient descent). The SGD algorithm is an improved algorithm based on
gradient descent. It randomly selects a sample to iterate once, rather than for all samples.
Therefore, Algorithm 2 significantly reduces the calculation magnitude.

Algorithm 2: The SGD algorithm (take the X axis as an example)

Three regression coefficients corresponding to ˆRAB
′ in ˆMA_X :

for i = [1, 2, 3] do
while epochs < total iterations n do

Randomly select a number j from 1 to n;
βij = βij − α ∗ ( ˆMA_X −MA_X) ∗MIGRF_X

end
end
ξX : while epochs < total iterations n do

Randomly select a number j from 1 to n;
ξX = ξX − α ∗ ( ˆMA_X −MA_X) ∗MIGRF_X

end

The data sampled is divided into the training set and the test set by the ratio of 8:2.
The training data are used to fit the installation matrix. The test set is used to test the
calibration effect.

After correcting the installation matrix by the above steps, the residual range between
the actual value and the simulation value translated to the installation coordinate system
is in [−540.55 nT, 511.98 nT] in the test set. It can be seen from Figure 6 that this step
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significantly eliminates the influence of different working conditions and greatly reduces
the error range.

Figure 6. Residuals after calibrating installation matrix.

However, the linear regression only assumes the linear relationship between the depen-
dent variable and the independent variable, and cannot directly deal with the multiplicative
errors described in Section 2.2 (these errors also cannot be expressed by mathematical formu-
las with clear physical meaning) and high-order small quantities. In addition, the influence
of local lithospheric anomaly and external field are not included in the IGRF model, and this
step cannot deal with this impact. Therefore, we consider establishing a nonlinear model to
further reduce the error by learning the rules of these residuals by using the characteristics
of the residual sequence.

3. Processing of Residual Errors
3.1. Autocorrelation of Residual Sequence

The residual sequences of different working conditions after calibration are obtained
from Section 2.4, and then spliced in chronological order. Then the autocorrelation of the ob-
servation sequence is calculated by using the autocorrelation function. The autocorrelation
function is defined as,

ρk =
∑n−k

t=1 (RSt − R̄S)(RSt−k − R̄S))
∑n

t=1(RSt − R̄S)2 (5)

where RSt is the t-th value of residual sequence RS, R̄S is the mean value of sequence RS, k
is the lag order, and n is the sequence length.

Figure 7 shows the calculation result. The dashed line represents the 99% confidence
intervals. When the autocorrelation value corresponds to a lag order located outside the
dashed line, it indicates that the lag order has autocorrelation in statistical significance. It
can be seen from the figure that the residual sequence remains the maximum 135-order
autocorrelation (since the subsequent orders do not exceed the confidence intervals, only
the first 1000 orders are shown).
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Figure 7. Sequence autocorrelation.

Therefore, we seek a time series model with long-term historical memory ability to
decrease sequence autocorrelation to reduce residuals.

3.2. Time Series Model

LSTM is a commonly used model with long and short-term memory ability.
Zhang et al. [28] adopted long short-term memory to reflect long-term memories of battery
degradation tendency. Lu et al. [29] predicted electricity price based on LSTM. However,
there is a risk of gradient vanishing and gradient explosion, and this is time-consuming
due to the property of the back-propagation direction of time. A detailed discussion is
shown in Appendix A. Hence, we use the TCN to avoid the disadvantages of LSTM and
meet the needs better:

3.2.1. TCN Network

1. Dilated Causal Convolution
As shown in Figure 8, TCN has the characteristics of both causal convolution and
dilated convolution [30]. Formally, for one-dimensional input sequence RS and a filter
f : 0, . . . , k− 1→ R, the convolution result is,

F(t) = (RS ∗d f )(t) =
k−1

∑
i=0

f (i) · RSt−d∗i (6)

where k is the convolution filter size, d represents the sampling interval (expansion
coefficient), and t− d ∗ i accounts for the direction of the past. When d = 1, it indicates
that each point is collected, and the higher the level, the larger the d.
Causal convolution ensures that the output result at each time is determined by the
current and previous time. The advantage of dilated convolution is that it increases
the receptive fields without pooling loss information, so that each convolution output
contains a large range of information. At the same time, the property of interval
sampling avoids the problem of too many convolution layers and reduces the risk of
gradient disappearance. Thus, it allows for both very deep networks and a very long
effective history.
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Figure 8. Dilated causal convolution. The green dashed and solid lines are residual connections. The
blue and grey lines indicate dilated casual convolution method.

2. Residual connection
Residual connection transmits information directly between layers without convolu-
tion, which is a very effective way to train deep networks [31]. Figure 9 shows that
in a residual block, the signal is transmitted by a weight layer composed of a series
of operations such as causal expansion convolution and normalization, and also is
directly mapped to the sum of the output of the weight layer,

o(t) = RS(t) + F(t) (7)

where o is the output of the residual block. If F(t) = 0, the block turns into an
identity map, and thus degenerates into a shallow network. This structure has the
advantages of both the depth of the deep network and the shallow network. At the
same time, even if the gradient of the weight layer is 0, the gradient of the entire
residual network can be guaranteed not to be 0 due to the existence of the direct
mapping mechanism. This block reduces the risk of vanishing gradients further when
the model depth increases.
The advantages of the TCN can be analyzed as follows:

• In backpropagation, gradients do not accumulate along the time dimension,
but along the network depth direction, and the number of network layers is often
much smaller than the length of the input sequence. Furthermore, with the help
of residual connection, the risk of gradient disappearance is further reduced,
thus avoiding the gradient vanishing of RNN and LSTM networks.

• The TCN does not have to wait until the previous time is completed before
calculating the result of the current time. Instead, all times are convoluted at the
same time, which realizes parallelization and greatly reduces the running time.

• The dilated casual convolution mechanism of the TCN determines that it can
use long-term historical information to predict by increasing the receptive field
without dramatically increasing the model depth, which proves that it has the
ability to remember long-term historical information.

In addition, in the copy memory task experiment [16], the TCN has no decline in
memory ability in the sequence length from 0 to 250, and the 135 orders autocorrelation
of our residual sequence is just in this range.

3. Formula of the TCN receptive field

R f ield = 1 + 2 ∗ (k− 1) ∗ Nstack ∗∑
i

di (8)

where Nstack represents the number of residual blocks in the TCN, and the sum of
di indicates how many causal convolution layers are stacked in each residual block.
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For example, d = [1, 2, 3, 4] indicates that four causal convolution layers are stacked,
and the expansion factors of each convolution layer are 1, 2, 3, and 4, respectively.
We determine the parameters of the TCN according to the above formula and Figure 8,
the sequence has the maximum 135-order autocorrelation, so the input sequence
length is set to 150; since the first five orders have significant autocorrelation (the
autocorrelation coefficients are all greater than 0.5), the convolution kernel size is set
to 6; the length of the input sequence is not too large, so the number of residual blocks
is set to 2. This way the receptive field is larger than the length of the input sequence.
According to Formula (6), the depth is set to 4, d = [1, 2, 4, 8]. The maximum missing
points interval is 24, so the output length of the whole model is set to 30.

Figure 9. TCN residual block.

3.2.2. SE Attention Mechanism Module

SENet is a network model in computer vision, namely the squeeze-and-excitation
network, which contains an attention module. It can learn the correlation between the
output channels of the TCN module, assigns a weight to each feature channel, and pays
more attention to those channels with key features, so as to improve the feature extraction
ability of our method and the performance of the model. The SENet has a small amount of
calculation and is very suitable for embedding into various networks. It mainly includes
the steps of squeeze and excitation. See Appendix B for a detailed description.

4. The Overall Framework

The overall framework is shown in Figure 5. Firstly, we calibrate the installation
matrix by the simulation data and actual data of different working conditions. Then we
concatenate the residual errors between actual values and corrected simulation values in
the installation coordinate system in chronological order for training the TCN-SE model.
For the breakpoint t and the following p consecutive breakpoints, we correct the 1 + p
simulation data under the installation coordinate system by the corrected installation matrix
first, then add the corresponding residuals predicted by the trained model, and the total
values are the complements for the breakpoint t and the following p breakpoints.

5. Experiment and Result Analysis
5.1. Continuous Sequence
5.1.1. Data Acquisition

For the residual sequence obtained in Section 2.4, select the point that meets the fol-
lowing requirement: 179 points after this point are uninterrupted. Among them, 150 points
are used as model input, and 30 points are used as model output. Including this point,
180 sampling points are added to the continuous sequences. All such sequences are di-
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vided into training sets and testing sets at a ratio of 8:2. For the sampling point n, such a
continuous sequence form is,

continuous_sequence_n = [xn, xn+1, . . . , xn+149, xn+150, . . . xn+179] (9)

5.1.2. Model Evaluation Metrics

To evaluate the performance of the model, we use the MAE and the error range. The
MAE for continuous sequence n (abbreviated to CSn) is defined as,

MAE =

N
∑

n=1

179
∑

t=150
| CSnt − ˆCSnt |

30 ∗ N
(10)

where CSnt and ˆCSnt represent the predicted value and the real value of the continuous
sequence n at time t, respectively. N is the number of continuous sequences. The smaller
the MAE, the better the performance of the model.

The error range is defined as,

error range = (Minimum(CSnt − ˆCSnt), Maximum(CSnt − ˆCSnt))

t ∈ [150, 151, . . . 179], n ∈ [1, 2, . . . N]

5.1.3. Deep Learning Experiment

All the experiments were based on Windows operating system. Tensorflow (version
2.4.0) was selected as the deep learning framework. The GPU is NVIDIA RTX6000.

According to Formula (8), in order to make the receptive field cover the autocorrelation
orders, we set the TCN-SE network parameters and training parameters as in Table 1:

Table 1. Model parameter settings.

Parameter Settings

Number of residual blocks 2
Convolution kernel size 6

Dilations [1, 2, 4, 8]
Model input length 150

Model output length 30
Number of iterations 100

Batch size 16
Loss function MSE

Optimizer Adam

5.1.4. Comparison of Different Models

The MAE and error range are used as evaluation indicators. The comparison of the
prediction effects of LSTM, TCN, and TCN-SE models on the testing set is shown in Table 2.
Compared with LSTM and TCN, the TCN-SE has significantly reduced MAE, error range,
and time consumption.

Table 2. Model effect comparison.

Network MAE (nT) Error Range (nT) Time Cost (s)

LSTM 112.39 (−446.24, 411.46) 545
TCN 67.27 (−225.98, 213.26) 176

TCN-SE 55.71 (−175.18, 168.28) 251
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5.1.5. Prediction on Test Set

To compare with actual values, the predictions in the testing set are added by cor-
rected simulation values in the installation coordinate system by the correction installation
matrix from Section 2.4 of the corresponding time. Figures 10 and 11 show comparison of
prediction effects on different days. The selected subfigures show residual errors of three
models for the corresponding time. The subfigures show residual errors of three models in
the selected time periods, which are always difficult to predict accurately. It can be seen
that our method is accurate at almost every sampling point in the two figures, and has
stronger long-term memory ability and more reasonable distribution mechanism.

Figure 10. Prediction effect of three models. The orange curve is the actual sequence. The blue point,
green plus symbol, and red horizontal line represent the predictions of the TCN-SE, TCN, and LSTM,
respectively. We enlarged part of the forecast period to show the details of the residual errors of three
models. Before and after the red dotted line are the historical and prediction periods, respectively.

Figure 11. Prediction effect of the continuous sequence on different days from the above figure.

5.2. Sequence with Breakpoints
5.2.1. Data Acquisition

For the residual sequence obtained in Section 2.4, we select the breakpoint that meets
the following requirement: the number of consecutive breakpoints after the breakpoint
is less than 30. The first 150 sampling points before the breakpoint and the following 30
sampling points including the breakpoint are added to the sequences. For the breakpoint
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m, it is assumed that p points are continuously missing after the breakpoint and expressed
by ∗. The form of the sequence with breakpoint m (abbreviated to SWBm) is,

SWBm =
[
xm−150, xm−149, . . . , xm−1, ∗, ∗, . . . , xm+p, . . . xm+29

]
(11)

5.2.2. Model Evaluation Metrics

The MAE for sequences with breakpoints is defined as,

MAE =

M
∑

m=1

179
∑

t=pm+150
| SWBmt − ˆSWBmt |

n
∑

m=1
30− pm

where SWBmt and ˆSWBmt are, respectively, expressed as the real values and the model
predicted values of breakpoint sequence m at time t. pm is the number of breakpoints
in sequence m. M is the number of sequences with breakpoints. The smaller the MAE,
the better the performance of the model.

The error range is defined as,

error range = (Minimum(SWBmt − ˆSWBmt), Maximum(SWBmt − ˆSWBmt))

t ∈ [pm + 150, pm + 151, . . . 179], m ∈ [1, 2, . . . M]

5.2.3. Comparison of Different Models

Since the missing points cannot be supplemented, we use the predictions after the
breakpoints in the forecast period, which are at the time without missing values to demon-
strate the extrapolation and the complementation ability of the method. In addition, there
is a little difference from before. The predicted residuals at the time of missing points are
added to the actual residual sequence as historical residual values, to avoid the situation
that the number of continuous historical data before some breakpoints is less than the model
input length. At the same time, we realize rolling complement and prediction. The MAE
and error range in Section 5.2.2 are used as evaluation indicators. The comparison of the
prediction effects of LSTM, TCN, and TCN-SE models which are trained on continuous
sequences on the test set is shown in Table 3. We found a similar conclusion to that in
Section 5.1.4.

Table 3. Model comparison.

Network MAE (nT) Error Range (nT)

LSTM 144.15 (−483.42, 442.98)
TCN 92.19 (−254.67, 259.26)

TCN-SE 74.63 (−215.18, 211.63)

5.2.4. Prediction Effect

Similar to Figure 10, the orange curve in Figures 12 and 13 is the actual values. The blue
breakpoints consist of the sum of 30 (model output length) predictions after breakpoints
and corrected simulation values in the installation coordinate system of corresponding
time. The subfigures show the residual errors in the corresponding periods.
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Figure 12. Prediction effect of the sequence with breakpoints. The orange curve is the actual data.
Dark blue points are predictions after breakpoints to highlight locations. The subfigure shows the
residual errors of the two curves in the selected period.

Figure 13. Prediction effect of the sequence with breakpoints on different days from the above figure.

6. Conclusions

In this paper, a two-step model is proposed, which first corrects the installation
matrix under different working conditions and uses the deep learning method to fit the
residual errors. Considering the different effects of the external field, lithosphere, and
stray magnetic field in different directions, the installation matrix is corrected separately
in two working conditions. Because the residual sequence contains autocorrelation and
nonlinear information, the TCN network with dilated causal convolution mechanism is
used for fitting, and the SE model with attention mechanism is used to improve the accuracy.
Experiments show that the TCN-SE used in this paper has an MSE of 74.63 nT and an error
range of [−215.18 nT, 211.63 nT] when predicting the subsequent data of missing values.
The extrapolation ability of our method is proved, and it can be used to complement the
missing values of on-orbit magnetic data.

However, the installation matrix is not only affected by two working conditions
of directing the Sun and the Earth, but may also be related to the disturbance caused by
different tasks (working conditions). In order to get more detailed classifications of working
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conditions and further reduce the linear error of the installation matrix, we consider
clustering the residual sequence between the actual values and the inertial coordinate
system values after being multiplied by the installation matrix while directing the Sun and
the Earth time, respectively.

The universal magnetic map updates every five years, its magnetic isoplane moves
10–15 km every year, and the accumulated error will exceed 100 km in 10 years [32]. We
consider that the special magnetic model established in this paper can also replace the
magnetic map-matching method. It updates regularly according to the updated telemetry
data, and can be used for magnetic navigation and satellite attitude determination after the
extrapolated data are interpolated to meet the actual frequency requirements.
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Appendix A. Discussion of LSTM Disadvantages

LSTM is a commonly used model with long and short memory, but it has the following
two disadvantages:

1. LSTM cannot completely eliminate the risk of gradient descent in a long sequence
and may cause gradient explosion.
We use the simplified version of the LSTM block diagram shown in Figure A1 to illus-
trate this problem. For the parameter θ, the gradient formula for reverse conduction is:

∂ε

∂θ
=

∂ε

∂cn

n

∑
k=1

((
n

∏
i=k+1

∂ci
∂ci−1

)
∂ck
∂θ

) (A1)

∂ci
∂ci−1

=
∂( fi � ct−1 + Ii � c̃i)

∂ci−1
= diag( fi) +

∂(Ii � c̃i)

∂ci−1
(A2)

where ε is the difference between the output of the output gate and the actual value,
[x1x2 . . . xn] is the input sequence; I, f , c, h and o represent the state of the cell state,
forget gate, hidden layer, and output gate. If the second term on the right side of
the above equation can be ignored, since the value range of the forget gate state is
from 0 to 1, there is still a risk of gradient disappearance. However the first term
is not multiplied by the weight matrix, thus the term will not be reduced by the
weight or the bias parameter, and the property of the tanh function determines that
the forget gate will always have some mappings to −1 and 1, so the risk of gradient
disappearance is much smaller than that of an RNN. If the second term on the right
side of the above equation is not negligible, the sum with the first term may be greater
than 1, so there is a risk of gradient explosion.
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Figure A1. LSTM simplified structure.

2. Each LSTM unit has four full connection layers. If the time span is long, the network
will be deep, and calculations will be cumbersome and time-consuming.

In addition, Ref. [33] proved that LSTM has geometric ergodicity and, therefore, does
not have long-term memory ability. From the comparison results of the copy memory task
experiment [16], its long-term memory ability gradually decreases with the increase of
sequence length.

Appendix B. SE attention mechanism

Appendix B.1. Squeeze and Excitation

The squeeze function is defined as:

zc = Fsq(U) =
1

H ∗W

H

∑
i=1

W

∑
j=1

uc(i, j) (A3)

where zc denotes the c-th element of squeezed channels, Fsq(.) denotes the squeeze function,
U = [u1, u2 . . . un] denotes the hole 3-D features from tcn network whose shape is (H, W,
C) and uc(i, j) denotes the data at row i column j of uc. After squeezing the input features
U by function Fsq(.), a vector is generated with zc be the c-th element of z whose shape is
(1, 1, C).

Let the matrix W1 ∈ C× C/r and W2 ∈ C/r× C be two fully connected layers with
bottleneck structure whose compression ratio is r. Let σ1(.) as well as σ2(.) denote the reLU
function and the sigmoid function, respectively. The excitation function Fex is defined as:

s = Fex(z) = σ2(W2σ1(W1z) (A4)

After the squeeze and excitation steps, we get an attention vector s, which we can use
to adjust the channels of U. The formula is defined as follows:

yc = Fscale(sc, uc) = sc ∗ uc (A5)

where Y = [y1, y2 . . . yn] denotes the final output of the squeeze-and-excitation process.
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Figure A2. SENet structure.
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