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Abstract: Federated learning is a type of privacy-preserving, collaborative machine learning. Instead
of sharing raw data, the federated learning process cooperatively exchanges the model parameters
and aggregates them in a decentralized manner through multiple users. In this study, we designed
and implemented a hierarchical blockchain system using a public blockchain for a federated learning
process without a trusted curator. This prevents model-poisoning attacks and provides secure updates
of a global model. We conducted a comprehensive empirical study to characterize the performance
of federated learning in our testbed and identify potential performance bottlenecks, thereby gaining
a better understanding of the system.
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1. Introduction

Machine learning has evolved over the last few decades, and deep learning based on
multilayered deep neural networks (DNNs) has received an enormous amount of interest
in various areas of research [1–3]. In particular, deep learning using convolutional neural
networks (CNNs) has demonstrated a notable performance in terms of object detection and
classification used in computer vision.

Despite the remarkable performance achieved by deep learning, concerns related
to data privacy have increased, particularly in the medical field, which requires private
and sensitive patient information for machine learning. For this purpose, general data
protection regulations (EU GDPR) [4] were recently released.

To achieve privacy protection, Google proposed federated learning, which enabled
collaborative learning without the sharing of private data samples [5,6]. Instead, learners
exchange weights or gradient parameters of their own local model for updating. In practical
terms, a trusted central worker as a curator aggregates models of multiple learners and
returns an aggregated model as a joint representative model.

For the curator, blockchain is a popular consideration as a method to securely protect
the joint model from poisoning attacks [7]. Federated learning is vulnerable to model-
poisoning attacks [8–10], which are more significant than data poisoning. Malicious nodes
can easily distort the model parameters and degrade the agent’s intelligence. Therefore,
several works have been proposed for robust aggregation. Blanchard et al. [11] proposed
the Krum algorithm, which updates the global model by a majority group with a minimum
sum of Euclidean distances among local models of members. Similarly, Yin et al. [12]
proposed the median and trimmed mean algorithms, which remove extreme local gradient
values to ensure the robustness of the distributed gradient descent algorithms. Recently,
a clustering approach to remove malicious local gradients has been introduced [13,14].
Li et al. [15] introduced a central server framework to detect and remove malicious model
updates using a powerful detection model. However, aforementioned approaches that
rely on the central sever for the aggregation are vulnerable to additional security threats.
Che et al. [16] proposed a committee framework for the Byzantine robust update that
guarantees convergence.
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Recent successes in cryptocurrencies, such as Bitcoin [17], Ethereum [18], Ripple [19],
and Stellar [20], have proven that the blockchain consensus algorithms (e.g., proof of work)
can prevent Sybil attacks with invalid and malicious transactions. Therefore, the blockchain
can be used for a serverless FL framework. Based on its consensus algorithm, the model
parameters have been updated and distributed to users after a cross-verification [21,22].

Several previous studies have explored a collaboration between blockchain and fed-
erated learning. The block rate and interval of the blockchain are critical for updating
the model through federated learning. Kim et al. [23] introduced a seminal study on
blockchain-based federated learning (BlockFL) in terms of the architecture and analy-
sis of the end-to-end latency. Pokhrel et al. [21] conducted a delay analysis of BlockFL
in wireless and mobile vehicular networks using a mathematical model. Lu et al. [24]
proposed asynchronous federated learning for selecting a subset of heterogeneous ve-
hicles of a global model considering their computing power and communication delay.
They reduced the learning delay for the combinatorial optimization problem using a
deep reinforcement learning (DRL) algorithm. Additionally, they improved the commu-
nication efficiency and latency of the blockchain for federated learning in mobile edge
networks [25,26]. Desai et al. [27] implemented and experimented with blockchain-based
federated learning on the hyperledger fabric. Moreover, model-poisoning attacks have
been explored in several studies. Weng et al. [28] proposed an incentive mechanism using
the blockchain for federated learning, which prevents misbehavior of the participants.
Additionally, Qu et al. [29] analyzed a blockchain that can protect a global model from a
poisoning attack, which results in the blockchain growing sufficiently fast in terms of the
poisoning resistance.

However, reaching a consensus for an aggregated model is a challenge if federated
learning has non-independent and identically distributed (non-IID) datasets across different
users. This causes a skewness of the model parameters, eventually decreases the accuracy,
and disturbs the convergence. Several studies have been conducted to solve the non-IID
data problem in federated learning, considering solutions such as data sharing, node
clustering, and algorithmic approaches [30]. Some studies have considered the use of
the blockchain to address this problem. Using the blockchain and DRL for finding top-K
clustered clients for the blockchain update, Wang et al. [31] solved the divergence problem
that occurs from the non-IID characteristic of distributed datasets. Li et al. [32] proposed
committee-based cross-verification for global model updates, which is effective against
non-IID datasets and poisoning attacks.

Although several studies have discussed the challenge of non-IID datasets and model
poisoning, the proposed solutions have limitations in that users have feasible test data for
verifying and obtaining a consensus regarding the global model. However, users with parts
of a dataset used for training have a high possibility of having the same data for testing.

To solve the non-IID and model-poisoning problems, we propose two-level blockchains
for local model aggregation with distributed verification in directed acyclic graph (DAG)-
based blockchain shards and global model aggregation by shard committees in the main
blockchain. The major contributions of this study are highlighted below:

• This is the first blockchain study on model protection from a poisoning attack during
federated learning with non-IID train and test datasets.

• A novel secure update mechanism of the global model is proposed from the asyn-
chronously operating distributed DAG shards.

• This is an empirical study conducted on a real testbed for investigating the feasi-
bility of the proposed system using a convolutional neural network (CNN) and the
MNIST dataset.

In our testbed, we evaluated the local model update driven by our novel tip selection
algorithm in the DAG shards as well as global model aggregation based on the proposed
voting system. The tip selection algorithm leads the model to select a tip based on the
similarity and multiplicity of the tip’s model in the tangle of model transactions. Experi-
mental results show robust learning performance even with 50% malicious nodes, such as
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85.24%, 81.53%, and 77.16% detection accuracy for model-poisoning, data-poisoning and
label-swapping attacks, respectively.

The remainder of this paper is organized as follows. We briefly review federated
learning and blockchain combinations in Sections 2 and 3, respectively. We then describe
our proposed system in Section 4 and present the experimental results in Section 5. Finally,
we present some concluding remarks regarding this study in Section 6.

2. Federated Learning
2.1. Federated Model Averaging

Federated learning enables users to update a joint global model using their own
private data iteratively. For this purpose, a curator selects a subset of connected workers
and provides them with the latest global model for local training. Subsequently, the curator
collects and aggregates the local models updated by the workers for a new global model.

Federated learning can be formulated as the following joint optimization problem.
Each node, i ∈ N , owns a set of local data samples, Di, and trains a model to solve a
regression problem using such samples in a distributed manner. Using a sample d = (x, y),
the training objective is to minimize a loss function such as the mean square error (MSE),
where l(ω; d) = (x>d ω − yd)

2. For all nodes N , the joint optimization problem can be
written as follows:

min
ω

f (ω) ,
1
|D| ∑

i∈N
DiFi(ω), (1)

where the loss function Fi(ω) , 1
Di

∑d∈Di
l(ω; d) and D = ∪Ni=1Di.

To solve the above distributed optimization problem, the global model can be updated
as ω(t+1) ← ω(t) − η∇ f (ω(t)) using gradients of nodes based on a stochastic gradient
descent (SGD) as follows:

∇ f (ω(t)) = ∑
i∈N

Di
|D|∇Fi(ω

(t)) (2)

Instead of training with every sample and communicating with its gradient, each node
can update the local model based on the mini-batch and send its own ω

(t+1)
i to the curator

infrequently. For this, the global model is updated simply by federated averaging (FedAvg)
at each epoch, t of Di samples, as follow [33]:

ω(t+1) ← ∑
i∈N

Di
|D|ω

(t)
i (3)

2.2. Asynchronous Federated Learning

Because the local training delay varies according to the capability of the worker
devices, the central curator needs to select a set of workers for aggregation to avoid
excessive update delays from the stragglers [24]. Alternatively, several studies [34–36] have
explored asynchronous federated learning instead of conventional synchronous learning.

Cong et al. [34] proposed FedAsynch to average new weight parameters, ω, adaptively
by a mixing parameter α ∈ (0, 1), which is determined through the decreasing staleness
function fs and constant variable τ, ω(t+1) = (1− α)ω(t) + αω

(t)
i , where α = fs(t− τ). Ac-

cordingly, the old model parameters are slightly added using the smaller α. Chen et al. [36]
investigated online aggregation, where the curator and workers exchange and update
the models asynchronously. Similarly, they adopted a decaying local update with a β
coefficient that induces a balance between the old and new local gradients. Chai et al. [35]
proposed FedAT, which aggregates a global model with a local model of a cluster composed
of homogeneous devices.

These previous studies proved mathematically that asynchronous updates can achieve
a learning convergence with a decaying coefficient for the weight average of the models.
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Additionally, the experimental results showed that a feasible level of accuracy can be
achieved even with non-IID data for local training.

2.3. Training with Non-IID Data

Federated learning based on a stochastic gradient follows IID sampling to avoid biased
estimates of the gradient for the global model. However, it is unrealistic to obtain local IID
samples for all distributed worker devices. Although FedAvg is known to operate even with
non-IID data, it degrades the accuracy by 11% for MNIST compared to an IID case [37]. The
degree of weight divergence owing to the use of non-IID data is significant based on the
data skewness of a node in comparison to the actual distribution for the whole population.

The convergence of FedAvg on non-IID data was analyzed in [38]. The required
aggregation rounds for a particular accuracy are the number of steps required for the loss e,
i.e., Te over E local iterations,

Te

E
∝ (1 +

1
|N | )EG2 (4)

where the required number of aggregation rounds is proportional to the inverse of |N |, E,
and the upper bound of the gradient norm G2, i.e., O( EG2

|N | ). In other words, a large number
of nodes and limited local iterations contribute to improving the accuracy of a global model,
whereas heavy local iterations, such as 103, cause a weight divergence and decrease the
accuracy. Even with IID data, the weight divergence is likely significant if local models
have different initial parameters [37].

In a survey conducted on FedAvg with non-IID data [30], data sharing, fine-tuning
algorithms with personalized models, and client clustering approaches were discussed.
Here, we focused on a clustering approach that creates node groups for federated learning
according to their distribution of attributes. These attributes can be mutually exclusive
across clients or partially overlap.

3. Blockchain for Federated Learning
3.1. Blockchain Overview

Blockchain is a tamper-proof ledger operating in decentralized and anonymous peer-
to-peer (P2P) networks. Individuals and organizations use the blockchain to record their
transactions without requiring permission to access it. For this purpose, the transactions
are verified across participants before they are written in chained blocks. The Nakamoto
consensus algorithm, i.e., proof of work (PoW) for verification, is the most famous algorithm
for Bitcoin, and although it works effectively for protection from Sybil attacks and data
manipulation, it is expensive because of the required hash power and long block interval.

Many other PoX algorithms have emerged, including proof of stake (PoS) (e.g., Peer-
coin [39], Blackcoin [40], and follow-the-Satoshi procedure [41,42]). To accelerate this
agreement, a delegated proof of stake (DPoS) was proposed [43]. Additionally, proof of
burn [44], proof of validation [45], proof of elapsed time, and proof of capacity (e.g., storage
space) [46,47] have been proposed.

3.2. Blockchain Scalability

Distributed blockchain systems suffer from intrinsic scalability problems because
they synchronize a single chain globally without forking [48–51]. For instance, Bitcoin
can process only seven transactions per second (TPS) compared to legacy systems such
as VISA, which can tolerate 2000 TPS. There have been several approaches to scaling up
the blockchain.

First, off-chain techniques such as a Raiden network [52] and plasma [53] are used to
offload transactions in the main chain. Additionally, L2 protocols are needed to verify the
state information between the local and global main chains periodically or aperiodically,
which causes an update latency between them [54]. Second, multiple on-chains, called
blockchain shards, process transactions in parallel using multiple committees [48]. Several
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sharding-based blockchains have been proposed, including RScoin [55], omniLedger [56],
and RapidChain [50].

Instead of a legacy chain structure, a directed acyclic graph (DAG) has recently been
considered to overcome the scalability problem [57]. Some cryptocurrencies based on
the DAG blockchain have already been developed, including NXT [41], IOTA [58], and
dagCoin [59]. The DAG structure is advantageous for processing multiple transactions
independently, where participants select tips to add their own transactions and verify pre-
vious transactions along random walk paths. Such a tip selection algorithm enables nodes
to find a reliable path that has been evaluated much earlier by following the transactions.
This tangle can create multiple reliable chains within the DAG, as indicated by a higher
cumulative weight. For DAG growth, the tip selection range should be configured that
prevents the DAG structure from becoming wider as the same tips are selected heavily.

In this study, we consider a DAG-based blockchain for federated learning that allows nodes
to share local models securely and update them asynchronously in a distributed environment.

3.3. Blockchain for Federated Learning

Seminal studies on the combination of blockchain and federated learning have mostly
investigated the effects of block creation and consensus delay on federated learning pro-
cedures [21,23,25,26]. Subsequently, studies on asynchronous and distributed updates in
federated learning have been based on blockchain [24,60].

In federated learning, it is critical to prevent model poisoning by anonymous adver-
sarial nodes. Consensus algorithms of the blockchain, such as PoW [29] and PoS [61], can
efficiently protect the global model from poisoning attacks by malicious nodes. Several
studies [25,62] have considered private and permissioned blockchains, in which trusted
nodes manage the learning procedure. Otherwise, reliable nodes can be recruited for
the consensus procedure based on their reputations [63] or incentive systems [28]. For
example, in [32], reliable committee members are elected for cross-verification of the global
model using incentives for honest behavior. However, the private blockchain limits its
usability, and alternative approaches require additional systems, such as cryptocurrency
and reputation scores.

4. DAG-Based Sharding for Secure Federated Learning

In this section, we present DAG-based sharding for federated learning under poison
attacks, such as model poisoning, data poisoning, and label flipping. In a distributed
learning environment, the expected challenges are enumerated as follows:

• Each node has a non-IID dataset for training and testing with a different distribution
probability.

• The computing capability of a node varies according to the device type.
• Open accessibility allows Sybil-based poisoning attacks on local or global models.

Previous studies on algorithmic or systematic approaches used to solve non-IID
datasets and asynchronous update problems assume that each device has IID test sets for
conducting an evaluation on an aggregated model. However, it is unrealistic for nodes to
have a sufficient number of samples to estimate the loss of the global model. Therefore, a
consensus based on the majority is a possible way to update the global model [32].

Unfortunately, a simple voting solution cannot prevent model poisoning with targeted
attacks because nodes cannot recognize the target attack if the targeted part of the model is
irrelevant to their own data set. For instance, nodes who only have image data 2 and 3 of
MNIST will vote for a poisoned model with 90% accuracy for data 2 and 3 rather than the
normal model with 85% accuracy. However, the chosen model probably has lower accuracy
for other image data, which can happen even in untargeted attacks on the model.

Therefore, we propose a two-step verification procedure for the validation of aggre-
gated models using hierarchical blockchains that consist of the main public blockchains,
such as Bitcoin and Ethereum, and local shards based on DAGs. Details of the proposed
system are described in the following subsections. Related symbols are described in Table 1.
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Table 1. The list of symbols that are used to describe the proposed system.

Notation Description

N Set of client nodes in a federated learning network.
i A client node that conducts local training in the network. i ∈ N
Di Set of local data samples that each node i owns.
η Learning rate.
w The weight of model.
ζ j,k The cumulative reference score (CRS) of the transaction.
S Set of shards in the network.
Sk A shard where the index is k.
Ms

t The local model for the maximum reference score
within a specific range in each shard.

Gt
ρ A global model.

ρ The integer value starting from 0 to |S| as the order of the shard
models uploaded to the main blockchain.

V Voting function: nodes belonging to the committee
select one model based on the accuracy of the two models.

r Global round
B The local batch size
E The number of local epochs
TX A transaction in the DAG blockchain.

4.1. Hierarchical Blockchain Architecture for Federated Learning

The hierarchical blockchains for secure federated learning are illustrated in Figure 1a,
where multiple DAG-based local shards are autonomously established by the participants
for local model aggregations. Additionally, a public blockchain is used for global model
aggregation by all users.

(a) (b)

Figure 1. System architecture and flow. (a) System architecture for federated learning with hierarchi-
cal blockchains; (b) System flow of hierarchical blockchains.

As illustrated in Figure 1b, model verifications and updates are iteratively achieved
through a closed loop between the main blockchain and its shards. In a local shard chain,
the local model is updated asynchronously according to the computing capability of each
node. The local model of the shard is periodically uploaded for global aggregation on the
main chain. For example, nodes of shard #1 create model transactions and combine them
locally every n epochs in the DAG and upload a final local model to the main blockchain
after reaching m epochs. Subsequently, one of the chain nodes in the main blockchain
sequentially aggregates the local models. Although the number of epochs for the local
model update can vary, the total number of local iterations E in Equation (4) for global
aggregation is comparable for all shards.

4.2. DAG-Based Shard Formation

For local training with non-IID data, data-oriented blockchain shards are established
autonomously by nodes according to their data distribution. For instance, node i joins
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shard s with the smallest cross-entropy −∑x pi(x)log2 ps(x), where pi(x) and ps(x) are
the probability distributions of node i and shard s for data x. However, owing to privacy
concerns, the sample distribution is typically unknown to other nodes.

Instead, each worker selects a shard based on the local model accuracy evaluated by its
own data, i.e., a shard with the highest accuracy model. As the training and aggregation are
repeated, the best shard for a node can be changed. Because a local shard is a permissionless
DAG chain, the nodes can join and leave the shards liberally according to their own accuracy.

Initially, each node trains a local model during n epochs and broadcasts it to the nearby
nodes. Once the nodes receive other node models by flooding, they form |S| shards using
the following the K-means clustering algorithm, which determines sets Sk iteratively to
minimize the sum of the weight difference.

arg min
S

|S|

∑
k=1

1
|Sk| ∑

ωi ,ωj∈Sk

∥∥ωi −ωj
∥∥2 (5)

The genesis model of shard #i is the closest to the centroid from K-means clustering
as follows:

arg min
ωi

∥∥∥∥∥∥ωi −
1
|Sk| ∑

ωj∈Sk

ωj

∥∥∥∥∥∥
2

(6)

The Algorithm 1 describes the shard formation process in detail. In lines 1–11, each
node creates a model using its own dataset. Lines 12–17 indicate the initial process for client
nodes to create a shard. First, each client node exchanges models and their corresponding
node information with each other. Each node then creates shards cooperatively based
on the clustering algorithm in Equations (5) and (6). In lines 19 and 20, the client node
continuously switches shards based on the accuracy during the learning process.

Algorithm 1 Shard initiation algorithm.

Input: |N | ≥ |S|
1: procedure ENGAGE SHARD(r, |S|)
2: if r = 0 then
3: Initialize w0
4: for each client node i ∈ N do
5: B ← Split Di by batches of size B
6: for local epoch e = 1, 2, · · · , E do
7: for batch b ∈ B do
8: ω

(t+1)
i ← ω

(t)
i − η∇ f (ω(t)

i )
9: end for

10: end for
11: end for
12: while each client node i participate in shard Sk do
13: Broadcast ωi into federated learning network
14: Receive ω from other nodes
15: Sk ← K-means clustering(ω, |S|)
16: node i participate in a shard Sk
17: end while
18: else
19: Select highest accuracyMt

m
20: node i switches into a shard Sm
21: end if
22: end procedure
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4.3. Local Model Aggregation

For the local model aggregation in a DAG-based shard, the tip selection algorithm
adopts a two-phase procedure: (i) selecting candidate tips at least more than |M| = 2
based on model accuracy and similarity, and (ii) performing a check of the aggregation
history for multiplicity using a random-walk exploration.

min
m

1− α

|M|+ 1
Fi(ω̃) + α ∑

m∈M

(
1− ωm ·ωi
‖ ωm ‖2‖ ωi ‖2

)
(7)

where ω̃ = ∑m∈M ωm + ωi and Fi(ω̃) is the loss estimated by the test samples, as in
Equation (1), in which m is a transaction that contains a local model.

The right-hand term of this equation is the cosine similarity of the NN weight parame-
ters. Additionally, α ∈ (0, 1) is the weight value for multiple objectives. Each node selects
tips with a higher accuracy for its own test data and similarity. Owing to the limitations of
an accuracy evaluation with the skewed test samples, the model similarity information is
useful for preventing a model divergence and targeted attacks on the model parameters.

Since each node commits a single transaction during the average epoch time E[Tep],
the search space for the tips is limited by the number of nodes in a shard. Otherwise, a deep
search space imposes a higher overhead on evaluating the level of accuracy and similarity.
To approximate the number of shared nodes, a node can estimate the mean of the arrival
rate of the transactions, λ, and configure the search space as λE[Tep].

Owing to the heterogeneity of the computing power, a different number of transactions
from each device may occur during the same epochs. This causes the local aggregation to
be biased toward a model of powerful devices. Additionally, malicious users can generate
meaningless models to destroy the local model. Accordingly, to check the aggregation
history, our tip selection algorithm walks randomly based on the Markov chain Monte
Carlo selection algorithm (MCMC) [64], and the transition probability from transactions j
and k can be derived through a monotonically increasing function.

Pj,k = log((ζ j − ζk)− σ) (8)

where σ is a positive constant for normalization, and ζ j,k is the cumulative reference score
(CRS) of a transaction. The CRS is the cumulative value of the reference score (RS), which
indicates how many transactions refer to aggregation. Figure 2 illustrates an example of a
transaction tangle in a DAG shard, where the first number in each transaction is the CRS
and the second number is the RS. Additionally, N# denotes the identifier of the transaction
node. Random walking from a candidate tip allows a node to find a reliable aggregation
path for the local model (highlighted by yellow edges).

Supposing that a poisoned model colored in red appears in TX2, some of the nodes
will likely choose TX2 as a tip owing to a lack of information, i.e., TX3 is colored yellow.
Subsequently, the poisoned model can be propagated to the following models even though
the degree of distortion can be diminished. For example, the colored TX6 and TX7 mix
the contaminated TX3 with another fine model in the figure. Unfortunately, because the
following transactions prefer to select the contaminated model owing to the similarity, such
distortion from the wrong model combination continues. Supposing that TX3 and TX10 are
issued by the same node, TX10 is likely to select TX6 and TX7 over the others because of
their high cosine similarity. Therefore, the multiplicity of the transactions as a degree of
model duplication must be considered along the random walk path. A higher multiplicity
path eventually reduces the model diversity and final accuracy.
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Figure 2. Example of tip selection: the white transaction, a normal model; the red transaction,
a poisoned model; the other color transaction, a model contaminated by aggregating a poisoned
transaction.

The Algorithm 2 describes the local model aggregation algorithm in detail. Lines 2–6
configure the genesis model with the global model generated in the previous round. Recall
that a node selects tips for local aggregation in two steps: lines 13–19 represent the first step
in calculating the transaction score within the search space λE[Tep] based on Equation (7).
In lines 20 and 21 as the second phase, the two transactions with the lowest multiplicity
values are selected. In this study, we considered two tips for local aggregation. MULTI() is
a function that derives the number of transactions of the same node along a random path
using the MCMC selection algorithm for a given tip.

Algorithm 2 Local model aggregation algorithm.

Input: node i ∈ N has participated in Sk
1: procedure LOCAL AGGREGATION(r)
2: if r = 0 then
3: Initialize w0
4: else
5: w← weight of global model from previous round
6: end if
7: B ← Split Di by batches of size B
8: for local epoch e = 1, 2, · · · , E do
9: for batch b ∈ B do

10: ω
(t+1)
i ← ω

(t)
i − η∇ f (ω(t)

i )
11: end for
12: end for
13: for m ∈M(λE[Tep]) do
14: Rm ← min

m
1−α
|M|+1 Fi(ω̃) + α ∑

m∈M

(
1− ωm ·ωi

‖ωm‖2‖ωi‖2

)
15: Cm ← ∞
16: ifRm > E[R] then
17: Cm ←MULTI(m)
18: end if
19: ωn, ωm ←min Cm, Cn, m, n ∈ M
20: end for
21: ω(t+1) ← ∑

i∈W

Di
|D|ω

(t)
i where W is {ωm, ωn, ωi}

22: end procedure
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For local updates, a node trains its own model, adds it to one of the DAG shards, and
broadcasts the DAG chain over the network. In contrast to a conventional chain-based
shard that suffers from a serialization delay owing to concurrent transactions, a DAG-based
shard allows heterogeneous devices to record their own models asynchronously and update
independently. This asynchronous local update leads to the avoidance of aggregation delay
from stragglers.

4.4. Global Model Aggregation

At the end of a round, the local model with the highest RS is recommended as a
final model for global aggregation since the best local model probably receives more
selections from others. Here, the corresponding transaction should have CRS around
[(1− 1

|M| )CRSmax, CRSmax] to guarantee enough local aggregation within the shard. To
report the final model to the main blockchain, the transaction owner as a leader of the shard
creates a new transaction for their own model and broadcasts it to the main blockchain
through the chain nodes for global aggregation, as illustrated in Figure 1a.

A special chain node, which plays the role of global model management, aggregates
local models recorded in the main blockchain; otherwise, each node aggregates the models
of all shards individually. Furthermore, the global model can be recorded using a special
chain node in the main blockchain for other users.

However, it is critical that malicious nodes upload a poisoned local model in the main
blockchain because the chain node cannot validate the uploaded local models. For this,
we adopted a voting system based on the DAG shard in which the leader of each shard
confirms the voting members who contribute to the final model. In practical terms, the
leader attaches the DAG path information (i.e., the sequence of local transaction numbers)
of the final model to the global transaction. The leader registers the voting members using a
smart contract with their public keys, which can authorize voting from the members using
their signatures.

Figure 3 describes the aggregation procedure in the main blockchain when five
shards(#1 ∼ #5) exist in the federated learning network, where the shard local models
are uploaded asynchronously during the round. Thereafter, the global model Gt

i for round
t is updated sequentially whenever the local models arrive. The voting members evalu-
ate the global model using their own dataset to find the most accurate model across all
datasets. Additionally, we compare the old and new local models before global aggregation
because the selected local model might be contaminated after the last round, as illustrated
in Figure 2.

In the example of the figure, local models are uploaded in order of shards #3, #1, #5,
#2, and #4, and ρ indicates the sequence index. First, the committee members of a shard
s vote between the new Mt

s and old Mt−1
s that were uploaded in the previous round

once the local modelMt
s appears on the main blockchain. For instance, when the local

modelMt
3 is uploaded from the shard #3, the committee members vote betweenMt

3 and
Mt−1

3 . Accordingly, the first new global model Gt
0 isMt

3 ifMt
3 wins during the voting

process. Next,Mt
1 comes from the shard #1, and then voting is conducted again between

Gt
0 +M

t−1
1 and Gt

0 +Mt
1, where the weight of each model is multiplied by 5/2 in order

to match the weight ratio for the two models. Additionally, the voting members are all of
shard committees #1 and #3. If the voting result is Gt

0 +M
t−1
1 , Gt

1 becomes Gt
0 +M

t−1
1 .

Similarly, the following aggregations for the local models of the shards #5, #2, and #4 are
conducted. Finally, this aggregation procedure yields a new global model Gt

4 at ρ = 4 from
the old Gt−1

4 , which will be a basis model for training in the next round.
The generalized equation for the above global aggregation is as follows:

Gρ =
ρ + 1
|S|

[
V
(
|S|

ρ + 1
(
Gρ−1 +

Mt−1
s
|S|

)
,
|S|

ρ + 1
(
Gρ−1 +

Mt
s
|S|

))]
, (9)
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where V indicates a voting function, i.e., nodes belonging to the committee select one model
based on the accuracy of the two models. ρ is an integer value starting from 0 to |S| in
order of the shard models uploaded to the main blockchain. Accordingly, a total G|S|−1
global model will be created.

Algorithm 3 describes the global model aggregation procedure. The FORM COMMIT-
TEE function for generating a committee starts from the final local model and searches for
transactions through the tip selection algorithm. Figure 2 shows an example in which the
committee is generated using the FORM COMMITTEE function. If TX9 is selected as the
final model, the highlighted edges indicate a reliable aggregation path for the final model.
Thus, the committee members can be (N10, N3, N4, N9, N6). These committee members
vote for the global models through the procedure in lines 22–29, until the local models are
uploaded from all shards. After the new global model is created, it is updated through line
30 to ensure the training stability; additionally, β ∈ (0, 1) is a ratio parameter between the
old and new global models.

Algorithm 3 Global model aggregation algorithm.

1: procedure FORM COMMITTEE(start TX)
2: nodes = []
3: while true do
4: if next TX = genesis TX then
5: return nodes
6: else if start TX then
7: select two TX
8: else
9: Select the next TX that has higher CRS between two TXs.

10: end if
11: nodes← node(TX)
12: end while
13: end procedure
14: procedure GENERATE GLOBAL MODEL
15: ρ = 0
16: for s ∈ S do
17: Mt

s ← TX with the highest RS among the [(1− 1
|M| )CRSmax, CRSmax]in s

18: Cs ← FORM COMMITTEE(Mt
s)

19: Mt−1
s ← Get model from main blockchain

20: if ρ = 0 then
21: Gt

0 = V [Mt−1
s ,Mt

s] by ∪S
kCk

22: else

23: result = V
(
|S|

ρ+1
(
Gρ−1 +

Mt−1
s
|S|

)
, |S|

ρ+1
(
Gρ−1 +

Mt
s
|S|

))
by ∪S

kCk

24: Gt
ρ = ρ+1

|S| result
25: end if
26: ρ + = 1
27: end for
28: G(t+1) = (1− β)G(t−1) + βG(t)

29: end procedure



Sensors 2022, 22, 8263 12 of 23

Figure 3. Example of global model aggregation.

5. Experiment
5.1. Experimental Setup

We implemented our proposed system using the Ethereum blockchain and conducted
an experiment with 50 client nodes for federated learning. Five DAG-based shards were
realized, and a special chain node was developed to execute a smart contract for the voting
procedure. Solidity script codes were used for the smart contract.

The federated learning model was a LeNet5 [65] model of a convolutional neural
network (CNN) having three convolutional layers, two max pooling layers, and one fully
connected layer with an output layer. We used the Adam optimizer and the cross-entropy
loss function. The learning rate was set at 0.0001. The batch size of each epoch was 64, and
each round had five epochs. Owing to the heterogeneity of the devices, each node invoked
an average of four model transactions during a round.

For the experiment, the MNIST dataset was used, which is an image dataset of hand-
written numbers from 0 to 9. It consists of 60,000 training and 10,000 test datasets. For the
federated learning study with a non-IID dataset, the dataset was configured as mutually
exclusive across the clients. Each node had only two types of data among a possible 10 and
randomly selected 10 ∼ 90% of the image data of each class. For instance, a node had no
data for other classes 2 to 9 if it chose 0 and 1. The test dataset was configured in the same
manner as the training dataset. In other words, a node on each shard had two separate
data classes; therefore, all data classes of the MNIST were covered across the five shards.

Attack Scenarios

The following three attack scenarios were considered for performance evaluation:

• Model-poisoning attack: The purpose of a model-poisoning attack is to upload an
arbitrarily altered model to deviate the global model from a target model. In our
experiments, a malicious node generated additive Gaussian noise with N (0, 2). As
many noise vectors as the number of model parameters were extracted and added
to them.

• Data-poisoning attack: A data-poisoning attack is a type of interference in learning
using poisoned data and is known to be less effective than a model-poisoning attack.
To evaluate the vulnerability of our system against a data-poisoning attack, the MNIST
training data were manipulated by randomly generated additive noise with a Gaussian
distribution N (10, 5). We generated a random 28 × 28 noise image and added it to
each MNIST training image.
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• Label-swapping attack: A label-swapping attack, similar to a data-poisoning attack, is
an efficient attack without directly damaging the model or training data. It proceeds
simply by swapping the input labels for the corresponding data. For example, an
attacker trains a model using 2 and 3 data, which are tagged by the swapped labels ‘3’
and ‘2’, respectively.

5.2. Shard Layer Review

We conducted two experiments to review the shard layer. First, we assessed the efficacy
of similarity according to varying α. Next, we investigated the effectiveness of multiplicity.

5.2.1. Performance According to Similarity Parameter α

To investigate the influence of similarity on the learning, we experimented with
the local model aggregation by varying α in Equation (7). Here, 50% of the malicious
nodes conducted a model-poisoning attack during federated learning. Figure 4a shows
the accuracy of the global model with different α weights for the cosine similarity. First,
federated learning failed to converge with α = 0, which implies that it is difficult to
distinguish between a poisoned model and a normal model without similarity. Because
each worker only has data for two labels, the validation of the model is limited. Accordingly,
malicious nodes can fine-tune the model weight to reduce the accuracy of a specific label
or overfit the model using the data of a specific label. Meanwhile, the learning converged
stably with α = 0.1, 0.3, and 0.5. Additionally, α = 0.3 achieved the highest accuracy of
76.84%, whereas accuracies of 73.75% and 71.85% were achieved with α = 0.1 and 0.5,
respectively.

(a) (b)

Figure 4. Performance subject to the various parameters α of similarity. (a) Global model accuracy;
(b) Ratio of reference score of malicious nodes to total reference score per round.

Figure 4b shows the ratio of the RS of malicious nodes to the total RS of all nodes. As
the ratio is high, the nodes have more probability to select poisoned models. The RS ratio
for α = 0.0 is comparable with the other cases, i.e., α = 0.1 and 0.5. In the case of α = 0.5 and
α = 0.1, the average ratio of the RS of malicious nodes is 0.052% and 0.068%, respectively.
However, the RS ratio with α = 0.3 is notably low compared to that of the others, which
can lead the nodes to select normal transactions with a higher probability. Furthermore,
the RS of the malicious nodes decreases as the training is repeated. As the nodes train the
same global model using the given datasets repeatedly, the model change is limited, and
the similarity increases along with the progress of the learning. Accordingly, the nodes can
easily filter out the poisoned model through the similarity, which rapidly decreases the RS
of the malicious nodes.

As illustrated in Figure 4a, less consideration of the accuracy with α = 0.7 increases
the RS ratio and harms the global model with poisoned transactions, similar to α = 0.0. If
a normal node selects a poisoned model, the weight of the normal node model becomes
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similar to that of the poisoned model. With a higher weight for the cosine similarity than the
accuracy, nodes intend to continuously select a poisoned model if they previously selected
a transaction of a malicious node owing to an immature global model or overwhelming
malicious nodes.

From the above results, we assume that a sweet spot exists between the accuracy and
similarity, such as at α = 0.3, which will be used for subsequent experiments.

5.2.2. Multiplicity Effect on Performance

To take advantage of the diversity of the data and models and avoid falling into a
trap of similarity with malicious models, we propose using the multiplicity concept based
on the structural characteristics of the DAG blockchain. Figure 5 demonstrates the effect
of multiplicity in the same environment as the previous experiment. The tip selection
algorithm using the accuracy and cosine similarity (i.e., the green line) converges to an
accuracy of 76.84%. Meanwhile, the algorithm with an additional multiplicity converges to
an accuracy of 85.24%. Additionally, the RS of a malicious node is lower when multiplicity
is applied, as illustrated in Figure 5b. The multiplicity probably leads to the selection of
malicious transactions for diversity even in higher rounds, which show some fluctuations
in Figure 5b. However, it rarely affects a mature global model. Therefore, in the following
experiments, we consider three aspects for the tip selection algorithm: the accuracy, cosine
similarity, and multiplicity.

(a) (b)

Figure 5. Effect of multiplicity on performance. (a) Global model accuracy; (b) Ratio of reference
score of malicious nodes to total reference score per round.

5.3. Main Blockchain Layer Review

Three experiments were conducted to investigate the main blockchain layer. First, we
investigated its performance according to the proportion of the local model to the global
model. Second, we compared different methods of model aggregation and voting. Third,
the learning stability according to the average parameter β was compared.

5.3.1. Performance Depending on the Local Model Proportion to the Global Model

We investigated the global model accuracy based on the combination of local models
during the asynchronous update procedure.

In this experiment, only five nodes were used without malicious nodes to minimize
incidental effects on the test results. Data sets were assigned to the nodes in the same
manner as before.

Figure 6 illustrates the convergence in accuracy according to the different numbers of
local models aggregated in the global model Gm, where m indicates the number of local
models used for aggregation. Essentially, the model G|S|−1 = G4 with |S| = 5 shards is a
regular model that evenly aggregates all local models from each shard. Meanwhile, Gm>4
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is an average global model that has an additional m− 4 local models randomly chosen
from among the five local models.

The base global model G4 achieves a higher accuracy of 84.64% compared to the
others; additionally, G5 has the lowest accuracy of 39.29%, followed by G6, G7, and G8.
More information from the additional models leads to bias for particular classes in the
global model and eventually decreases the level of accuracy, i.e., more iterations in a certain
shard do not improve the accuracy of the global model

Figure 7 presents the confusion matrix of global model G5 with an additive model from
shards 1 to 5. For instance, Figure 7a illustrates a case in which the local model of shard
#1 for data 0 and 1 is added to G4. Also, Figure 7b–e show confusion matrices of a global
model combining a local model of each shard from #2 to #5 respectively. True positives
and false positives for labels 0 and 1 are high as shown in the red box of each confusion
matrix because the accuracy of other labels decreases as it contains more information about
labels 0 and 1. Consequently, the non-IID data set leads the agents to train a model for
classification more about their own data.

Figure 6. The accuracy of the global model depends on the proportion of local models to global models.

Figure 7. Confusion matrix of the G4 global model added by a local model of each shard: (a) shard
#1 with data 0–1, (b) shard #2 with data 2–3, (c) shard #3 with data 4–5, (d) shard #4 with data 6–7,
(e) shard #5 with data 8–9.

5.3.2. Compare the Various Voting Systems

Through this experiment, we demonstrated the effectiveness of the proposed voting
system under a model-poisoning attack with 50% malicious nodes. Figure 8 displays the
accuracy according to the voting method. Without voting, intentionally uploaded models
of the malicious nodes as an attack can be aggregated in the global model, which imposes
a serious effect on the entire learning procedure. Such a poisoned global model not only
reduces the level of accuracy, it also degrades the ability to filter out other poisoned models
in the local chain as the model similarity becomes meaningless. Therefore, the voting
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process is essential in circumstances in which a model attack from malicious nodes occurs
in the network.

Figure 8. Global model accuracy under different voting methods.

There are two aggregation-voting procedures: (i) a synchronous update for voting and
(ii) a pseudo-synchronous update for voting. The first demands a synchronous aggregation
of all local models from the shards. Thereafter, committee members vote between the old
Gt−1 model and the new global model Gt. For example, if there are five shards in the

network, the global model of the previous round is Gt−1 =
Mt−1

1 +Mt−1
2 +Mt−1

3 +Mt−1
4 +Mt−1

5
5 ,

and the global model of the current round is Gt =
Mt

1+M
t
2+Mt

3+Mt
4+M

t
5

5 . The synchronous
approach has no significant change in accuracy from round 11, which converges at approxi-
mately 77.3% because the new global model is comparable with the old global model.

The pseudo-synchronous update for voting (described in Section 4.4) achieves an
accuracy of up to 85.85% and a convergence of approximately 85.24%. In contrast to the
synchronous case, which discards a new global model even with a single poisoned local
model, the pseudo-synchronous approach can filter out the poisoned local model while
combining other pure local models for the new global model.

5.3.3. Global Model Update Speed β

Our global model was progressively averaged using ω(t+1) = (1− β)ω(t−1) + βω(t)

for a gradual update, where β is a ratio parameter between the old and new global models.
Figure 9 plots the accuracy by varying β under 50% malicious nodes for a model-poisoning
attack. The accuracy of β = 1.0 reaches a maximum of 85.26%, whereas other β values of 0.5,
0.7, and 0.3 achieve accuracy rates of 85.24%, 85.15%, and 79.41%, respectively. However,
β = 1.0 considering only a new global model shows unstable learning. In particular, the
accuracy decreases, particularly in global rounds 5, 7, 10, 11, 16, 18, and 20, because some of
the local models used for global model aggregation were indirectly poisoned. Particularly
in the initial rounds, normal nodes have difficulty distinguishing between poisoned and
normal models because of the model variance, which exacerbates the stability in terms
of accuracy.
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Figure 9. The accuracy of a global model depends on the adjustment of β.

With a small β = 0.3, the previous global model was reflected more than the new global
model, which made the learning extremely slow. We therefore used an update speed of
α = 0.5 for the following experiments because stable learning with an accuracy comparable
to β = 1.0—the accuracy gap between them is only 0.02—is achieved.

5.4. Performance for the Various Attack Scenarios

The following experiments demonstrate the feasibility of our system under various at-
tacks. Unlike the previous model poisoning, these two data-poisoning and label-swapping
attacks affect the model indirectly.

For comparison, the conventional FedAvg was implemented with 20 epochs of training
per round, which is equivalent to our training iterations. Additionally, we benchmark
several Byzantine- tolerant algorithms such as Median, TrimmedMean [12], and Krum [11]
in model-poisoning attack scenarios.

5.4.1. Model-Poisoning Attacks

Figure 10a shows the accuracy of the performance with varying ratios of malicious
nodes attempting a model-poisoning attack. The final accuracy of each case, i.e., 0%,
10%, 30%, and 50% malicious nodes, is 85.67%, 85.5%, 85.07%, and 85.24%, respectively.
The accuracy of the convergence is comparable regardless of the ratio of malicious nodes.
Instead, the learning speed differs according to the proportion of malicious nodes. A small
portion of malicious nodes, i.e., 0% and 10%, learned faster than the 30% and 50% cases.
Moreover, the accuracy is 24.47% in round 1 with no malicious nodes, i.e., 0%, compared to
other cases such as 10%, 30%, and 50% malicious nodes. There are two key reasons for the
slow learning with a large number of malicious nodes. First, the number of honest nodes
decreases in each shard. The second is that the partially poisoned global model, which is
given as a root transaction at every round, delays updates in each shard. To summarize,
the malicious nodes do not significantly affect the accuracy of our system but cause latency
in the model updated for the target.

Figure 10b depicts that a malicious node does not effectively attack the learning of a
normal node. The RS of the malicious nodes is almost consistent with the varying ratios of
malicious nodes, less than 0.05% for all cases. The case with 10% malicious nodes has an
RS sum of almost 0%, while the case with 30% malicious nodes has an RS sum of 0.013% in
round 1. For a 50% ratio of malicious nodes, the influence of malicious nodes is insignificant,
with 0.05% RS.

Figure 10c shows the comparison of Byzantine-tolerant algorithms together with the
conventional FedAvg with respect to accuracy performance. All experimental parameters
are configured to be exactly the same as those in Figure 10a. Without malicious nodes,
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the FedAvg accuracy is about 79%, while the highest average accuracy is only about
10%. Moreover the training fails to converge to the global model with 50% malicious
nodes. The final accuracy of Median, TrimmedMean, and Krum is 62.4%, 65.83%, and 55.4%,
respectively, without attacks. Unlike the FedAvg using the model weights of all client nodes,
those Byzantine-tolerant algorithms use only a fraction of the model weights of client nodes,
which makes learning more unstable on non-IID datasets. Thus, all three algorithms have
lower accuracy than FedAvg. Additionally, all three algorithms are not trained with 50%
malicious nodes because simple clustering algorithms or statistical approaches cannot
effectively distinguish the local models that have been biased by the non-IID datasets and
poisoned by attackers.

(a) (b)

(c)

Figure 10. Evaluation of our system with a model-poisoning attack. (a) Performance of the proposed
system; (b) RSR with varying ratio of attackers; (c) Performance comparison of FedAvg, Median
TrimmedMean and Knum.

5.4.2. Data-Poisoning Attacks

Figure 11a shows the accuracy of our system with various malicious nodes attempting
data-poisoning attacks. In contrast to the model-poisoning attack having 85% accuracy
regardless of the portions of malicious nodes, the accuracy converges to 81.53%, 83.03%,
and 84.41% when the ratio of malicious nodes is 50%, 30% and 10%, respectively. Our
system has limitations in detecting a model ruined by poisoned data compared to directly
filtering a poisoned model.

The RSR of the malicious nodes in Figure 11b indicate similar outcomes. The RSR is
0.01%, 0.04%, and 0.09% for 10%, 30%, and 50% malicious nodes, respectively. In Figure 11b,
the RSR decreases sharply in rounds 1 and 2, and the interference of malicious nodes is
sufficiently reduced to allow the learning to converge as the learning progresses.

Figure 11c shows the accuracy of a conventional FedAvg under the same data poi-
soning. Unlike the model-poisoning attack, where the accuracy could not converge, the
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data-poisoning attack converged to 74.37% when the number of malicious nodes was 10%.
The accuracy converged to 73.99% and 71.42% with 30% and 50% malicious nodes, respec-
tively. Consequently, our system outperformed the conventional FedAvg by an average
of 9.72%.

To explore more interference from data poisoning, we conducted an additional experi-
ment with a reduction in the number of epochs of each round from 20 to 5, as indicated in
Figure 11d. With 10% malicious nodes, the accuracy converges to 73.95%, which is similar
to that of 20 epochs and implies that a small number of malicious nodes do not significantly
affect the federated learning. However, the accuracy degrades to 61.28% and 58.49% for
more than 30% and 50% malicious nodes, respectively. From these results, we can assume
that the accuracy can be improved if the nodes have a sufficient number of training epochs.
In the case of a data-poisoning attack in which the weights of the model are not directly
manipulated, a sufficient number of training epochs can enhance the resistance to an attack.

(a) (b)

(c) (d)

Figure 11. Evaluation of our system under data-poisoning attacks. (a) Performance of the proposed
system; (b) RSR with varying ratio of attackers; (c) Performance of legacy FedAvg; (d) Performance
of less-trained FedAvg model.

5.4.3. Label-Swapping Attacks

The label-swapping attack influences learning more than the data-poisoning attack
by indirectly damaging the weights of the model. Figure 12a illustrates the accuracy with
varying ratios of malicious nodes that conduct label-swapping attacks. When there are
10% malicious nodes, the accuracy in the last round is approximately 83.41% and decreases
sharply to 79.08% with 30% malicious nodes. Under 50% malicious nodes, the accuracy is
approximately 77.16% in the last round.

Unlike previous experiments, there is a gap in the level of accuracy in the last round
according to the ratio of malicious nodes. Additionally, the RSR of malicious nodes increases
and continuously fluctuates significantly, as indicated in Figure 12b, which implies that the
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attacks continuously affect the entire learning procedure. Unlike data-poisoning attacks,
label-swapping attacks use training data without noise, similar to normal nodes, which
makes it difficult to distinguish poisoned models using the cosine similarity. Therefore, the
models of malicious nodes are continuously selected, as indicated in the figure.

Nevertheless, our system achieves a notable accuracy with a two-step verification that
selects the current and previous local models through voting. Although the malicious node
model is directly reflected in the local model, it is possible to prevent the global model from
being severely damaged.

Figure 12c displays the performance of the conventional FedAvg, where the accuracy
converges to 66.5% for 10% attackers and 40.75% and 9.8% for 30% and 50% malicious
nodes, respectively. The accuracy decreases significantly according to the ratio of malicious
nodes. The adverse effect on the learning is lower than that of the model-poisoning attack
but higher than that of the data-poisoning attack.

(a) (b)

(c)

Figure 12. Evaluation of our system with label-swapping attacks. (a) Performance of the proposed
system; (b) RSR with varying ratios of attackers; (c) Performance of legacy FedAvg.

6. Conclusions

In this article, we present a hierarchical blockchain system for robust federated learning
under various attacks by the malicious nodes, which consists of a main blockchain layer
for pseudo-asynchronous global model aggregation and a DAG-based shard layer for
local model aggregation. We propose a novel tip selection algorithm with local model
similarity and a multiplicity concept that prevents effectively falling into traps of similarity
attacks by malicious nodes. Additionally, the proposed global voting algorithm achieves a
consistent improvement in the model accuracy under various attacks and an extremely non-
IID data distribution. We implement our framework and experiment with several attack
models. Our system outperforms non-IID FedAvg learning with better accuracy, 60, 10
and 60% in the model-poisoning, data-poisoning and label-swapping attacks, respectively.
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Additionally, some Byzantine-tolerant algorithms proposed for the model-poisoning attack
show limited throughput as they suffer when distinguishing and aggregating local models
due to the non-IID distribution of the dataset.

7. Future Works

In this study, we find optimal parameters for similarity, accuracy and update speed
by exploring experiment sets for given blockchain structures and datasets. However, they
need to be configured automatically during the learning procedure; therefore, in the future,
we will apply a deep reinforcement learning algorithm for parameter tuning. Additionally,
we will investigate the feasibility of our framework for more complicated CNN models
for rich image data processing and recurrent network models for time series data. In our
system, the model aggregation causes heavy communications and storage overuse for the
blockchain. Accordingly, further studies on scalability enhancement need to be conducted.
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6. Konečnỳ, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated optimization: Distributed machine learning for on-device

intelligence. arXiv 2016, arXiv:1610.02527.
7. Nguyen, D.C.; Ding, M.; Pham, Q.V.; Pathirana, P.N.; Le, L.B.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. Federated learning

meets blockchain in edge computing: Opportunities and challenges. IEEE Internet Things J. 2021, 8, 12806-12825. [CrossRef]
8. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Model poisoning attacks in federated learning. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 1–23.
9. Fang, M.; Cao, X.; Jia, J.; Gong, N. Local Model Poisoning Attacks to {Byzantine-Robust} Federated Learning. In Proceedings of

the 29th USENIX Security Symposium (USENIX Security 20), Online, 7–11 August 2020; pp. 1605–1622.
10. Lyu, L.; Yu, H.; Yang, Q. Threats to federated learning: A survey. arXiv 2020, arXiv:2003.02133.
11. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent.

Adv. Neural Inf. Process. Syst. 2017, 30.
12. Yin, D.; Chen, Y.; Kannan, R.; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings

of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 5650–5659.
13. Sattler, F.; Müller, K.R.; Wiegand, T.; Samek, W. On the byzantine robustness of clustered federated learning. In Proceedings of

the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; pp. 8861–8865.

14. Yadav, K.; Gupta, B. Clustering Algorithm to Detect Adversaries in Federated Learning. arXiv 2021, arXiv:2102.10799.
15. Li, S.; Cheng, Y.; Wang, W.; Liu, Y.; Chen, T. Learning to detect malicious clients for robust federated learning. arXiv 2020,

arXiv:2002.00211.
16. Che, C.; Li, X.; Chen, C.; He, X.; Zheng, Z. A decentralized federated learning framework via committee mechanism with

convergence guarantee. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 4783–4800. [CrossRef]
17. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260.
18. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
19. Schwartz, D.;Youngs, N.; Britto, A. Ripple. 2014. Available online: https://ripple.com/files/ripple-consensus-whitepaper.pdf

(accessed on 25 September 2022).
20. Mazieres, D. The stellar consensus protocol: A federated model for internet-level consensus. Stellar Dev. Found. 2015, 32, 1–45.

http://doi.org/10.1016/j.neucom.2016.12.038
http://dx.doi.org/10.1145/3234150
http://dx.doi.org/10.3390/electronics8030292
http://dx.doi.org/10.1109/JIOT.2021.3072611
http://dx.doi.org/10.1109/TPDS.2022.3202887
https://ripple.com/files/ripple-consensus-whitepaper.pdf


Sensors 2022, 22, 8263 22 of 23

21. Pokhrel, S.R.; Choi, J. Federated learning with blockchain for autonomous vehicles: Analysis and design challenges. IEEE Trans.
Commun. 2020, 68, 4734–4746. [CrossRef]

22. Bao, X.; Su, C.; Xiong, Y.; Huang, W.; Hu, Y. Flchain: A blockchain for auditable federated learning with trust and incentive. In
Proceedings of the 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), Qingdao, China,
9–11 August 2019; pp. 151–159.

23. Kim, H.; Park, J.; Bennis, M.; Kim, S.L. On-device federated learning via blockchain and its latency analysis. arXiv 2018,
arXiv:1808.03949.

24. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Blockchain empowered asynchronous federated learning for secure data
sharing in internet of vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4298–4311. [CrossRef]

25. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Communication-efficient federated learning and permissioned blockchain
for digital twin edge networks. IEEE Internet Things J. 2020, 8, 2276–2288. [CrossRef]

26. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Low-latency federated learning and blockchain for edge association in
digital twin empowered 6G networks. IEEE Trans. Ind. Inf. 2020, 17, 5098–5107. [CrossRef]

27. Desai, H.B.; Ozdayi, M.S.; Kantarcioglu, M. Blockfla: Accountable federated learning via hybrid blockchain architecture. In
Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy, Virtual Event, 26–28 April 2021;
pp. 101–112.

28. Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. Deepchain: Auditable and privacy-preserving deep learning with
blockchain-based incentive. IEEE Trans. Dependable Secur. Comput. 2019, 18, 2438–2455. [CrossRef]

29. Qu, Y.; Gao, L.; Luan, T.H.; Xiang, Y.; Yu, S.; Li, B.; Zheng, G. Decentralized privacy using blockchain-enabled federated learning
in fog computing. IEEE Internet Things J. 2020, 7, 5171–5183. [CrossRef]

30. Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [CrossRef]
31. Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing federated learning on non-iid data with reinforcement learning. In Proceedings

of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1698–1707.
32. Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A blockchain-based decentralized federated learning framework with

committee consensus. IEEE Netw. 2020, 35, 234–241. [CrossRef]
33. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics (AISTATS 2017), Fort Lauderdale, FL, USA, 20–22
April 2017; pp. 1273–1282.

34. Xie, C.; Koyejo, S.; Gupta, I. Asynchronous federated optimization. arXiv 2019, arXiv:1903.03934.
35. Chai, Z.; Chen, Y.; Zhao, L.; Cheng, Y.; Rangwala, H. Fedat: A communication-efficient federated learning method with

asynchronous tiers under non-iid data. ArXivorg 2020, 60, 1–16.
36. Chen, Y.; Ning, Y.; Slawski, M.; Rangwala, H. Asynchronous online federated learning for edge devices with non-iid data. In

Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 15–24.
37. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.
38. Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the convergence of fedavg on non-iid data. arXiv 2019, arXiv:1907.02189.
39. King, S.; Nadal, S. 2017. Available online: https://peercoin.net/assets/paper/peercoin-paper.pdf (accessed on

25 September 2022).
40. Vasin, P. BlackCoin’s Proof-of-Stake Protocol v2. 2016. Available online: https://blackcoin.org/blackcoin-pos-protocol-v2

-whitepaper.pdf (accessed on 25 September 2022).
41. Nxt Wiki. 2016. Available online: https://nxtplatform.org/ (accessed on 25 September 2022).
42. Bentov, I.; Gabizon, A.; Mizrahi, A. Cryptocurrencies without proof of work. In Proceedings of the International Conference

on Financial Cryptography and Data Security, Christ Church, Barbados, 22–26 February 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 142–157.

43. BitShare. 2016. Available online: https://bitshares.org/technology/delegated-proof-of-stake-consensus/ (accessed on 25
September 2022).

44. P4Titan. 2014. Slimcoin: A Peer-to-Peer Crypto-currency with Proof-of-Burn. Available online: https://slimcoin.info/
whitepaperSLM.pdf (accessed on 25 September 2022).

45. Tendermint. 2018. Available online: https://tendermint.com/ (accessed on 25 September 2022).

http://dx.doi.org/10.1109/TCOMM.2020.2990686
http://dx.doi.org/10.1109/TVT.2020.2973651
http://dx.doi.org/10.1109/JIOT.2020.3015772
http://dx.doi.org/10.1109/TII.2020.3017668
http://dx.doi.org/10.1109/TDSC.2019.2952332
http://dx.doi.org/10.1109/JIOT.2020.2977383
http://dx.doi.org/10.1016/j.neucom.2021.07.098
http://dx.doi.org/10.1109/MNET.011.2000263
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://blackcoin.org/blackcoin-pos-protocol-v2-whitepaper.pdf
https://blackcoin.org/blackcoin-pos-protocol-v2-whitepaper.pdf
https://nxtplatform.org/
https://bitshares.org/technology/delegated-proof-of-stake-consensus/
https://slimcoin.info/whitepaperSLM.pdf
https://slimcoin.info/whitepaperSLM.pdf
 https://tendermint.com/


Sensors 2022, 22, 8263 23 of 23

46. Park, S.; Pietrzak, K.; Alwen, J.; Fuchsbauer, G.; Gazi, P. Spacecoin: A Cryptocurrency Based on Proofs of Space; Technical Report, IACR
Cryptology ePrint Archive 2015; 2015. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&
cd=&ved=2ahUKEwiKx7u_h4L7AhWjmVYBHWoVDK0QFnoECA4QAQ&url=https%3A%2F%2Fwww.allcryptowhitepapers.
com%2Fwp-content%2Fuploads%2F2018%2F05%2FSpacecoin.pdf&usg=AOvVaw3X70G1HG_AxQq6hcXs3iMG (accessed on 25
September 2022).

47. BurstCoin. 2018. Available online: https://burstcoin.info/ (accessed on 25 September 2022).
48. Luu, L.; Narayanan, V.; Zheng, C.; Baweja, K.; Gilbert, S.; Saxena, P. A secure sharding protocol for open blockchains. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016; pp. 17–30.
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