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Abstract: Low-illumination images exhibit low brightness, blurry details, and color casts, which
present us an unnatural visual experience and further have a negative effect on other visual appli-
cations. Data-driven approaches show tremendous potential for lighting up the image brightness
while preserving its visual naturalness. However, these methods introduce hand-crafted holes and
noise enlargement or over/under enhancement and color deviation. For mitigating these challenging
issues, this paper presents a frequency division and multiscale learning network named FDMLNet,
including two subnets, DetNet and StruNet. This design first applies the guided filter to separate the
high and low frequencies of authentic images, then DetNet and StruNet are, respectively, developed
to process them, to fully explore their information at different frequencies. In StruNet, a feasible
feature extraction module (FFEM), grouped by multiscale learning block (MSL) and a dual-branch
channel attention mechanism (DCAM), is injected to promote its multiscale representation ability.
In addition, three FFEMs are connected in a new dense connectivity meant to utilize multilevel
features. Extensive quantitative and qualitative experiments on public benchmarks demonstrate that
our FDMLNet outperforms state-of-the-art approaches benefiting from its stronger multiscale feature
expression and extraction ability.

Keywords: low-light image enhancement; guided filter; multiscale representation; attention mechanism

1. Introduction

Photos captured in insufficient illumination conditions such as nighttime, lopsided,
under-exposed, etc., exhibit an undesired visual experience or deliver compromised mes-
sages for other computer vision tasks, due to their low contrast and lightness and blurry
details [1–5]. Especially, high-level computer vision tasks show unsatisfactory performance
in these low-light photos, such as in inaccurate face or object recognition [6,7]. Hence, it is
necessary to restore the quality of low-illumination pictures. Low-light image enhancement
(LLIE) [1,8–14] is an efficient way to yield visually pleasing images with moderate lightness,
vivid color, and clearer details, so as to further improve the performance of face detection,
object recognition, and other tasks. Therefore, LLIE [1–3,15] is an indispensable technology
in low-level computer vision applications to generate wanted images.

In past decades, a great deal of LLIE approaches, including histogram-based [3,16,17],
Retinex-based [8–10,18,19], fusion-based [20,21], physical-model-based, [3,22–26] have
been reported. Histogram-based methods, which are simple and highly efficient, intro-
duce an over- or underenhancement owing to the spatial relationship among pixels being
neglected. Retinex-based methods consider that an image consists of illumination and
reflection components, and the enhanced images exhibit color distortion. Fusion-based
models yield appealing visual images, benefiting from fusing multiple images with various
characteristics. However, the enhanced results encounter a detail loss and artificial halos.
Dehazing model-based approaches [25] are the most typical representative of physical-
model-based methods, and they are unsuccessful for creating satisfying and hazy-free
images. Recently, data-driven methods [1,27–30] have been introduced to conquer the
inappropriate enhancement of classical methods, owing to their powerful feature extraction
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capability. However, existing approaches are confronted with heavy computing burdens
and are time-consuming, limiting their real-world applications. Furthermore, most of them
rarely take hierarchical features and a multiscale representation into account [15].

To cope with these mentioned issues, we propose a new LLIE method based on fre-
quency division and multiscale learning, called FEMLNet, for improving the quality of
image acquired in suboptimal lighting conditions. Differing from most CNN-based and
GAN-based methods, we perform different operations on the image’s high and low frequen-
cies rather than the whole picture to fully explore its hierarchical features. Additionally, we
present a feasible feature extraction module (FFEM) based on a multiscale learning (MSL)
block with a dual-branch channel attention mechanism (DCAM) to obtain self-adapting
multiscale features. The former can adaptively exploit information at different scale spaces,
and the latter makes the focus of our FDMLNet model on more valuable features while
enhancing its multiscale learning capacity. Simultaneously, a dense connection strategy
is introduced in our model to merge multilevel features adequately. Figure 1 shows the
enhanced results via the presented method for the images obtained in different lighting
conditions. With the help of our FDMLNet, all enhanced images consistently show a
pleasing visual appearance.

(a) MIT-Adobe (b) LOL (c) LIME (d) NPE (e) MEF (f) VV

Figure 1. Samples of the presented images (bottom) for various images captured under different
scenarios (top). From left to right, these authentic images are selected from the MIT-Adobe, LOL,
LIME, NPE, MEF, and VV benchmarks, respectively.

In conclusion, our primary contributions of this work are emphasized as follows.

(1) We present a novel LLIE approach for creating visually satisfying images. The superior
performance of this FDMLNet is verified by extensive experiments validated on
several public benchmarks.

(2) We design a residual multiscale structure named MSAM, which is based on a residual
multiscale learning (MSL) block and a dual-branch channel attention mechanism
(DCAM). Furthermore, the former promotes the multiscale features learning ability of
the FDMLNet, and the latter, including spatial attention and pixels attention, makes
our model focus on areas that best characterize the image.

(3) Finally, we merge three MSAMs in a novel dense skip-connection way to build an
FFEM for fully exploring the image’s hierarchical information. In addition, we apply
the dense connection strategy among FFEMs to further integrate multilevel features
adequately.

We organize the rest of this paper as follows. The relevant works on LLIE are briefly
reviewed in Section 2. In Section 3, the framework of our model is elaborated. We also
present the relation between existing models and our method. In Section 4, we analyze
ablation studies and the performance of our FDMLNet in detail. In the end, we report the
conclusions and discussions about this work in Section 5.

2. Related Works

LLIE plays an irreplaceable role in recovering inherent color and details as well as
compressing the noise of low-illumination images. In what follows, we comprehensively
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review previous low-light image enhancement works, including conventional approaches
and leaning-based approaches.

2.1. Traditional Approaches

In the early stage, specialized high-performance hardware, such as professional low-
light circuits, charge-coupled device (CCD), complementary metal–oxide–semiconductor
(CMOS), etc., is employed in imaging systems for generating visually satisfying pictures.
However, the price of these devices is unacceptable, and their operation is difficult. We also
can process the gathered images by LLIE methods. Histogram-equalization-based methods,
including global histogram equalization (GHE) [16,17] and local histogram equalization
(LHE) [3–5], directly adjust the image pixels value to redistribute their distribution in
global and local levels. Swarm intelligence algorithms, image decomposition, Rayleigh
distribution, and other technologies [31–33] were hired to optimize the previous HE-based
approaches. Additionally, gamma, S-shape, logarithmic, and other improved nonlinear
functions [34–36] also can restore inherent color and details of excessively dark images
through pixel transformation. Unfortunately, these above-listed methods either amplify
noise or yield improper exposure. Recently, some scholars [37–40] have handled LLIE issues
in the wavelet domain, gradient domain, NSST domain, etc. rather than the spatial domain.

Contrary to pixel transformation approaches, Retinex-inspired methods [8,18,19]
typically assume that an image consists of illumination and reflection components, as well
as its reflection components’ own consistent peculiarity during the processing. Hence, the
LLIE problem can be viewed as the illumination component estimation. On the basis of this
assumption, LR3M [18], a fast Retinex-based algorithm [8], Poisson noise aware Retinex
model [9], Retinex-based variational framework [10], and other methods [11,41], have been
reported to yield satisfying images. However, the enhanced results exhibit observable
color distortion, noise enlargement, or fuzzy details. Differing from the above approaches,
physical-model-based approaches enhance low-light images from the aspects of the imaging
principle. The dehazing model [25], atmospheric scattering model [22,24], and prior-
knowledge-based model [23,26] are its typical representative. However, the processed
images suffer from hand-crafted halos and local darkness, due to inappropriate prior
information under some low-light conditions. Moreover, fusion-based methods [3,20,21],
fusing a variety of frequency images or multifeature maps to fully exploit the hierarchical
features of the image, can also effectively recover visually satisfactory photos from subpar
illumination images. Similar to these, we perform frequency division on low-luminosity
images to obtain high- and low-frequency information, and then integrating the frequency
images processed by different operations.

2.2. Learning-Based Approaches

In recent years, learning-based methods containing supervised and unsupervised
learning strategies have outperformed traditional approaches in feature representation
and extraction and have been applied in object detection, image processing, and other
computer vision assignments [42–45]. LLNet [27], a groundbreaking work for LLIE, stacked
sparse denoising autoencoders for light improvement and denoising at once. Lv et al. [46]
designed MBLLEN, consisting of a feature extraction, enhancement, and fusion module for
facilitating the performance of LLNet. EEMEFN [47] and TBEFN [48] generated normal
light pictures by fusing multiexposure images. Subsequently, the pyramid network [49,50],
residual network [51], image semantic network [52], semantically contrastive learning [52],
and recursive learning network [53] were introduced to enhance the feature representa-
tion and extraction of the previously reported model. Moreover, the Retinex theory and
learning-based model were combined to make the proposed methods enjoy an appealing
performance. For example, Retinex-Net [54] applied Enhance-Net to adjust the light of
illumination maps generated by Decom-Net. A regularized sparse gradient was introduced
into Retinex-Net to build a more robust LLIE approach. Wang et al. [55] applied local
and global features extracted by DeepUPE to learn the mapping relationship from the
original image to the illumination image. Zhang et al. [28] designed an enhancement
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framework (named KinD) that included three stages: a layer decomposition, reflectance
recovery, and illumination light adjustment. They [56] then injected a multiscale illumina-
tion attention module into the early proposed KinD model to further promote its capacity.
However, these Retinex-inspired learning methods also inevitably introduce a color devi-
ation or hand-crafted holes due to an inaccurately estimated illumination. Additionally,
the frequency-based decomposition-and-enhancement model [21] was reported to rely
on the assumption that the noise exhibits different contrast at different frequency layers.
Understandably, supervised methods heavily need extra computing resources to process
paired (normal/abnormal) datasets for training. However, these paired images cannot be
easily gathered in the real world, and we carefully capture them by artifact synthesizing or
altering the exposure time and ISO rating of cameras.

Conversely, unsupervised methods are trained by unpaired images captured under
various lighting conditions and scenes rather than paired images [1,29,53]. Jiang et al. [29]
skillfully established EnlightenGAN [29], a typically GAN-based method, containing
a global and local discriminator, self-regularized perception, and attention mechanism.
Yu et al. [57] designed DeepExposure relying on reinforcement adversarial learning. How-
ever, these unsupervised methods need carefully selected unpaired images for training and
inevitably introduce observable color casts. To fully explore the advantages of unsupervised
and supervised methods, Yang et al. [58] presented a semisupervised approach named
DRBN [59] for light enhancement. In this model, supervised learning restored the linear
band representation of an enhanced image, and perceptual-quality-driven adversarial
learning rearranged these linear bands to yield visually satisfying normal-light images.
In [59], a network pretrained on the aesthetic dataset and an introduced LSTM module fur-
ther optimized the DRBN [59]. More recently, zero-reference-based methods have proved
highly efficient and cost-effective, and fewer images are needed, which has caused a stir
in the fields of LLIE. For example, RRDNet [60] decomposed an image into illumination,
reflectance, and noise, then the Retinex reconstruction loss, texture enhancement loss, and
illumination-guided noise estimation loss were carefully contrived to drive zero-reference-
based learning methods. Inspired by Retinex, Zhao et al. [30] created RetinexDIP, and Liu
et al. [61] designed the RUAS network for boosting low-illumination images. Li et al. [62]
employed high-order nonlinear curve mapping to adjust the image pixel values for re-
covering satisfying images. Afterward, they demonstrated a faster and more lightweight
network called Zero DCE++ [1].

3. Methodology

This section first analyzes the motivation of this design. After that, the overall model
framework and its main components, including frequency division (FD), the feasible feature
extraction module (FFEM), and the loss function, are minutely described. We discuss the
relation to other learning-based methods at the end of this section.

3.1. Motivation

We can easily observe images captured in insufficient light exhibit a color devia-
tion, blurry details, and unsatisfactory brightness. Traditional LLIE methods based on
HE, the Retinex theory, a fusion framework, a physical model, etc., can solve these is-
sues to a certain extent. Still, they perform unsatisfactorily in terms of robustness. Most
significantly, [17,21] showed that the detail, edge, and noise were described in the high
frequencies, while the main information was demonstrated in the low frequencies. A
frequency division operation can extract feature maps at different frequencies to achieve
the goal of preserving detail and compressing noise. Recently, data-driven approaches
based on generative adversarial networks (GANs) or convolution neural networks (CNNs)
have shown strong feature representation capability, which was widely applied in image en-
hancement, image super-resolution, object recognition, and so on [42–45,63]. Unfortunately,
although these LLIE methods significantly promote contrast, saturation, and brightness,
remove the color deviation, and highlight the structural details, they heavily depend on
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computer resources owing to the depth or width of the network. Additionally, multiscale
learning is rarely considered in these learning-based LLIE methods.

As a consequence, we combined traditional methods with CNN to design a novel
LLIE method with fewer parameters and a high efficiency based on the above analysis.
Specifically, we first perform frequency division on input images to achieve feature maps at
high and low frequencies. Then, we propose a feasible feature extraction module containing
an attention mechanism and a multiscale learning structure to improve the representation
ability of our proposed CNN-based method.

3.2. The Overall Model Framework

To tackle unsatisfactory contrast and brightness, blurry details, as well as the color
deviation of low-light images, we present a new LLIE approach based on the theory
that different information in an image is displayed at different frequencies. The overall
framework of our FDMLNet, including its three main parts, i.e., frequency division (FD),
DetNet, and StruNet, is illustrated in Figure 2. Among these components, FD is employed
to separate the high and low frequencies of the input images; DetNet, made up of a
7× 7 Conv, a 3× 3 Conv, and a 1× 1 Conv processes the high frequencies of the input
images to preserve inherent detail and condense the noise; the low frequencies of the
input images are processed by StruNet, which consists of three feasible feature extraction
modules (FFEMs) to promote its brightness and contrast and remove the color deviation.

Guided Filter

DetNet

StruNet

3×3 Conv 7×7 Conv FFEM1×1 Conv Fusion

Input Output

Figure 2. The overall framework of our presented LLIE model.

3.3. Frequency Division

Different frequency information plays notable roles in the whole image, and pixels
with drastic changes in intensity, such as edges, detail, noise, etc., are distributed in the
high frequencies, but pixels with a gentle change in intensity, such as the image structure,
background, and other information, are spread over the low frequencies [21]. Based on this
mechanism, this work engages a guided filter (GF) [64], an edge-preserving filter based on
the local linear model, for dealing with authentic pictures to create low- and high-frequency
feature maps.

Supposing that Qn is the nth input image, In is the corresponding guided image, and
the relationship between the output image On and In in the local windows wk tends to be
linear, i.e.,

Oi
n = ak Ii

n + bk, ∀i ∈ wk (1)

where wk is a local window with a size of r× r. ak and bk are constant and their values can
be calculated by minimizing the squared error between On and Qn, that is,

E(ak, bk) = ∑
i∈wk

[(
ak Ii

n + bk −Qi
n

)2
− εak

2
]

(2)
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where ε is a regularization parameter. Thus, the values of ak and bk are, respectively, defined asak =

1
|w| ∑

i∈wk

Ii
nQi

n − µkQ̄i
n,k

δk + ε

bk = Q̄i
n,k − akµk

(3)

In Equation (3), µk and δk are the pixels’ mean value and variance of the local window
wk in the guided image, respectively. |w| is the total number of pixels in wk. Q̄i

n,k is the
pixels’ mean value in the nth input image.

Since one pixel is contained in multiple windows, the average value of ak and bk is
solved and Equation (1) can be rewritten as

On = āk In + b̄k (4)

where On is the low-frequency feature map of the input image. Therefore, its high-frequency
feature map Pn is

Pn = Qn −On (5)

3.4. Feasible Feature Extraction Module

Nowadays, we have a detailed analysis of the feasible feature extraction module
(FFEM) structure, which is depicted in Figure 3. This module stacks 3 MSAMs in an
updated dense skip-connection way to promote the learning ability of FEMLNet and fully
explore features at different levels. The process can be expressed as

Od
n = Od

n,m−1 + Od
n,m+1

(
Od−1

n + Od
n,m

)
(6)

where Od
n and Od−1

n are the nth output images of the dth and d− 1th FFEM, respectively.
Od

n,m−1, Od
n,m, and Od

n,m+1 are, respectively, the output results of the m− 1th, mth, and
m + 1th MSAM in the dth FFEM.

MS
AM

MS
AM

MS
AM

Figure 3. The structure of a feasible feature extraction module (FFEM).

Multiscale learning structure: Generally, the image exhibits different characteristics
at various scales, and a multiscale representation can effectively extract its information at
different scales and promote the performance of learning-based methods [15,56]. As a result,
the multiscale learning strategy has broadly been conducted on object identification, pose
recognition, face detection, and other computer vision tasks [42–45]. However, this strategy
is rarely considered in most state-of-the-art LLIE models. In this proposed FDMLNet, we
built an efficient multiscale learning structure called MSAM, which consists of a multiscale
learning block and a dual-branch channel attention mechanism. This MSAM consists of
small convolution kernel groups with a size of 3× 3 and different dilation rates, i.e., 1, 2, 3,
and 5. Furthermore, Figure 4 demonstrates its structure in detail.



Sensors 2022, 22, 8244 7 of 23

1×1 Conv

3×3 Conv
r =1

3×3 Conv
r =2

3×3 Conv
r =3

3×3 Conv
r =5

Concatenate

1×1 Conv

DCAM

ReLU

Figure 4. The structure of the multiscale learning block with dual-branch channel attention (MSAM).

The image dimensionality is reduced by the 1× 1 convolution operation to alleviate
the computational load. Then, we extract multiscale information through four parallel
branches, which are made up of 3× 3 convolutions with dilation rates r = 1, 2, 3, and
5, respectively. Notably, the features extracted by the previous branch are injected into
the next branch to adequately utilize the image’s potentially multiscale information. The
extraction procedure of the multiscale feature can be described as

Fuout = Con3( f1) + Con3( f2) + · · ·+ Con3( fi), i ≤ 4 (7)

In the following, we integrate the results of the four branches by concatenating them
and then, a 1× 1 convolution operation is used to process the concatenated results. Finally,
the dual-branch channel attention mechanism processes the convolution results, and then
the output features are injected into input images to exploit more inherent global and
local information.

Dual-branch channel attention mechanism: As we all know, the human brain selec-
tively focuses on the key information while ignoring the rest of the visible
information [1,7,21,29,43]. The attention mechanism, a strategy mimicking the human
brain, has been widely used for generating attention-aware features and extracting key
information for promoting the ability of CNN-based methods by adaptively rearranging
weights. We designed a dual-branch channel attention mechanism, containing pixel and
spatial attention mechanisms, to further enhance the performance of this proposed FDML-
Net, and Figure 5 shows its structure in detail. We can observe this design can fully exploit
the image features in different channels.
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Channel Shuffle
Sigmoid

Transpose
Softmax

Sum 
Fusion

1×1 ConvAverage poolingMaximum pooling

Pixel Attention

Spatial Attention

Figure 5. The structure of the dual-branch channel attention mechanism (DCAM).

Specifically, we send the input data into a spatial attention branch to extract both the
background and texture of the image. Firstly, average pooling and max pooling operations
are used to process the input data, and then we fuse them in an additive manner. Suppose
that the size of the input data is H ×W, the united feature map zc is defined as

zc = Havgp + Hmaxp

=
∑H

i=1 ∑W
j=1 uc(i, j)

H ×W
+ max

i,j∈H×W
uc(i, j)

(8)

where Havgp and Hmaxp are average pooling and max pooling operations, respectively.
uc(i, j) is the pixel value at position (i, j) in the input data.

Then, the 7× 7 Conv with an activation function (sigmoid) is used to calculate the
spatial weight map Ws, i.e.,

Ws = sig(Conv7×7(zc)) (9)

where Conv7×7 is a convolution with a size of 7× 7, sig is the sigmoid function, an activation
function, and a channel shuffle is introduced to tackle the communication of feature maps
among different groups. Then, we extract the image’s spatial feature Fs by multiplying the
input data with the weight map, namely Fs = uc ×Ws.

In the pixel attention branch, the feature map zc that fuses features generated by the
average pooling and max pooling operations is added into the input data uc to avoid the
influence of the spatial relationship and is recorded as vc. Then, three 1× 1 Conv operations
are applied to vc and the result of the top branch is processed by a transpose operation.
In order to solve the weighted matrices W ′p, the transposed result was multiplied by the
result of the second branch and then processed by a softmax function. The above procedure
can be described as,

W ′p = so f t
(
(Conv1×1(vc))

T × (Conv1×1(vc))
)

(10)

where so f t is the softmax function and Conv1×1 is the convolution with the size of 1× 1.
Subsequently, the result of the final branch is multiplied by the weighted matrices W ′p

to calculate the pixel weighted map Wp,

Wp = W ′p × Conv1×1(vc) (11)

The pixel weighted map Wp and the spatial weight map Ws are integrated in a sum
operation to obtain attention-aware feature maps. Furthermore, the input data are fused
with the attention-aware feature maps to entirely explore its inherent information F, that is

F = sum
(
us, sum

(
Wp, Ws

))
(12)
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3.5. Loss Function

To guarantee our method shows satisfactory performance in LLIE, we carefully devised
a hybrid loss function containing a structure similarity (SSIM) loss, L1 loss, total variation
(TV) loss, and color constancy (CC) loss to assess the discrepancy between the output and
authentic images. These four loss functions are minutely described as follows:

L1-norm loss: We first calculate the mean absolute error (i.e., l1-norm) between the
output result Iout and normal-light image Inl to measure their difference. It can be calculated
as follows:

Ll1 = ‖Iout − Inl‖1 (13)

Structure similarity (SSIM) loss: The L1-norm loss can make our model generate high-
illumination images, but over- or underenhancement and other structural distortion are
introduced in the enhanced images. To address these challenging issues, we injected the
SSIM loss to examine the structure similarity. The formula of the SSIM loss is shown below:

LSSIM = 1−
2µxµy + c1

µ2
x + µ2

y + c1
·

2σxy + c2

σ2
x + σ2

y + c2
(14)

where µx and µy are the mean values of the pixels in the output and input images, respec-
tively. σx and σy stand for the pixels’ variance of the output and input images, respectively.
c2 and c2 are constants, which were empirically set as 0.0001 and 0.0009.

Total variation (TV) loss: Although most data-driven approaches effectively light
up low-illumination images, they inevitably generate observable noise. For compressing
the image noise, the TV loss was applied to smooth the output image by minimizing its
gradient in our method, and its definition is:

LTV =
H

∑
i=1

W

∑
j=1

√(
Pi,j − Pi+1,j

)(
Pi,j − Pi,j+1

)
(15)

where H and W are the image size. P is a pixel value. i and j are the pixel indexes in the
enhanced image.

Color constancy (CC) loss: Generally speaking, low-light images encounter a color
deviation, which leads to an unsatisfactory visual appearance. This work introduced the
CC loss function proposed in [62] to fully explore the relationship among R, G, and B
channels and correct the distorted color. The CC loss function can be defined as

LCC = ∑
∀(p,q)∈ε

(
Jp − Jq

)2, ε ∈ {(R, G), (R, B), (G, B)} (16)

where J· is the mean value of the p or q channel in the output result. (p, q) stands for a pair
of channels.

Total loss: We integrated the above-listed four loss functions to design a total loss
function, named Ltotal , defined as:

LTotal = Ll1 + LSSIM + ωTV LTV + ωCCLCC (17)

where Ll1 , LSSIM, LTV , and LCC are the l1-norm, SSIM, TV, and CC losses, respectively. ωTV
and ωCC are the weights, set as 0.8 and 0.4.

3.6. Relation to Other Learning-Based Methods

Relation to Xu et al. [21]: The proposed method relied on the same mechanism (i.e., the
image exhibits different features at various frequency layers) as the literature [21]. However,
the description of three apparent differences between these two methods is as follows:

(1) The way the frequency division was performed: Xu et al. [21] employed a learning-
based way, paying attention to the context encoding model (ACE), to adaptively
decompose the high and low frequencies of the input image. However, a guided
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filter, a traditional preserving filer, was applied to achieve the image’s high and low
frequencies in our work.

(2) The way the enhancement was performed: Xu et al. [21] compressed the inherent
noise and highlighted the details by the cross-domain transformation (CDT) model.
However, we designed two subnets, i.e., DetNet and StruNet, to enhance the image,
and the former processed the high-frequency components of the image to highlight its
detail while the latter disposed of its low-frequency components to generate visually
pleasing structural images.

(3) Furthermore, we injected spatial attention and pixel attention mechanisms into our
reported FDMLNet to fully exploit the inherent information in the image. In addition,
the multiscale structure was also embedded to promote the multiscale representation
ability of the proposed model.

Relation to PRIEN [50]: PRIEN [50] employed a dual-attention mechanism to promote
its performance in LLIE. In this paper, we created a dual-branch channel attention module
integrating spatial and pixel relationships. Noticeably, a channel shuffle was introduced
in the spatial attention branch to achieve communication among all channels, and the
pixels’ spatial relationship of the image was injected into the pixels’ attention branch.
In addition, [50] only considered the SSIM loss function, which may magnify the inherent
noise or distort the image color. However, the SSIM loss function, TV loss, L1 loss, and
color loss functions were all brought into our model to remove the color deviation, preserve
the details, and compress the inherent noise.

4. Experimental Results and Analysis

In this part, we describe the experimental results and analysis in detail. Firstly, we
briefly present the implementation details and experimental settings. Then, ablation studies,
as well as qualitative and quantitative assessments on paired and unpaired datasets, are
depicted. To this end, the analysis of the application test is implemented.

4.1. Experimental Settings

In the following, we state the comparison approaches, public benchmarks, and assess-
ment criteria in detail.

Comparison approaches: We carefully selected 12 state-of-the-art approaches as
comparison methods for validating the superiority of this FDMLNet for light enhance-
ment. These selected methods contained three traditional methods, i.e., LR3M [18], si-
multaneous reflection and illumination estimation (SRIE) [19], and the bioinspired mul-
tiexposure fusion framework (BIMEF) [20]; seven supervised-learning-based methods,
i.e., RetinexNet [54], deep stacked Laplacian restorer (DSLR) [49], KinD [28], DLN [14],
DRBN [59], SCL-LLE [52], and MIRNet [65]; an unsupervised-learning-based method, i.e.,
EnlightenGAN [29]; and a zero-reference-learning-based method, i.e., Zero DCE++ [1].
Notably, three traditional methods were coded in Matlab and the other eight comparison
methods were coded in Python and Pytorch.

Public benchmarks: We performed verification experiments on two paired datasets
(LOL and MIT-Adobe FiveK) and four unpaired datasets (LIME, MEF, NPE, and VV) to
test their performance in light enhancement. The LOL dataset was captured by chang-
ing the exposure time and ISO of a camera and contains 500 pairs of abnormal/normal
light RGB-images with a size of 400 × 600. The MIT-Adobe FiveK benchmark contains
5000 RAW-images processed by five professional photographers. Adobe Lightroom was
used to transform these images from the RAW to the RGB format to train the LLIE models.
The LIME, MEF, NPE, and VV benchmarks contain 10, 17, 84, and 24 images, respectively.

Assessment criteria: We adopted four full-reference commonly used criteria, including
the mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM) [66], and learned perceptual image patch similarity (LPIPS) [67] to assess
these LLIE comparison methods on the LOL and MIT-Adobe FiveK datasets. For these
criteria, an MSE, PSNR, or LPIPS [67] value, as well as a higher PSNR value indicated a
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better visual perception. Furthermore, two nonreference criteria, i.e., the natural image
quality evaluator (NIQE) [13] and patch-based contrast quality index (PCQI), were em-
ployed to assess the performance of these LLIE methods on the LIME, MEF, NPE, and VV
public benchmarks, and a lower NIQE [13] or higher PCQI score suggested more satisfying
enhanced images.

4.2. Training Details

We carried out our designed model on a platform with two 2080Ti GPUs, a Windows
10 operating system, 128 GB of RAM, and an Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz.
This proposed network was coded in Pytorch and optimized by stochastic gradient descent
(SGD). Furthermore, the batch size was 8, the learning rate was 0.0001, and the activate func-
tion was ReLU. We randomly selected 485 paired images from the LOL dataset for training
our model. Finally, the MIT-Adobe, LOL test, LIME, MEF, NPE, and VV benchmarks were
also selected for the testing experiment.

4.3. Ablation Studies

Ablation studies on the frequency division, multiscale learning, dual-branch channel
attention mechanism, loss and activation functions were conducted to fully understand the
FDMLNet. These ablation studies are detailed as follows:

Study of the frequency division: Figure 6 describes the visual enhancement results to
verify the effectiveness of the frequency division (FD) operation in our presented FDMLNet
model. Among them, -w/o FD represents our designed model without FD operation, FDm f
and FDg f stand for our developed model employing a mean filter (mf) and a guided filter
(gf) to separate the image high and low frequencies, respectively. From the results, we
discover that FD could avoid color casts and FDm f inevitably introduced observable noise.
However, FDg f coinstantaneously compressed the inherent noise and lights up the image.

Input -w/o FD

FDmf FDgf

Figure 6. Visual comparison of frequency division by different means.

Study of the multiscale learning structure: To examine the multiscale learning (MSL)
structure of our method, MSL was removed (named -w/o MSL). That is to say, our model
only extracted the image information under a single scale. Notice that -w/o MSL yielded
unwanted light and color casts in the enhanced images, as shown in Figure 7. Additionally,
from Table 1, we see FDMLNet generated higher PSNR and SSIM scores on both the LOL
and MIT-Adobe FiveK benchmarks. Thus, MSL improved absolutely the ability of our
model in LLIE.

Study of the dual-branch channel attention mechanism: -w/o DCAM indicates that
the attention mechanism was not taken into account in our model. As depicted in Figure 7,
-w/o DCAM failed to enhance local details and remove the color deviation as well as
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hand-crafted halos. However, the output image generated by our method showed a high
brightness, vivid colors, and clearer details. The PSNR and SSIM [66] of the different
operations on the LOL and MIT-Adobe datasets are shown in Table 1; it can be seen
that our method generated the highest scores of two elevation criteria on the selected
public datasets.

Input -w/o MSL

-w/o DCAM Ours

Figure 7. Qualitative analysis of every components in our model.

Table 1. The PSNR and SSIM [66] of different operations on LOL and MIT-Adobe datasets. Bold text
means the best performance.

Method
LOL MIT-Adobe

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
-w/o MSL 24.519 0.875 17.845 0.881

-w/o DCAM 24.545 0.880 17.887 0.886
Ours 24.658 0.886 17.895 0.879

Study of the loss function: We studied the roles of the mentioned loss functions in
our design. Furthermore, -w/o L1, -w/o TV, -w/o SSIM, and -w/o CC indicates that the
L1 loss, TV loss, SSIM loss, and CC loss were removed in our loss function, respectively.
Figure 8 demonstrates the image improved by our model with different loss functions,
and Table 2 shows the PSNR and SSIM [66] scores of two public benchmarks processed
by our FDMLNet model with different operations. Compared with other operations, we
easily find that only our design exhibited the best performance in both quantitative and
qualitative analyses for light enhancement.

Study of the activation function: To study the performance of the presented FDMLNet
with different activation functions, we show the processed images by our method with
LeakyReLU, Mish, and ReLU in Figure 9. We find that LeakyReLU amplified the dark area’s
inherent noise, and Mish was unsatisfactory for enhancing the local dark area. However,
ReLU could compress the image noise and light up the whole image simultaneously.
Furthermore, it was so intuitive and so sensible that both LOL and MIT-Adobe FiveK
datasets enhanced by FDMLNet showed optimal PSNR and SSIM values [66], as seen from
Table 2.
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Input -w/o l1 -w/o TV -w/o SSIM -w/o Color Ours

Figure 8. Visual comparison of the loss function in the presented FDMLNet approach.

(a) Input (b) Ours — Mish

(c) Ours — ReLU (d) Ours — LeakyReLU

Figure 9. The image processed by our method with different activation functions.

Table 2. The PSNR and SSIM [66] of our method under different loss and activation functions on
LOL and MIT-Adobe datasets. Bold text means the best performance. ↑ represents the bigger the
value, the better the performance.

Function
LOL MIT-Adobe

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Loss

-w/o L1 24.644 0.880 21.359 0.866
-w/o TV 24.599 0.879 21.353 0.869

-w/o SSIM 23.979 0.869 21.288 0.858
-w/o Color 24.656 0.881 21.358 0.870

Our 24.658 0.886 21.361 0.879

Activate
LeakyReLU 24.317 0.877 21.105 0.867

Mish 24.651 0.884 21.299 0.870
ReLU 24.658 0.886 21.361 0.879

4.4. Comprehensive Assessment on Paired Datasets

Qualitative evaluation: We first applied the FDMLNet and comparison LLIE methods
on the MIT-Adobe 5K and LOL paired benchmarks to validate their effectiveness in terms
of light enhancement. The qualitative evaluation on these two datasets was as follows:

Figure 10 shows the enhanced images of every comparison LLIE methods on the image
randomly selected from the MIT-Adobe paired benchmark. The following observations
could be obtained: First, the LLIE methods succeeded in lighting up low-illumination
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images, indicating that the image enhancement was an effective way to tackle the issues
of these images. However, SRIE [19], BIMEF [20], and LR3M [18] could not generate
the wanted images with a satisfactory visual appearance. RetinexNet [54] improved the
illumination of images while yielding unnatural visual experiences. KinD [28] failed to
recover the inherent details and introduced unsatisfactory color casts in local dark regions of
the image. SCL-LLE [52] generated undesired images with an unnatural visual experience
(observed in picture g in Figure 10). MIRNet [52] succeeded in improving the image
brightness, but the enhanced images exhibited a color deviation and low contrast. DSLR-
enhanced images had a blocking effect, and DRBN-enhanced pictures encountered color
distortion (discovered in the sky part of the images h and j in Figure 10). EnlightGAN [29]
failed to remove the artifacts’ halos and blocking effects. We also found that DLN [14] was
unsatisfactory in removing whitish tone and correcting color distortion. Although Zero
DCE++ [1] could successfully light up the image, it brought in unnatural visual and blurry
details. Compared with twelve state-of-the-art LLIE methods, only our method showed
an impressive performance in rebuilding artifact-free images with a visually pleasing
appearance, clearer details, and vivid colors.

(a) Input (b) SRIE (c) BIMEF (d) LR3M (e) RetinexNet

(f) KinD (h) DSLR (i) EnlightGAN (j) DRBN

(k) Zero DCE++ (l) DLN (n) Ours

(g) SCL-LLE

(o) Ground Truth(m) MIRNet

Figure 10. Visual comparisons of different approaches on the MIT-Adobe benchmark. (a) Low-
light image selected from MIT-Adobe benchmark, (o) the corresponding ground truth image.
The enhancement result via (b) SRIE [19], (c) BIMEF [20], (d) LR3M [18], (e) RetinexNet [54],
(f) KinD [28], (g) SCL-LLE [52], (h) DSLR [49], (i) EnlightenGAN [29], (j) DRBN [59], (k) Zero
DCE++ [1], (l) DLN [14], (m) MIRNet [52], and (n) Ours.

All the mentioned LLIE methods were also compared on the LOL public benchmark,
and a randomly selected result from the LOL dataset is shown in Figure 11. From Figure 11,
we easily discover that these comparison methods either failed to light up local darkness
or introduced unwanted visual appearances, such as hand-crafted halos, blocking effects,
and so on. Specifically, DSLR [49], DRBN [59], and EnlightenGAN [29] inevitably distorted
the color of some low-light photos; RetinexNet [54] generated unwanted artifacts holes;
SRIE [19], BIMEF [20], and LR3M [18] could not effectively light up the low-illumination
image; KinD [28] amplified the inherent noise; SCL-LLE [52] generated high-light images,
while their appearance was not natural. MIRNet [65] showed a poor performance in
lighting up the illumination of some low-light images (as seen in picture m in Figure 11).
Here, our proposed method not only could effectively light up the low-illumination image,
but could also eliminate distorted colors as well as promote the image quality with clearer
details and a corrected exposure. That is, our method outperformed all the mentioned
comparison methods in LLIE.
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(a) Input (b) SRIE (c) BIMEF (d) LR3M (e) RetinexNet

(f) KinD (h) DSLR (i) EnlightGAN (j) DRBN

(k) Zero DCE++ (l) DLN (n) Ours

(g) SCL-LLE

(o) Ground Truth(m) MIRNet

Figure 11. Visual comparisons of different approaches on the LOL benchmark. (a) lowlight im-
age selected from LOL benchmark, (o) the corresponding ground truth image. The enhancement
result via (b) SRIE [19], (c) BIMEF [20], (d) LR3M [18], (e) RetinexNet [54], (f) KinD [28], (g) SCL-
LLE [52], (h) DSLR [49], (i) EnlightenGAN [29], (j) DRBN [59], (k) Zero DCE++ [1], (l) DLN [14],
(m) MIRNet [52], and (n) Ours.

Quantitative evaluation: In addition to the visual comparison listed above, a quanti-
tative evaluation was also performed on the LOL and MIT-Adobe public benchmarks to
further validate our designed model comprehensively. The average MSE, SSIM [66], PSNR,
and LPIPS [67] scores on these two public datasets promoted by the aforementioned LLIE
models are shown in Table 3. For the four reference criteria, we can readily easily notice that
SRIE [19], BIMEF [20], and LR3M [18] were inferior to some data-driven approaches, which
empirically indicated that the latter showed an impressive performance in LLIE owing
to its strong ability for feature representation and extraction. In comparison, among all
the aforementioned methods, our FDMLNet method generated comparable scores of MSE,
SSIM [66], PSNR, and LPIPS [67] in these two datasets. This means our proposed method
performed well in lighting up the brightness, preserving inherent details, and compressing
the noise of low-light images in terms of both quantitative and qualitative evaluations.

Table 3. Quantitative analysis of different state-of-the-art LLIE methods on public paired benchmarks.
Red/green text means the best/second-best performance. ↓ and ↑ respectively represent the smaller
or bigger the value, the better the performance.

Method
LOL MIT-Adobe

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
LR3M [18] 4.928 16.998 0.301 0.580 4.117 17.917 0.699 0.241
SRIE [19] 4.902 17.162 0.235 0.552 4.206 17.819 0.690 0.249

BIMEF [20] 4.869 17.191 0.264 0.560 4.259 17.772 0.683 0.252
RetinexNet [54] 1.651 21.875 0.462 0.474 4.391 17.624 0.671 0.239

DSLR [49] 3.536 18.580 0.597 0.337 1.947 21.172 0.692 0.201
KinD [28] 1.431 22.509 0.766 0.143 2.675 19.908 0.799 0.167
DLN [14] 1.515 21.939 0.807 0.163 1.897 16.995 0.769 0.171

DRBN [59] 2.259 20.635 0.472 0.316 3.307 18.875 0.378 0.291
EnlightenGAN [29] 1.998 21.263 0.677 0.322 3.628 18.456 0.745 0.170

MIRNet [65] 1.226 23.191 0.816 0.253 1.864 21.361 0.690 0.238
Zero DCE++ [1] 3.300 14.859 0.587 0.360 3.481 13.197 0.704 0.212

SCL-LLE [52] 2.445 20.197 0.695 0.386 3.002 19.291 0.636 0.279
Ours 1.103 24.658 0.866 0.140 1.412 21.361 0.879 0.169
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4.5. Comprehensive Assessment on Unpaired Datasets

Qualitative evaluation: To effectively and comprehensively examine the light en-
hancement capability of state-of-the-art comparison methods and our FDMLNet, four
unpaired benchmarks (i.e., LIME, MEF, NPE, and VV) were also used to conduct validation
experiments. We demonstrate randomly selected results generated by these cutting-edge ap-
proaches from the LIME, MEF, NPE, and VV benchmarks in Figure 12, Figure 13, Figure 14
and Figure 15, respectively. From these enhanced images, the following observations
can be made: BIMEF [20], a fusion-strategy-based method, tried to produce high-light
images by fusing multiexposure images. Significantly, this method failed to light up the
dark regions of some pictures and introduced observable over- or underenhancements.
Both LR3M [18] and SRIE [19] could notably promote the image brightness and contrast,
but LR3M-enhanced images suffered from unsatisfactory structural details and SRIE [19]
excessively enhanced some images causing local overexposure. RetinexNet [54] intro-
duced unsatisfactory artifact holes, DSLR [49] generated an unnatural visual appearance,
blocking effects, and color casts. Zero DCE++ [1] and DLN [14] effectively enhanced
low-illumination images with blurry details and low contrast, but they all introduced
an additional whitish tone in the enhanced images. Additionally, the former generated
unwanted hand-crafted holes and blurry edges in some enhanced images, and the lat-
ter was not satisfactory when tackling color distortion. SCL-LLE [52] generated visually
unnatural images, and MIRNet [65] failed to address the local darkness of the enhanced
images. Although EnlightenGAN [29] and DRBN [59] were satisfactory for lighting up the
brightness of low-light images, they inevitably brought in some local underenhancement
or darkness and unsatisfactory edges. On the contrary, our discovered method showed a
satisfactory manifestation in lighting illumination, preserving edges and structural details,
avoiding color distortion, and over- or underenhancement on the LIME, MEF, NPE, and VV
unpaired benchmarks. To wit, our method outperformed all aforementioned comparison
approaches in lighting up low-light images.

(a) Input (b) SRIE (c) BIMEF (d) LR3M (e) RetinexNet (f) KinD

(h) DSLR (i) EnlightGAN (j) DRBN (k) Zero DCE++ (l) DLN (n) Ours

(g) SCL-LLE

(m) MIRNet

Figure 12. Visual comparisons of different approaches on the LIME benchmark. (a) Low-
light image selected from LIME benchmark. The enhancement result via (b) SRIE [19],
(c) BIMEF [20], (d) LR3M [18], (e) RetinexNet [54], (f) KinD [28], (g) SCL-LLE [52], (h) DSLR [49],
(i) EnlightenGAN [29], (j) DRBN [59], (k) Zero DCE++ [1], (l) DLN [14], (m) MIRNet [52],
and (n) Ours.

Quantitative Evaluation: For the LIME, MEF, NPE, and VV unpaired benchmarks,
we first conducted a visual comparison and analysis on images generated by different
methods in the previous section. Subsequently, the NIQE [13] and PCQI nonreference
assessment metrics were applied to objectively assess the enhanced images in terms of a
quantitative evaluation. Furthermore, we show the average quantitative (NIQE [13], and
PCQI) scores for state-of-the-art comparison methods on the LIME, MEF, NPE, and VV
datasets in Table 4. We can conclude the following: These datasets enhanced by SRIE [19],
BIMEF [20], and LR3M [18] exhibited lower values on all aforementioned nonreference
criteria, indicating that conventional methods performed unsatisfactory in LLIE. Conversely,
our designed FDMLNet generated higher scores of the NIQE [13] and lower scores of the
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PCQI assessment criteria in the LIME, MEF, NPE, and VV datasets than other state-of-
the-art comparison approaches. In a nutshell, the proposed FDMLNet model generally
performed satisfactorily in contrast stretch, color correction, and detail preservation for
addressing the challenging issues of low-illumination pictures.

(a) Input (b) SRIE (c) BIMEF (d) LR3M (e) RetinexNet (f) KinD

(h) DSLR (i) EnlightGAN (j) DRBN (k) Zero DCE++ (l) DLN (n) Ours

(g) SCL-LLE

(m) MIRNet

Figure 13. Visual comparisons of different approaches on the MEF benchmark. (a) Low-light image se-
lected from MEF benchmark. The enhancement result via (b) SRIE [19], (c) BIMEF [20], (d) LR3M [18],
(e) RetinexNet [54], (f) KinD [28], (g) SCL-LLE [52], (h) DSLR [49], (i) EnlightenGAN [29],
(j) DRBN [59], (k) Zero DCE++ [1], (l) DLN [14], (m) MIRNet [52], and (n) ours.

(a) Input (b) SRIE (c) BIMEF (d) LR3M (e) RetinexNet (f) KinD

(h) DSLR (i) EnlightGAN (j) DRBN (k) Zero DCE++ (l) DLN (n) Ours

(g) SCL-LLE

(n) MIRNet

Figure 14. Visual comparisons of different approaches on the NPE benchmark. (a) Low-light image se-
lected from NPE benchmark. The enhancement result via (b) SRIE [19], (c) BIMEF [20], (d) LR3M [18],
(e) RetinexNet [54], (f) KinD [28], (g) SCL-LLE [52], (h) DSLR [49], (i) EnlightenGAN [29],
(j) DRBN [59], (k) Zero DCE++ [1], (l) DLN [14], (m) MIRNet [52], and (n) ours.

(a) Input (b) SRIE (c) BIMEF (d) LR3M (e) RetinexNet (f) KinD

(h) DSLR (i) EnlightGAN (j) DRBN (k) Zero DCE++ (l) DLN (n) Ours

(g) SCL-LLE

(m) MIRNet

Figure 15. Visual comparisons of different approaches on the VV benchmark. (a) Low-light im-
age selected from VV benchmark. The enhancement result via (b) SRIE [19], (c) BIMEF [20],
(d) LR3M [18], (e) RetinexNet [54], (f) KinD [28], (g) SCL-LLE [52], (h) DSLR [49], (i) Enlighten-
GAN [29], (j) DRBN [59], (k) Zero DCE++ [1], (l) DLN [14], (m) MIRNet [52], and (n) ours.
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Table 4. Quantitative analysis of different state-of-the-art LLIE methods on public unpaired bench-
marks. Red/green text means the best/second-best performance. ↓ and ↑ respectively represent the
smaller or bigger the value, the better the performance.

Method
LIME MEF NPE VV

NIQE ↓ PCQI ↑ NIQE ↓ PCQI ↑ NIQE ↓ PCQI ↑ NIQE ↓ PCQI ↑
LR3M [18] 4.4259 0.7417 3.6001 0.9459 4.1490 0.7551 3.1233 0.9656
SRIE [19] 3.7870 1.1121 3.5936 0.9570 3.3383 0.9556 3.1361 0.9629

BIMEF [20] 3.8313 1.0647 3.5674 0.9293 3.4027 0.9116 3.1175 0.9271
RetinexNet [54] 4.9079 0.7947 3.7337 0.9112 4.2111 0.7320 3.2440 0.9163

DSLR [49] 5.8877 0.7286 4.1052 0.8998 4.2655 0.7802 3.6661 0.8116
KinD [28] 4.7619 0.9393 3.5954 0.9081 3.5060 0.8638 3.3689 0.8314
DLN [14] 3.8432 0.9990 3.5608 0.9002 3.4119 0.9036 3.1096 0.9292

DRBN [59] 3.8710 1.0059 3.5711 0.9225 3.5413 0.9201 3.2210 9.9199
EnlightenGAN [29] 4.6320 0.9392 3.2232 0.9691 3.5885 0.8897 2.5814 0.9774

Zero DCE++ [1] 3.7691 1.0956 3.5279 0.9398 3.2819 0.9598 2.4001 0.9799
SCL-LLE [52] 3.7800 0.7874 3.3115 0.8991 3.8776 0.7543 3.1649 0.9010

Ours 3.5996 1.2351 3.0010 0.9689 2.9998 0.9696 2.3369 0.9801

4.6. Comprehensive Analysis of Computational Complexity

We show the computational complexity of all above-listed methods and their average
execution time on the LOL benchmark in Table 5. From the table, we find Zero DCE++ [1]
enjoyed the fewest number of parameters and flops, the fastest speed owing to its esti-
mating of the parameters of the high-order curve via a lightweight network. Besides Zero
DCE++ [1], DRBN [59], and RetinexNet [54], our FDMLNet exhibited a fewer number of pa-
rameters and faster speed in light enhancement than the remaining comparison approaches.
However, all the validation experiments proved that our FDMLNet outperformed all
comparison methods in LLIE.

Table 5. Computational complexity comparison with state-of-the-art methods on LOL benchmark. ↓
means the smaller the value, the better the performance.

Method Param (M) ↓ Flops (G) ↓ Time (s) ↓
LR3M [18] - - 7.4802
SRIE [19] - - 5.1453

BIMEF [20] - - 0.5096
RetinexNet [54] 1.23 6.79 0.5217

DSLR [49] 14.31 22.95 0.0201
KinD [28] 8.49 7.44 0.6445
DLN [14] 91.19 198.56 0.9807

DRBN [59] 0.58 2.62 0.0711
EnlightenGAN [29] 8.64 7.88 0.6501

Zero DCE++ [1] 1.25 × 10−6 0.12 0.0028
SCL-LLE [52] 0.08 1.56 0.0048

Ours 2.91 3.08 0.0213

4.7. Comprehensive Assessment on Real Images

To prove the application of our method in real-world images, we applied our FDMLNet
on real low-light images captured by Mate 20 Pro and Vivo X60 phones. The results yielded
by our the FDMLNet are depicted in Figure 16. The following observation can be obtained:
the enhanced images consistently exhibited a visually pleasing appearance, vivid colors,
and more apparent details with the help of our designed learning-based method. Therefore,
our proposed FDMLNet model could be applied to promote the quality of images received
from a common phone camera, such as a Mate 20 Pro, Vivo X60, and so on. Additionally, we
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processed the compressed low-light images, which were created by setting the compression
ratios to 0.2, 0.5, 0.8, and 1 in order to test our method. The enhanced images and the
NIQE (original/enhanced images) are shown in Figure 17. We can easily find that the
proposed FDMLNet generated more satisfactory images and had lower NIQE scores under
a variety of compression ratios. Unfortunately, our proposed method failed to remove the
hand-crafted halos, especially with a compression ratio of 0.2 (observed in picture a in
Figure 17).

(a) (b) (c) (d)
Figure 16. Visual comparisons of the FDMLNet tested on real low-light images. (a,b) captured by
Mate 20 Pro, (c,d) captured by Vivo X60. From top to bottom, the first row is the original image, and
the second row is the result generated by our method.

(a) NIQE = 5.35/4.41 (b) NIQE = 3.06/1.79 (c) NIQE = 2.31/1.14 (d) NIQE = 2.07/0.91

Figure 17. Visual comparisons of the FDMLNet tested on compressed low-light images. (−/− is the
NIQE score of the original/enhanced image). From left to right, the compression ratios are set to 0.2,
0.5, 0.8 and 1, respectively. From top to bottom, the first row is the original image, and the second
row is the result generated by our method.

5. Discussion and Limitation

Low-illumination images not only exhibit an unsatisfactory visual appearance but
deliver compromised information for other high-level computer vision applications. Hence,
it is urgent but practical to improve their quality. Our FDMLNet required fewer parameters,
had a faster speed, and performed well in generating a visually pleasing image in most
cases, but it still showed some limitations in certain unique scenes. For example, Figure 18
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demonstrates the visual comparisons of the FDMLNet tested on different low-light images;
we can observe that our method failed to restore the quality of the images with excessive
noise, colored light, and local overexposure. The most probable reason was that our
designed DetNet was without a denoising operation and directly processed the image’s
high frequencies containing inherent noise. Moreover, some special scene images, such as
colored light images, were not included when training our model. In the future, we will
tackle these challenging issues by fusing semantic information and building a diversity
dataset to train the model.

(a) (b) (c)

Figure 18. Visual comparisons of the FDMLNet tested on different low-light images. Low-light image
with (a) colored light, (b) boosted noise, (c) local overexposure. From top to bottom, the first row is
the original image, and the second row is the result generated by our method.

6. Conclusions

We constructively demonstrated a novel and highly efficient method for tackling the
challenging issues of low-illumination photos. This proposed FDMLNet first employed a
guided filter to separate the image high and low frequencies. In addition, the DetNet and
StruNet were separately used to process them for enhancing low-light images. In StruNet,
a multiscale learning block with a dual-branch channel attention strategy was injected to
fully exploit the information at different scales. Then, the FFEM was composed by three
MSAMs in a improved skip-connection way to utilize the hierarchical and inherent features.
Furthermore, the FFEMs were connected by means of a dense connection to guarantee
the multilevel information was completely assimilated. Extensive experimental validation
results on several public paired/unpaired benchmarks proved that our FDMLNet was
superior to state-of-the-art approaches in terms of LLIE. However, our method ineffectively
recovered the color and brightness of images with boosted noise or colored light; we will
tackle these remaining problems in the future.
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