
Citation: Tian, Y.; Zhang, J.; Chen, Q.;

Hou, S.; Xiao, L. Group Decision

Making-Based Fusion for Human

Activity Recognition in Body Sensor

Networks. Sensors 2022, 22, 8225.

https://doi.org/10.3390/s22218225

Academic Editors: Daniela Micucci

and Marco Mobilio

Received: 26 September 2022

Accepted: 25 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Group Decision Making-Based Fusion for Human Activity
Recognition in Body Sensor Networks
Yiming Tian 1,* , Jie Zhang 2 , Qi Chen 1, Shuping Hou 1 and Li Xiao 1

1 College of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China
2 School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
* Correspondence: yimingtian@tjcu.edu.cn

Abstract: Ensemble learning systems (ELS) have been widely utilized for human activity recogni-
tion (HAR) with multiple homogeneous or heterogeneous sensors. However, traditional ensemble
approaches for HAR cannot always work well due to insufficient accuracy and diversity of base clas-
sifiers, the absence of ensemble pruning, as well as the inefficiency of the fusion strategy. To overcome
these problems, this paper proposes a novel selective ensemble approach with group decision-making
(GDM) for decision-level fusion in HAR. As a result, the fusion process in the ELS is transformed
into an abstract process that includes individual experts (base classifiers) making decisions with
the GDM fusion strategy. Firstly, a set of diverse local base classifiers are constructed through the
corresponding mechanism of the base classifier and the sensor. Secondly, the pruning methods
and the number of selected base classifiers for the fusion phase are determined by considering the
diversity among base classifiers and the accuracy of candidate classifiers. Two ensemble pruning
methods are utilized: mixed diversity measure and complementarity measure. Thirdly, component
decision information from the selected base classifiers is combined by using the GDM fusion strategy
and the recognition results of the HAR approach can be obtained. Experimental results on two public
activity recognition datasets (The OPPORTUNITY dataset; Daily and Sports Activity Dataset (DSAD))
suggest that the proposed GDM-based approach outperforms the well-known fusion techniques and
other state-of-the-art approaches in the literature.

Keywords: human activity recognition; wearable sensors; selective ensemble learning; sensor data
fusion

1. Introduction

Recent technological advancements in sensors, wireless communication, and machine
learning techniques have driven sensor-based HAR becoming a very active research topic.
HAR technology provides an effective way to monitor, analyse and identify one person’s
status in different scenes across a variety of human-centred applications and systems [1,2].
Compared with camera-based HAR solutions, sensor-based methods are cheaper and more
efficient by using different types of wearable devices (e.g., body-worn inertial sensors,
smart glasses, etc.), or smartphones to capture physical activity data. Currently, sensor-
based devices have become more accessible in our daily life because they can send data
wirelessly to a mobile computing device and greatly reduce users’ awareness and possible
discomfort during the process of data collection and recognition. The sensor-based HAR
has benefited various fields such as health monitoring [3], assisted living for elderly [4],
and sports assessment [5].

Recently, considerable work on HAR has demonstrated the significant role of multi-
sensor fusion for wearable activity recognition [6]. According to the data processing level of
abstraction, multi-sensor fusion strategies can mainly be categorized into three types: data-
level fusion, feature-level fusion, and decision-level fusion [7]. Among these three fusion
levels, decision-level fusion provides a unique decision information according to the local
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decision of multiple sensors, regardless of the sensor properties and parameter settings.
The fusion in the decision-level has many advantages such as communication bandwidth
saving and allowing the combination of the heterogeneous sensors. However, the most
commonly used approaches for this level cannot tackle the uncertainty and ambiguity
with complex sensory data [8] and on the knowledge of our scope, there is few literatures
emphasis on the study of GDM-based decision-level fusion strategy for HAR issues.

ELS, as an efficient machine learning technique, has recently become the focus of a
new methodology for achieving optimal generalization performance of the HAR task [9].
It overcomes some shortcomings of individual models such as low generalization ability
and poor performance due to hyperparameters and data distribution [10]. The principle
of ELS is that optimization of the combination of simple models appears more effective
than optimizing a single complex model. There are three key factors that are crucial for
establishing an optimal MLS: accuracy of individual classifiers, diversity among classifiers,
and the applied fusion strategies. Therefore, the proposed ELS in this paper aims to select
the optimal ensemble from various information sources of body position and then fuse
them based on a GDM-based strategy for HAR.

The diversity of the base classifiers is a fundamental issue for the success of ELS [11].
Therefore, this paper utilizes two techniques to get multiple base models with diversity.
Firstly, in the generation of the base classifiers, variations in training datasets for individual
classifiers are considered to improve the diversity among base classifiers. Thus, multiple
base classifiers are trained by data from different information sources. Secondly, in the
pruning phase of ELS, a mixed diversity measure and a complementarity measure-based
pruning methods have been taken into account to optimize the ELS, which seeks to discover
a sub-ensemble that improves the performance of the fusion phase.

Constructing a fusion rule is another crucial factor in ELS, which merges the decision
information of individual base classifiers to give the final decision of the ensemble. There
are various fusion rules applied in ensemble learning-based HAR, such as majority voting,
boosting, bagging, or stacking [12–14]. However, the simple information fusion theories are
not effective in solving the uncertainty and ambiguity of the information source, especially the
types of activity that are not mutually exclusive. This inevitably exists in the decision fusion
process and affects the performance of the ELS. Thus, this paper proposes a GDM-based
strategy for ensemble learning-based HAR, which is based on the decision information of
separate experts from various signal sources. In the proposed combination strategy, each
base classifier is regarded as an expert to conduct activity recognition and the GDM strategy
is utilized to combine the solutions from the local experts. Each expert is a base classifier
model for a part of the multi-sensor fusion problem. Furthermore, the GA (genetic algorithm)
algorithm is utilized to acquire the subjective weights of individual experts.

To summarize, this paper proposes a GDM fusion strategy-based ELS for HAR. Firstly,
a decision-level fusion structure is designed for the multi-sensor-based HAR task. Secondly,
two techniques are applied to ensure the diversity among the base models: (1) distinctive
training data has been taken into account for each base classifier through the relationship
between sensors and classifiers; (2) two pruning methods have been proposed to select
the best combinations for the fusion phase. Thirdly, a GDM strategy with multiple experts
acquiring the decision information from various signal sources is designed to implement
the fusion process of the ELS. Two public activity recognition data sets are utilized to verify
the effectiveness of the proposed approach. Experimental results show that the proposed
group decision making-based ELS approach is more effective than the individual classifiers
and approaches based on other fusion strategies.

The rest of this paper is organized as follows. In Section 2, related works about fusion
methods for HAR and the diversity of the ELS are introduced. In Section 3, the proposed
method is demonstrated in detail. In Section 4, experiments are carried out and results are
analysed. Finally, the conclusions and future work are provided in Section 6.
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2. Related Works

Considerable research has explored the use of various fusion methods to ELS for
HAR. Four decision fusion methods including voting, bagging, boosting, and stacking are
utilized to fuse the prediction outputs of multiple classifiers and produce a more accurate
classification [15]. The results show that bagging and stacking achieve higher accuracy
compared to the baseline method. However, the processing time of these two methods is an
obstacle to their specific application. In [16], two fusion schemes are carried out, including
the fixed rules and adaptive fuser fusing the results of three mono-modal classifiers for
HAR. The results showed that the best performance is achieved by the Product Rule (F1
94.5%) for fixed rules and Random Forest (F1 95.5%) obtains the best performance for
adaptive fusing. Ref. [17] proposed a tree-based ensemble learning classifier, XGBoost,
to recognize indoor activities. Based on the dataset from 40 volunteers, the proposed
XGBoost algorithm outperforms other ensemble learning classifiers and single classifiers
and achieves a recognition accuracy of 84.41%. Chen et al. [18] proposed a new method
based on the Dempster–Shafer theory to improve HAR by using the fusion of a depth
camera and inertial sensors. However, this work ignores the assumption that the hypotheses
considered should be exclusive, which is not applicable to HAR. Dong et al. [19] designed
a robust and intelligent sensor fusion strategy based on the Dezert–Smarandache theory
for HAR. In this framework, the missing data of the involved sensors are ignored without
manual interpolation or intervention.

A large number of works focus on the diversity of the ELS. Chen et al. [20] proposed a
novel ensemble extreme learning machine (ELM) algorithm for smartphone-based HAR.
The authors utilized Gaussian random projection to initialize the input weights of base
ELMs, so the base ELMs in the ensemble have more diversity, which helps to improve
the generalization performance of the ensemble system. Cao et al. [21] proposed two new
ensemble pruning criteria in the ensemble pruning system for optimizing multi-sensor
deployment. Through this work, the new criteria are able to select learners with low
error and huge diversity as the final ensemble classifier and the number and type of
multi-sensor can be appropriately decided. The kernel density estimation (KDE)-based
models are derived from the raw sensor readings so as to build the model pool and the
sum of statistical difference and the sum of divergence difference are utilized to select
the representative model for a particular activity in [19]. The experiments show that
this could effectively guarantee the degree of diversity among base classifiers, which is
really important for ensemble fusion. A novel ensemble architecture that fuses three
diverse classifiers: layer perception, a random forest, and a support vector machine is
proposed in [22]. The ensemble architecture utilizes diversified classifiers upon CNN-
extracted features to tackle the WiFi-based HAR task. The results show that the recognition
performance of the proposed approach can be improved compared to handcrafted feature
extraction or conventional deep learning architectures.

3. The Proposed ELS-Based HAR Approach

The proposed ELS-based HAR approach contains three main phases: (1) generation,
(2) pruning, and (3) fusion. The focus of the generation phase is to create a pool of
base classifiers. This paper considers the corresponding relationship between sensors
and classifiers and the diversity between base classifiers from the data level has also
been taken into account. The classifier pool is composed of classifiers corresponding to
each body position, which is used in subsequent classifier pruning and fusion phase. In
the pruning phase, two new ensemble pruning techniques are applied to select the best
classifier from the pool to construct the ELS. The main aim of this phase is to reduce the
ensemble scale of ELS and attain better generalization performance and less computational
consumption. Finally, in the fusion phase, the base classifiers selected after the pruning
phase are considered as experts to recognize activity and obtain independent recognition
results, respectively. Due to each expert in a particular position having its own decision
information, there will be the problem of information source conflict in the specific HAR.
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Therefore, this paper proposes a HAR method based on the GDM strategy for fusing the
initial results of individual experts, thereby eliminating the information source conflict and
improving the accuracy and generation performance. In the following, three phases of the
proposed ELS-based HAR approach, including the generation of the pool of base classifiers,
selection of base classifiers, and the GDM-based fusion are discussed in detail. The process
of our proposed ELS-based HAR approach is illustrated in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 24 
 

 

Finally, in the fusion phase, the base classifiers selected after the pruning phase are con-

sidered as experts to recognize activity and obtain independent recognition results, re-

spectively. Due to each expert in a particular position having its own decision information, 

there will be the problem of information source conflict in the specific HAR. Therefore, 

this paper proposes a HAR method based on the GDM strategy for fusing the initial re-

sults of individual experts, thereby eliminating the information source conflict and im-

proving the accuracy and generation performance. In the following, three phases of the 

proposed ELS-based HAR approach, including the generation of the pool of base classifi-

ers, selection of base classifiers, and the GDM-based fusion are discussed in detail. The 

process of our proposed ELS-based HAR approach is illustrated in Figure 1. 

 

Figure 1. The flowchart of the proposed ELS-based HAR approach. Firstly, in (a), diverse base clas-

sifiers are trained using training data corresponding to each body position. In (b), the optimal sub-

ensemble of ELS is selected by taking into account two diversity measures. In (c), the GDM-based 

fusion method is utilized to combine the base classifiers. Finally, in (d), the final prediction is pro-

duced by the proposed ELS-based HAR model. 

3.1. Phase One: Base Classifier Generation 

The diversity is highlighted as a crucial principle for the design of an ELS, which 

helps improve the performance of an ensemble by mining salient information with respect 

to different perspectives. In this phase, to obtain the base classifiers with diversity, a one-

to-one relationship between the classifier and sensor is constructed and different classifi-

ers training data are utilized to build the classifier pool. Each classifier is trained by the 

data collected by sensors at one particular position to acquire the GDM-based decision-

level fusion. Compared with data-level and feature-level fusion, decision-level fusion 

deals with more abstract (higher level) information and arrives at a consensus to improve 

the overall accuracy, robustness, and generalization. Besides, the ELM [20,23] is utilized 

in this paper as the base classifier owing to its extremely fast learning speed and the good 

generalization performance. Moreover, due to the high diversity caused by random 

Figure 1. The flowchart of the proposed ELS-based HAR approach. Firstly, in (a), diverse base
classifiers are trained using training data corresponding to each body position. In (b), the optimal
sub-ensemble of ELS is selected by taking into account two diversity measures. In (c), the GDM-
based fusion method is utilized to combine the base classifiers. Finally, in (d), the final prediction is
produced by the proposed ELS-based HAR model.

3.1. Phase One: Base Classifier Generation

The diversity is highlighted as a crucial principle for the design of an ELS, which helps
improve the performance of an ensemble by mining salient information with respect to
different perspectives. In this phase, to obtain the base classifiers with diversity, a one-to-
one relationship between the classifier and sensor is constructed and different classifiers
training data are utilized to build the classifier pool. Each classifier is trained by the data
collected by sensors at one particular position to acquire the GDM-based decision-level
fusion. Compared with data-level and feature-level fusion, decision-level fusion deals with
more abstract (higher level) information and arrives at a consensus to improve the overall
accuracy, robustness, and generalization. Besides, the ELM [20,23] is utilized in this paper
as the base classifier owing to its extremely fast learning speed and the good generalization
performance. Moreover, due to the high diversity caused by random parameters of the
algorithm, the ELM as an unstable classifier helps build an ensemble learning system with
excellent performance.
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3.2. Phase Two: ELS Pruning

In the generation phase, base classifiers corresponding to body position are trained
for the generation of the base classifiers pool. Thereafter, in the phase of selecting the
most appropriate base classifiers to be combined, the diversity and accuracy of the base
classifiers are two critical factors in ensemble pruning and can ensure the effectiveness of
the ELS. These two important aspects inspire us to research two pruning criteria to discover
a set of classifiers (fusion sets) that improve the accuracy of ELS recognition. The first one
focuses on the different diversity measures and computes the degree of disagreement of all
base classifiers. The second one emphasized the base classifier with the best accuracy and
analysed the relationship among them. The two discriminant evaluation functions applied
in this paper are shown as follows.

3.2.1. Mixed Diversity Measure

The diversity of classifiers is a key factor for an effective ELS. There must be diversities
between the classifiers in the ELS, otherwise, the ensemble results will be the same as those
from the individual classifiers. Therefore, it is necessary to select the base classifiers with
huge diversity in order to improve the generalization performance and reduce the compu-
tational complexity. A new diversity measure is proposed based on the idea of finding the
most discriminative component classifier. Therefore, three well-known measures including
correlation coefficient ρ, Q statistical measure, and disagreement measure Dis are utilized
in the proposed measure. These measurements are defined as follows.

ρij =
N11N00 − N10N01√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)
(1)

Qij =
N11N00 − N10N01

N11N00 + N10N01
(2)

Disij =
N10 + N01

N11 + N10 + N01 + N00
(3)

where N11 is the number of samples that are correctly recognized by both classifiers Ci
and Cj. N10 is the number of samples that are correctly recognized by classifier Ci but
misrecognized by Cj. N01 is the number of samples that are correctly recognized by classifier
Cj but misrecognized by Ci. N00 is the number of samples that are misrecognized by both
classifiers Ci and Cj. The range of the diversity measure is (0, 1), which represents the
diversity value between the base classifiers Ci and Cj. When there is no diversity between
the two base classifiers, the value of diversity measure is 0. The larger the value, the greater
the diversity between the two base classifiers.

According to (1), (2) and (3), another discriminative evaluation function is proposed
to measure the discriminative ability between different base classifiers, which is named as
the mixed diversity measure. Let ηi denote the average of the sum of the three diversity
measures between the base classifier Ci and all base classifiers and AV denote the average
diversity value of all base classifiers, that is, the average of the sum of the diverse values of
m base classifiers, then they can be calculated as follows:

ηi =
n

∑
j=1

(ρij + Qij + Disij)/n (4)

AV =
n

∑
i=1

ηi/n (5)

According to Equations (4) and (5), when ηi > AV, it indicates that the base classifier
Ci has huge diversity with other base classifiers. Then, the base classifier Ci is selected to
participate in the final fusion phase and finally k base classifiers will be selected according
to the value of diversity measure.
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3.2.2. Mixed Diversity Measure

On the other hand, accuracy is another key requirement for a successful ELS. Therefore,
the base classifier with the best accuracy in the pool and the relevancy between it and
the candidate classifiers is another point that is taken into consideration in this paper.
The complementarity measure is utilized to calculate the relevancy between the base
classifier with the best accuracy and other candidate classifiers, which is based on the
idea of incrementally finding the most complementary component classifier. The base
classifier with the optimal performance is first selected and then the base classifier with the
greatest complementarity with the currently selected sub-ensemble is selected and added
to the sub-ensemble. The process is repeated until sufficient base classifiers are added. The
set of base classifiers selected by the complementarity measure not only ensures that the
base classifiers have large diversity but also eliminates the base classifiers with similar
performance. The process of selecting a base classifier for the complementarity measure
is as follows. Assuming that the currently selected sub-ensemble Su has u base classifiers,
then the (u + 1)th base classifier is selected and add it to Su to form Su + 1 according to
Equation (6):

Su+1 = argmax ∑
(x,y)∈(X,Y)

I(Ck(x) = y ∩ ESu(x) 6= y) (6)

where Ck(x) represents the recognition result of the base classifier Ck for the sample x, ESu(x)
represents the ensemble result of the sample x, and y represents the actual category.

3.3. Phase Three: GDM-Based Decision-Level Fusion

After determining a set of classifiers that are more suitable to be fused in phase two,
the classifier fusion phase is to exploit the degree of agreement/disagreement among
different base classifiers and improve the effectiveness results in the HAR task. In this work,
we define the fusion decision phase as an abstract process that includes different experts
(base classifiers) who can make individual decisions and the GDM fusion strategy. The
final recognition result is produced by experts with the group decision-making strategy,
which gives each expert a weight and aggregates the decision-making information of
all experts. The weight of experts includes subjective weight and objective weight. The
subjective weight is the initial weight that is set based on the factors such as ability level,
popularity, and familiarity with decision-making issues. The objective weight is usually
determined according to the specific group decision-making issue, the credibility of the
expert’s decision and the relationship between the expert’s decision-making results. This
paper adopts a common assembly method in group decision-making strategy, specifically
as follows:

G =
m

∑
k=1

λkUk (7)

where G = (g1, g2, . . . . . . , gn)T is the group decision result of fusing all experts,
Uk = (uk1, uk2, . . . . . . , ukn)T is the decision result made by the kth expert, λk is the weight
of the kth expert, which satisfies ∑ m

k=1λk = 1.

3.3.1. Determination of the Initial Weights of Experts Based on Genetic
Algorithm Optimization

The GDM strategy requires a reasonable allocation of the weights of experts. Generally
speaking, the experts who have important contributions to the performance of the ELS will be
given larger weight values, and vice versa. For this reason, this paper decomposes the weights
into initial weights and dynamic weights, which are used as subjective and objective weights
of experts respectively. The GA is usually used to obtain the initial weights of multiple groups
of experts, and then the dynamic adjustment of weights is realized through the deviation
between the individual decision-making results of experts and the group decision-making
results in the fusion process. GA [24] has been commonly used to solve an optimization
problem, which has the advantage of starting at a population of initial values to find the
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solution instead of a single initial value. It constantly changes the state of the population
by imitating the process of natural selection, and randomly selects individuals as parents to
produce the next generation of children. The following operations are required to realize the
optimization of the initial weight of the expert by the GA.

(1) Chromosome coding

The chromosome is coded in binary string and the gene chain in the chromosome
corresponds to a set of weight vectors of a group of experts. Each bit is represented by a real
number 0 or 1. The weight for each expert is represented in each bit of a chromosome. For
each combination, the initial weight of the group of experts can be obtained by decoding
chromosome C by the following equation.

Wi =
xi

m
∑

i=1
xi

(8)

where xi is the decoding of the ith gene Gi of chromosome C, Wi is the weight of the ith
expert corresponding to the ith gene Gi and m is the number of experts.

(2) Fitness function

In GA, the evaluation of chromosome performance mainly refers to whether the weight
of chromosome representatives can achieve the improvement of the accuracy of the activity
recognition result. The evaluation of chromosomes is based on their performance and the
fitness function of the chromosome is defined as:

f =
1

Y−
Y
∑

j=1
Stj

, j = 1, 2, · · · , Y (9)

where Y is the size of the data set, and ∑ Y
j=1Stj indicates the number of correctly recognized

samples. Stj represents the recognition result obtained by using group decision, it is 1 if the
recognition is correct, otherwise it is 0.

(3) Selection operation

The selection operation is performed after evaluating the fitness of the chromosome.
This paper utilizes the roulette selection strategy to ensure the convergence of the algorithm
while ensuring the performance of the algorithm to implement the global search.

(4) Crossover operation

Crossover operation is an operation method to generate new chromosomes according
to swapping some genes of one chromosome with genes of another chromosome. In this
paper, the single-point crossover method is selected and a new individual is obtained by
swapping the front and back two genes of the preset chromosome gene point.

(5) Mutation operation

The purpose of mutation operation is to improve the search performance of the GA in
some local spaces and avoid premature convergency phenomena. The mutation operation
used in this paper is the double mutation method that combines overall gene mutation and
binary bit mutation. The overall gene mutation is to replace all the information on the gene
chain. For example, the overall mutation of gene 001 becomes gene 110 and the mutation
on the binary position means that only one bit is taken at a time.

3.3.2. Weight Update Based on Deviation

The subjective weight of the expert reflects the degree of the expert’s contribution
to the group decision-making issue, while the objective weight of the expert reflects the
hidden information implicit between the individual expert and the expert group. The
objective weights of experts are dynamic weights in this paper, which are set based on
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analysing the deviation between individual expert decisions and group decisions. This
paper calculates the weight of experts as follows:

λk = ϕαk + (1− ϕ)βk (10)

where αk is the subjective weight of the kth expert, βk is the objective weight of the kth
expert, and ϕ is the parameter for adjusting the preference of the two weights.

The fusion approach of GDM should reflect the joint decision-making information of
experts. Therefore, on the basis of the subjective weights determined by GA, the objective
weights are calculated by using the deviation between the individual expert decision-
making results and the group decision-making results, and the objective weights of experts
are adjusted to obtain more reasonable values through adjustment. The deviation between
the result of the kth expert and the group decision-making result can be defined as.

rk =
m

∑
j=1

(ukj − gj)
2, k= 1, 2, · · · , m (11)

The smaller the deviation, the closer the expert’s decision is to the common will and
the expert’ weight should be increased. On the contrary, the expert’s weight should be
reduced. Therefore, the weight of each expert can be recalculated as follows based on the
degree of deviation. {

λi+1
k = λi

k +
∆λ
c , ri

k < qri
g

λi+1
k = λi

k −
∆λ
d , ri

k > ri
g

(12)

where c and d are the number of experts who made correct and wrong decisions, respec-
tively, ∆λ is the adjustment coefficient which is set as 0.05.

3.3.3. The Fusion Process Based on GDM

In this paper, the GDM fusion strategy is applied to fuse the ELS for the activity
recognition task. The base classifiers in the ELS are used as the experts in group decision-
making, and they are combined at the decision-making level through the GDM fusion
strategy. The subjective weight of each expert is determined by the GA and used as the
initial weight of the expert. The objective weight of the expert is calculated based on the
deviation between the individual decision result of the expert and the group decision result,
and the expert weight is dynamically adjusted through the objective weight. Figure 2
shows the generalized flowchart of the fusion phase.
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The specific steps of the proposed GDM-based fusion for ELS are as follows:

Step 1 The GA is utilized to give the initial weight of each base classifier (expert) in the ELS.
Step 2 Each expert in the ELS is used to recognize the activity samples and the decision results

of the respective experts are obtained which are corresponding to Uk in Equation (7);
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Step 3 The group decision result G is achieved by the Equation (7), which corresponds to the
final recognition result of ELS;

Step 4 Update the expert weight through Equations (10)–(12) according to the result Uk of
each expert and the group decision recognition result G.

Step 5 Generate the final ensemble learning model and input the testing samples to test
its effectiveness.

4. Experimental Protocol
4.1. Data Sets

In this paper, a selective ensemble learning approach with GDM fusion is proposed for
HAR. Two real activity recognition datasets, which were collected from on-body sensors
are used to verify the effectiveness of the proposed method. The first dataset is the UCI
OPPORTUNITY dataset which contains various sensor nodes on the body positions. The
details of this dataset can be found in OPPORTUNITY UCI [25]. In this work, we utilized
this dataset to recognize three kinds of daily activities including walking, sitting, and
lying, which were performed five times by each of the four subjects. The second dataset is
UCI Daily and Sports Activity dataset (DSAD) [26]. This dataset consists of multi-sensor
activity data from five body positions collected by the MTx unit. The 19 activities were
collected from 8 different subjects in their own style for 5 min in this dataset. In this work,
five common daily activities including sitting, standing, lying, walking, and running are
recognized to demonstrate the effectiveness of our proposed method. These activities we
choose are closely related to the daily activity level and functional health of an individual
and can be an indicator for the occurrence of falls.

4.2. Feature Extraction

Due to a large amount of missing data in the OPPORTUNITY data set, before feature
extraction, we need to first preprocess the data set, which includes the processing of missing
data and outliers. The processing of missing data is simply to repeat the previous value to
replace the missing value. The processing of the outliers is to remove the abnormal spike
data of the waveform caused by sensor noise or human factors, and the outliers usually
cannot represent the real value of the human activity signal [5,21]. After data preprocessing,
a sliding window of 0.5 s is adopted to divide the data into windows with the same length
and a 50% overlap between adjacent windows is adopted.

After data preprocessing, the features are extracted from each sensor data for the
activities to be recognized on both data sets. Feature extraction takes into account the
performance and efficiency requirements of the HAR system. In this work, the maximum,
minimum, mean value, root mean square, standard deviation σ, skewness S, kurtosis K
and the signal energy E are utilized as feature construction. Some of these features can be
expressed as follows:

mean =
1
N

N

∑
i=1

ai (13)

σ =

√√√√ 1
N

N

∑
i=1

(ai −mean)2 (14)

K =
1
N

N

∑
i=1

(ai −mean)4/σ4 (15)

S =
1
N

N

∑
i=1

(ai −mean)3/σ3 (16)

E =
N

∑
i=1
|ai|2 (17)
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RMS =

√
1
N
(a2

1 + a2
2 · · ·+ a2

N) (18)

where ai is the sensor data, i = 1, 2, . . . , N. N is the number of data points. After feature
extraction, all features were normalized to the interval [0, 1] to eliminate the impact of the
range difference.

4.3. Measures of Performance

The accuracy rate, precision, recall rate and F1 score commonly used in HAR are
implemented as indicators to measure the performance of our proposed approach. These
measures are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

precision =
TP

TP + FP
(20)

recall =
TP

TP + FN
(21)

F1 =
2× recall × precision

recall + precision
(22)

where the variables TP, TN, FP, and FN, respectively, represent the numbers of true positive,
true negative, false positive and false negative outcomes in a given experiment. In addition,
F1 evaluation criterion is also considered and is defined as the combination of the precision
and the recall. Precision represents the proportion of true positive samples among all
samples recognized as positive. Recall represents the proportion of all the positive samples
that are recognized as positive samples.

5. Experimental Results
5.1. Results on UCI Opportunity Dataset
5.1.1. Effectiveness of the Mixed Diversity Measure and Complementarity Measure

To select the more effective method for pre-pruning the initial base classifier pool, the
two functions (mixed diversity measure and complementarity measure) are performed on
different subjects. The relationship between the accuracy and the ensemble scale of the ELS
according to these two functions performed on different subjects is shown in Figure 3. The
horizontal axis of Figure 3 represents the ensemble scale. It is worth mentioning that when
the basic classifiers are selected, they are arranged in the order chosen by the two algorithms.
This helps us specify a more effective pruning method for the OPPORTUNITY dataset and
determine the set of base classifiers with excellent performance generated for ELS.

It can be seen from Figure 3 that the ensemble accuracy curves reach a maximum at
an intermediate number of base classifiers, and the ensemble classifiers developed using
the mixed diversity measure can obtain better performance with the same number of base
classifiers than those developed using the complementarity measure. After the maximum,
the ensemble accuracy does not rise significantly in fluctuations as the number of base
classifiers increases. Therefore, the performance of ELS can be improved after eliminating
the redundant base classifiers, in other words, removing some of the base classifiers with
small diversity can benefit the ensemble accuracy. Besides, the mixed diversity measure
can be employed for pre-pruning base ELMs to achieve better performance. Therefore, the
mixed diversity measure is utilized for pre-pruning the OPPORTUNITY dataset. More
specifically, the top 8 important sensors selected by the two measures on subjects 1 to
4 are shown in Tables 1 and 2, respectively, where the sensors selected are arranged in
descending order in accordance with the measures.
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Table 1. Selection results of important sensors in OPPORTUNITY based on mixed diversity measure.

Subject Selected Sensors

Subject 1 1. RKN/Acc, 2. BACK/Acc, 3. BACK/Magn, 4. RUA/Acc, 5. BACK/Gyro,
6. RLA/Acc, 7. LUA/Gyro, 8 LLA/Acc

Subject 2 1. RKN/Acc, 2. HIP/Acc, 3. RLA/Magn, 4. LUA/Gyro, 5. LLA/Acc,
6. BACK/Gyro, 7. RWR/Acc, 8. RH/Acc

Subject 3 1. RKN/Acc, 2. HIP/Acc, 3. LUA/Acc, 4. LUA/Gyro, 5. RUA/Acc,
6. BACK/Magn, 7. RUA/Gyro, 8. LH/Acc

Subject 4 1. BACK/Acc, 2. RKN/Acc, 3. LUA/Acc, 4. RUA/Acc, 5. LLA/Acc,
6. LUA/Magn, 7. BACK/Acc, 8. HIP/Acc

Table 2. Selection results of important sensors in OPPORTUNITY based on complementarity measure.

Subject Selected Sensors

Subject 1 1. RLA/Acc, 2. RUA/Gyro, 3. LUA/Gyro, 4. RUA/Acc, 5. BACK/Acc,
6. LLA/Magn, 7. LH/Acc, 8 RWR/Acc

Subject 2 1. RUA/Acc, 2. RH/Acc, 3. BACK/Gyro, 4. LUA/Acc, 5. HIP/Acc,
6. BACK/Acc, 7. RUA/Acc, 8. RUA/Magn

Subject 3 1. RKN/Acc, 2. LUA/Acc, 3. BACK/Acc, 4. BACK/Gyro, 5. RLA/Acc,
6. LUA/Gyro, 7. LLA/Acc, 8. HIP/Acc

Subject 4 1. LUA/Acc, 2. LLA/Gyro, 3. BACK/Acc, 4. LLA/Acc, 5. LUA/Gyro,
6. BACK/Gyro, 7. RH/Acc, 8. LUA/ Magn

The sensors shown in Tables 1 and 2 contain position and sensor attribute information,
where RKN, BACK, RLA, RUA, LUA, LLA, HIP, RWR, LH, and RH represent the right knee,
back, right lower arm, right upper arm, left upper arm, left lower arm, hips, right wrist,
left hand, and right hand, respectively. Acc, Gyro, and Magn represent the accelerometer,
gyroscope, and magnetometer, respectively. According to the experimental results shown
in Tables 1 and 2, we can observe that for specific measure, the choice of sensors for different
subjects varies. Whereas for the mixed diversity measure, the RKN/Acc ranks first among
the three subjects and the accelerometer occupies most of the important sensors. This
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shows that due to diverse patterns of personal behaviour, the layout of important sensors
is also different, which requires pruning methods to build an activity recognizer with better
generalization ability and robustness. For a specific subject, as the mixed diversity measure
and complementarity measure have different measurement principles, therefore, the choice
of important sensor layout for each subject has different results.

5.1.2. Comparison with the Individual Classifiers

In this subsection, we analyse the power of decision-making fusion in ELS in the
situation where the base classifiers are obtained from different body positions. This helps
us to understand more clearly the performance improvement of the proposed GDM-based-
ensemble approach compared to a single classifier trained with an independent signal
source. Based on the results presented in Figure 3, the pruning function chosen here is the
mixed diversity measure. The basic classifiers involved in the comparison are selected as
the top 8 base classifiers according to the results of the mixed diversity measure shown
in Table 1. Figures 4–7 show the experimental results where the numbers 1 to 8 represent
the first 8 base classifiers respectively and 9 represents our fused classifier. From the
experimental results shown in Figures 4–7, three points can be concluded. Firstly, it can be
found that the proposed approach achieves the optimal performance for all four subjects.
Secondly, the performance of the top 8 base classifiers selected for each subject differs
greatly whereas the performance of the proposed approach shows stability compared to
these individual classifiers. These results further show that the necessity of sensor data
fusion to tackle the HAR issue and demonstrate the proposed approach is able to acquire
more robust and optimal performance than the individual base classifier. Thirdly, although
some of the top base classifiers selected do not show satisfactory performance, for example,
the second base classifier of subject 4 and the third base classifier of subject 3, they could
achieve an acceptable level of accuracy in an ELS. These show that the proposed approach
has always provided more robust performance than other individual classifiers for the four
subjects, demonstrating the superiority of our decision-making fusion in ELS.
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5.1.3. Comparison with Other Fusion Strategies and HAR Approaches

In this subsection, we further evaluate the effectiveness of the proposed GDM-based
fusion approach and demonstrate its superiority by comparing it to three fusion methods.
In this experiment, four combination strategies including the proposed GDM strategy, GA,
weighted average (WA) and majority voting (MV) are used to fuse the base classifiers for
the ELS. The idea of the majority vote (MV) is to combine all the results given by each base
classifier and select the category with the highest vote. Weighted average (WA) associates
the ELS decision with the weights of the base classifiers and the weighted accuracy of each
base classifier is utilized as the weight. In GA, the classifiers are combined and the fusion
weights are determined using GA to produce the final prediction.

Figure 8 shows the corresponding confusion matrices constructed according to differ-
ent combination strategies for subject 1. The rows and columns of the matrix represent the
actual label and the predicted label, respectively. According to Figure 8, more details can
be obtained. The recall value of different fusion strategies for each activity is shown in the
diagonal elements of the matrix. It is obvious that the recall rate values of the proposed
combination strategy are all higher than 90% except for the Lying. However, this is still
higher than the recall rate values of other fusion strategies between 77% and 85%. The
recall values of the proposed combination strategy are 96% and 95% for walking and sitting,
respectively, which are 10% and 15% higher than the lowest recall values in the comparison
strategies. In addition, it can be found that there are many misrecognitions between sitting
and lying for MV and WA fusion strategies. Nevertheless, the proposed combination
strategy effectively reduces the error recognition rate of the two activity modes.
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Table 3 shows the average results of the four fusion strategies for the 4 subjects. The
results show that the average accuracies of the four combination strategies are all higher
than 80%, except for subject 3 with the MV fusion strategy. The proposed fusion strategy
achieves the accuracy of 94.79%, 90.99%, 87.89%, and 92.32% on subjects 1 to 4, respectively.
The performance of the GA fusion strategy is slightly inferior, which obtains 92.13%, 88.32%,
84.58%, and 88.52% accuracy for subjects 1 to 4, respectively. MV obtains 82.50%, 84.79%,
79.54%, and 80.84% accuracy for subjects 1 to 4, respectively. According to the above
results, it can be found that the proposed combination strategy obtained the highest test
accuracy among the four subjects. Besides, the proposed combination strategy acquires
higher recognition accuracy than GA in the experiment and this shows the effectiveness
of the proposed GDM. Moreover, the MV is the worst fusion strategy compared with
the other three fusion strategies. Although the MV strategy is quick and easy, it will
introduce some biases caused by the overconfidence of the base classifier. Therefore, if
there are many inaccurate classifiers in the ensemble the MV fusion strategy may cause
conflicts or misrecognition. The GA optimizes the performance of the fusion classifier by
assigning reasonable weights to the base classifier, which reduces the impact of inaccurate
base classifiers on the performance of ELS. Our proposed fusion strategy is based on the
subjective weight given to experts (base classifiers) by GA and the objective weight is given
to the experts (base classifiers) by considering the deviation between the expert and the
group decision, which obtains better performance than GA.
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Table 3. The performance comparison of different fusion strategies for 4 subjects in OPPORTU-
NITY dataset.

Methods
Accuracy

Subject 1 Subject 2 Subject 3 Subject 4

MV 82.50% 84.79% 79.54% 80.84%
WA 85.80% 86.87% 82.43% 86.82%
GA 92.13% 88.32% 84.58% 88.52%

Proposed method 94.79% 90.99% 87.89% 92.32%

Additionally, we also compare the proposed HAR approach with some state-of-the-
art HAR approaches, including the DSmt-based method [19], ensemble-extreme learning
machine [20], extreme learning machine [21], naive bayes [27], and nearest centroid classi-
fier [28], using the OPPORTUNITY dataset. The results of all the approaches are shown
in Table 4. As we can observe in Table 4 our proposed approach outperforms other state-
of-the-art approaches except for the DSmt-based method for subject 1. Although DSmt-
based method performs better than our GDM-based method for subject 1, our method
has achieved optimal performance for subjects 2–4. Besides, for subject 3, our proposed
approach and ensemble-extreme learning machine have a relatively similar performance
which demonstrates the effectiveness of ELS. Whereas, the recognition accuracy will be
very low if a single classifier is considered due to the randomness of the algorithm and
parameters. For example, the performances of the extreme learning machine and nearest
centroid classifier are greatly affected by their parameters and the centroid of each class.

Table 4. Comparison with some state-of-the-art HAR approaches based on UCI OPPORTU-
NITY dataset.

Methods
Accuracy

Subject 1 Subject 2 Subject 3 Subject 4

DSmt-based method [19] 97.14% 88.69% 84.39% 92.62%
Ensemble-extreme learning

machine [20]
91.4% 88.43% 87.14% 88.3%

Extreme learning
machine [21]

70.56% 71.26% 65.87% 71.54%

Naïve bayes [27] 87.42% 84.01% 82.1% 85.17%
Nearest centroid

classifier [28]
83.05% 87.18% 76.47% 81.85%

Proposed method
(GDM-based fusion)

94.79% 90.99% 87.89% 93.32%

5.2. Results on UCI DSAD
5.2.1. Effectiveness of the Mixed Diversity Measure and Complementarity Measure

Similarly, we compare the performance of the two pruning methods (mixed diversity
measure and complementarity measure) in DSAD. The relationship between the accuracy
and the ensemble scale of the ELS according to these two methods performed on subjects
1 to 4 is shown in Figure 9. The base classifiers are still arranged in the order selected by
the two methods. It can be seen from Figure 9 that, different from the performance of the
complementarity measure in Figure 3, the complementarity measure can achieve better
and more robust recognition performance than the mixed diversity measure on the first
four subjects in DSAD. Therefore, the complementarity measure will be applied to the
following experiment of the DSAD. Besides, as we can see there are few base classifiers
in the initial phase of the ensemble, the ELS lacks diversity, which affects its performance.
On the contrary, in the later phase of the ensemble, there are a large number of redundant
base classifiers, which brings instability to system performance. Additionally, we can also
find that the complementarity measure can achieve the best performance when the number
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of classifiers reaches about 14. Therefore, the ordered ensemble using complementarity
measure can pre-prune most redundant base classifiers.
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Besides, the top 8 important sensors for complementarity measure on the four subjects
are also shown in Table 5. The sensor selection results are arranged in descending order
in accordance with the function. The sensors shown in Table 5 contain position and
sensor attribute information, where T, RA, LA, RL, LL represent the trunk, right arm, left
arm, right leg, and left leg, respectively. xacc, yacc, and zacc represent the three axes
of the accelerometer; xgyro, ygyro, and zgyro represent the three axes of the gyroscope
and xmag, ymag, and zmag represent the three axes of the magnetometer. According to
the experimental results shown in Table 5, it can be found that due to the diversity of
individuals, the importance of sensors to different subjects varies and there is no regularity
in the selection of important sensors for different subjects. The deployment location
and type of sensors will affect the ranking of sensor importance for each subject. This
further proves the necessity of the proposed methods for selecting the base classifiers and
establishing an ELS based on the optimal subensemble.

Table 5. Selection results of important sensors in DSAD based on complementarity measure.

Subject Selected Sensors

Subject 1 1. T/yacc, 2. LA/zgyro, 3. T/xacc, 4. T/zacc, 5. RA/zmag, 6. LL/ ygyro,
7. RL/xmag, 8. RA/yacc

Subject 2 1. T/xacc, 2. RL/xmag, 3. RA/yacc, 4. T/ zgyro, 5. LL/ zacc, 6. LA/ yacc,
7. T/xmag, 8. RL/zacc

Subject 3 1. RA/yacc, 2. T/yacc, 3. LL/ xmag, 4. LA/zacc, 5. T/xmag, 6. T/xacc,
7. RA/zgyro, 8. LL/ xgyro

Subject 4 1. T/zacc, 2. T/xmag, 3. RL/zgyro, 4. T/xgyro, 5. LA/ymag, 6. RA/zmag,
7. RA/xacc, 8. T/xmag
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5.2.2. Comparison with the Individual Classifiers

In this subsection, we also analyse the power of decision-making fusion in ELS in the
situation where the base classifiers are obtained from different body positions in DSAD.
The performance comparison between the GDM-based-ensemble classifier and the top
5 base classifiers is shown in Figures 10 and 11 where the numbers 1 to 5 represent the
first 5 base classifiers respectively and number 6 represents our fused classifier. Based
on the results analysed in the previous section, the pruning function chosen here is the
complementarity measure. The basic classifiers involved in the comparison are also selected
according to the ranking results of the complementarity measure shown in Table 5. From
the experimental results shown in Figures 10 and 11, we can observe that (1) Different
from the results obtained by the mixed diversity measure (as shown in Figure 3), the
complementarity measure first selects the base classifier with the best performance and
then adds it to the classifier set according to the principle of maximum complementarity.
Therefore, we can see in Figure 10 that the performance of the first base classifier is the best
and the performance of the following base classifiers is inferior to the first one. (2) When
there are obvious diversities in the recognition performance of the base classifiers (which
can also be understood as strong complementarity), the performance of the fusion classifier
is improved significantly. Whereas, when the performance between the base classifiers
is similar (which can also be understood as weak complementarity), the performance
improvement of the fusion classifier is not significant. This further proves the rationality of
the maximum complementarity utilized in this paper which considers both the performance
of the classifier and the complementarity between the ensemble.
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5.2.3. Comparison with Other Fusion Strategies and HAR Approaches

We also evaluate the effectiveness of the proposed GDM-based fusion approach and
demonstrate its superiority by comparing it to three fusion methods in DSAD. Figure 12
shows the corresponding confusion matrices constructed with different combination strate-
gies for subject 1 in the DSAD. According to Figure 12, more details can be obtained.
Intuitively, the recall rate values of the proposed combination strategy for the five activities
are all higher than 90%, lying with the highest recall rate is 99% and walking with the lowest
recall rate is 92%. Whereas, the recall rate values of the other combination strategies range
from 84% to 92% for lying and walking. Moreover, it can be found that activities sitting and
standing are easily recognized by each other. The reason may be that these two activities
are relatively similar and the characteristics of the inertial signal are difficult to distinguish.
Whereas, the recall rate values of these two activities are significantly improved with the
proposed combination strategy.

Table 6 shows the average results of the four fusion strategies on the first 4 subjects
in DSAD. The results show that the proposed fusion strategy achieves the accuracy of the
4 subjects are 95.84%, 91.82%, 94.03%, and 97.76%, respectively, whereas the maximum
accuracies for the four subjects of the comparison combination strategies are 91.47%,
87.87%, 92.28%, and 93.47%, respectively. Besides, the recognition accuracies of the MV
combination strategy for the four subjects are all lower than 90%, which also demonstrates
its shortcoming of bias caused by the overconfidence of the base classifier. Compared with
the comparison strategies, the accuracy of the proposed fusion strategy is greatly improved.
Especially, in terms of subject 2, the accuracy of the proposed combination strategy is greatly
improved to 91.82%, whereas that of the other combination strategies are only 85.42%,
86.04%, and 87.87%, respectively. Similarly, as for subject 1, the accuracy of the proposed
combination strategy is greatly improved to 95.84%, while the maximum accuracy of other
combination strategies is only 91.47%. These results show that the proposed combination
strategy generally acquires optimal performance than the other three comparison strategies.
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Table 6. The performance comparison of different fusion strategies for four subjects in DSAD dataset.

Methods
Accuracy

Subject 1 Subject 2 Subject 3 Subject 4

MV 88.64% 85.42% 86.85% 89.72%
WA 90.35% 86.04% 92.28% 91.64%
GA 91.47% 87.87% 91.88% 93.47%

Proposed method 95.84% 91.82% 94.03% 97.76%

Besides, the proposed HAR approach is also compared with other state-of-the-art
HAR approaches using the DSAD dataset. Table 7 shows the comparison results of the
proposed approach with the other traditional methods in references. All the parameters of
the mentioned state-of-the-art methods in Table 7 were set based on the literatures, which
were not mentioned in detail here. As shown in Table 7, our proposed method has achieved
optimal recognition accuracy than other state-of-the-art approaches. Although K-Nearest
Neighbours and dRNN show powerful recognition performance and they were not able to
properly combine the characteristics of multiple sensors; comparatively, the GDM fusion
strategy is proposed to accurately combine the decision information of individual classifiers
from multi-sensor data, which proved to be very effective for HAR on DSAD dataset.

Table 7. Comparison with some state-of-the-art HAR approaches based on DSAD dataset.

Methods Accuracy

DSmt-based method [19] 95.1%
pFTA-Learn+ K-Nearest Neighbours [29] 90.2%

KNN + PCA [30] 91.6%
Differential recurrent neural networks [31] 89.6%

K-Nearest Neighbours [32] 86.0%
Proposed method (GDM-based fusion) 95.6%
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6. Conclusions

In this paper, an ELS-based decision-level fusion framework with the GDM-fusion
strategy is proposed to improve the performance of the HAR task. Multiple diverse base
classifiers are constructed with data corresponding to various body positions and two
diversity measures are employed to select the best ensemble for the fusion phase. A GDM
fusion strategy is proposed to implement the ensemble fusion, and the GA algorithm is
used to obtain the initial weights of experts. The GDM fusion strategy is proposed to
accurately combine the decision information of individual classifiers from multi-sensor
data. The experiments on two public sensor-based HAR datasets (OPPORTUNITY dataset
and DSAD) performed in this work demonstrated that there are some differences in terms
of important sensor layout depending on the diversity measures considered as well as
the personal diversity. Also, the classifier selection can explore the complementary and
diverse information provided by different positions, thus improving the performance
of ELS. Besides, the performance comparison between the individual classifier and the
proposed fusion classifier shows that the effectiveness of multi-sensor data fusion and the
GDM fusion strategy contribute to the improvement of performance. Furthermore, the
proposed GDM-based ELS achieved excellent performances when compared with other
well-known fusion techniques and state-of-the-art approaches in the literature.

In future work, we will test the performance of the proposed method using more
complex activities and attempt to find other techniques for improving the diversity of
ELS such as feature diversity, base classifier diversity and other diversity measures. This
might enhance the generation performance of ELS and achieve promising results. Also,
we may consider using the deep learning methods for adaptive feature learning and the
deep learning models are utilized as base classifiers in the ELS. This is because the optimal
feature set of each body position might be different. Furthermore, the performance of
the proposed ELS-based HAR approach can be enhanced by optimizing the GDM fusion
strategy. For example, applying other intelligent algorithms to find the fusion weights is
another research direction.
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