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Abstract: The aim of this study was to assess the possibility of using deep convolutional neural
networks (DCNNs) to develop an effective method for diagnosing osteoporosis based on CT images of
the spine. The research material included the CT images of L1 spongy tissue belonging to 100 patients
(50 healthy and 50 diagnosed with osteoporosis). Six pre-trained DCNN architectures with different
topological depths (VGG16, VGG19, MobileNetV2, Xception, ResNet50, and InceptionResNetV2)
were used in the study. The best results were obtained for the VGG16 model characterised by the
lowest topological depth (ACC = 95%, TPR = 96%, and TNR = 94%). A specific challenge during
the study was the relatively small (for deep learning) number of observations (400 images). This
problem was solved using DCNN models pre-trained on a large dataset and a data augmentation
technique. The obtained results allow us to conclude that the transfer learning technique yields
satisfactory results during the construction of deep models for the diagnosis of osteoporosis based on
small datasets of CT images of the spine.

Keywords: osteoporosis; convolutional neural networks; deep learning; VGG16; image classification;
neural networks

1. Introduction

Due to the fact that we live in an aging society, osteoporosis has become a disease
of serious concern around the world. According to the WHO definition, osteoporosis is
a systemic skeletal disease characterised by low bone mass, impaired microarchitecture
of bone tissue and, consequently, increased fragility and susceptibility to fractures. In
2019, the number of cases in Europe increased to 32 million (5.6% of the total European
population aged 50+) [1]. The development of this disease is influenced by lifestyle,
especially diet and physical activity. Thus, it can be expected that the pandemic will worsen
the situation and significantly affect the progression of the disease in patients. According
to reports [1], the incidence rate will increase significantly in the near future. It should be
remembered that, in the last two years, patients were referred to osteoporosis-dedicated
follow-up examinations much less frequently [2], and, therefore, so many patients are still
unaware of their disease. Most often, osteoporosis is diagnosed at an advanced stage,
when osteoporotic fractures occur. This is especially dangerous for the spine. Therefore,
continuous research is necessary in order to develop the best diagnostic method that would
allow the detection of osteoporosis at an early stage of development [3]. The general trend
of research in this area shows that the best results are obtained from the analysis of bone
tissue microarchitecture [2,4–9].

In recent years, a rapid development of machine learning algorithms has taken place,
especially deep learning methods. Deep learning is a machine learning concept based on
artificial neural networks [10]. In most cases, they use multiple layers of interconnected
neural networks. There are many types of architecture of such networks, including deep
belief networks, convolutional networks, recursive networks, long short-term memories,
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deep Boltzmann machines, and deep coding networks. Many of them work very well
in the process of image recognition, including biomedical images. Recent studies report
the use of artificial neural networks in the diagnostics of intramucosal gastric cancer [11],
early detection and prediction of chronic kidney disease [12], major depressive and bipolar
disorders [13], as well as COVID-19 pneumonia [14]. There are also publications on new
methods of diagnosing osteoporosis with the use of deep learning [15–17].

One of the important issues in building machine learning models (including deep
models), is the estimation of uncertainty as a measure of confidence in the model’s predic-
tions. This problem, among others in the area of computer vision, is successfully addressed
by using Bayesian convolutional neural networks (BCNNs). Networks of this type prevent
over-fitting by introducing uncertainty estimation. BCNNs are preferred in problems where
CNNs are an appropriate learning model, but, due to too little data, they may become
overtrained. An extension of the problem of uncertainty estimation using BCNNs and
experimental results can be found, among others, in [18–20].

An important issue affecting the wider use of machine learning models, particularly
in healthcare, is interpretability [21]. A model is interpretable when the decisions it makes
can be fully understood [22]. Unfortunately, for ordinary users, machine learning models,
especially deep models, are similar to black boxes. Therefore, aiming for a wider application
of artificial intelligence solutions in healthcare, a better understanding of the models’
mechanisms becomes crucial. Consequently, attempts are being made to improve the
interpretability and transparency of machine learning models [23–25]. This is due to the
need to establish a trust relationship between users and decision-making models in practical
implementation applications.

The key problem of machine learning comes down to a trade-off between optimisation
and generalisation. Optimisation involves tuning the model to obtain the best possible
performance for the learning data. Generalisation, on the other hand, determines how well
the model performs when processing new data. After a certain number of iterations (epochs)
of the learning algorithm, generalisation for validation data reaches a constant level and
then (mostly) starts to deteriorate. This means that over-fitting of the model to the learning
data is taking place (overtraining). Various methods are used to combat over-fitting,
which are generally referred to as regularisation methods [26]. Popular regularisation
methods applied to learning deep convolutional neural networks include: transfer learning,
dropout, data augmentation, early stopping, weights regularisation (L1, L2, max-norm),
and others [27–30]. A summary and comparison of these and other regularisation methods
is included in [31]. The problem of regularisation is still an area of active research, so new
efficient algorithms are constantly being proposed, e.g., the two-stage training method [31].

The effects of the conducted research allow the detection of the porosity of L1 spongy
tissue by analysing and classifying the spinal CT images using deep convolutional neural
networks (DCNN). This is a new approach in the research on the diagnosis of osteoporosis.
To the best of the authors’ knowledge, no research in which deep learning algorithms would
be used to solve this problem is available. The proposed method enables to significantly
simplify the stage of image pre-processing and analysis before using images to build the
classifier model. The convolutional neural network is able to reveal the internal features of
individual observations based on the raw data obtained from images, while ensuring high
classification efficiency.

In this article, Section 2.1 describes the material used in the research and the method
of selecting images. The following Section 2.2 describe the construction of the classification
models, as well as the characteristics of the architecture of the network models used.
Section 3 presents the obtained results of the network operation. The discussion and
comparison of the research results with other works are presented in Section 4. The final
part of the article summarizes the achievements and presents a plan for further work.
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2. Materials and Methods
2.1. Material

The study used computed tomography images of the spine in the lumbosacral (L-S)
section from 100 patients. The imaging tests used in the study were performed in the
tomography laboratory located in the Independent Clinical Hospital No. 4 in Lublin
(Poland). Patients were referred for examinations of the lumbosacral (L-S) spine from the
orthopaedic clinic and the Hospital Emergency Department. Each patient was tested on a
GE 32-row CT scan in a standard spine examination protocol, including the lumbar and
sacral (L-S) vertebrae. Fifty of the patients belonged to the control group of healthy people,
unaffected by osteoporosis or osteopenia. There was an equal number of patients in the
group diagnosed with osteoporosis. The control group included 26 women and 24 men.
The age range of the patients ranged from 53 to 77 years. The group with diagnosed
osteoporosis included 33 women and 17 men aged 44 to 95 years. The patients were
classified into both groups based on the description of the examination prepared by the
radiologist and the measurement of the radiological density of the spongy tissue of the
first lumbar spine (L1). On the basis of the literature [32], the tissue density limit was set at
120 Hounsfield units (HU).

The source data contained images in RGB mode with a resolution of 512 × 512 pixels
and was saved in the DICOM format. Soft tissue reconstruction images were used for the
research. The research showed that the images derived from soft tissue reconstruction
allow obtaining more accurate values of texture parameters, increasing the accuracy of
classification, and offering better possibilities for diagnosing osteoporosis [33]. From the
series of images, the sample sections showing the inside of the circle with the spongy
essence were selected (Figure 1).
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Figure 1. The arrangement of the axis in the centre of one of the vertebrae (image in three projections).

Four L1 transverse images were selected from a series of studies of each patient. These
images presented the sections of the vertebra closest to the middle value of its height, so
that the largest possible area of the spongy tissue was visible (Figure 2). One image sample
of the examined tissue was obtained from each of the selected cross-sections.

The size of the extracted samples was selected to use the textured surface, potentially
containing the information in the image of the transverse vertebra section, to the maximum
extent. As a result, 400 samples with dimensions of 50 × 50 pixels were obtained. The
sample images of the tissue from healthy and osteoporotic patients are presented below
(Figure 3).
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Figure 3. Image samples of healthy patients’ tissue and tissues with osteoporotic lesions in their
original size.

The image histogram normalisation process is one of the image preprocessing tech-
niques frequently used for classification. As part of the studies previously carried out by
the authors, it was shown that this operation reduces the classification accuracy from 4%
for the TPR coefficient to 14% for ACC [34].

2.2. Construction of the Classification Models

The full dataset contained 400 observations, 200 of which were healthy subjects and
200 were patients diagnosed with osteoporosis. Following the procedure described in
Section 2.1, both image categories were assigned labels, HEALTHY and OSTEOPOROTIC,
respectively. Then, the full dataset was randomly divided into training, validation, and test
subsets, with the number of observations belonging to individual classes in each of these
subsets being the same. As a result of the division, the training set constituted 50% of the
full set (100 observations for each class), 25% of the validation set (50 observations), and
25% of the test set (50 observations). The use of deep neural networks in research was a
certain challenge, because, in the context of teaching such networks, the available number
of observations was very small. Therefore, classifier models that had been previously
trained on large datasets were employed. This approach is often used in the situations
similar to the one considered [35]. If the dataset used to train the model was sufficiently
large and general, the spatial hierarchy of the learned features can effectively act as an
overall model for image processing. Such features can be helpful in solving new image
processing problems, even when the problems relate to the recognition of classes other than
the original classes used to train the model.

A computer with Windows 10 64-bit system, Intel Core i5-3470 3.20 GHz processor
and 32 GB RAM was used to build the models. The TensorFlow 1.13.1 platform (Ten-
sorFlow, 2020), the Keras 2.2.4 [36] library, and the Python 3.7.3 programming language
were employed. The calculations were performed using the GPU (NVIDIA GeForce GTX
1060 3 GB), the CUDA 9.0 platform, and the cuDNN 7.0 library. The Keras library con-
tains many models for image processing, including Xception [37], VGG16, VGG19 [38],
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ResNet [39], ResNetV2 [40], InceptionV3 [41], InceptionResNetV2 [42], MobileNet [43], Mo-
bileNetV2 [44], DenseNet [35], and NASNet [45]. All these models were trained on the Ima-
geNet collection containing approximately 1.4 million images divided into 1000 classes [46].
In the study, 6 models characterised by different topological depth were used (Table 1).

Table 1. Models for image classification with weights trained on ImageNet that have been used in
the study (CB—Convolution Base).

No. Model The Number of
Layers of the CB

Fine-Tuned
Layers of the CB

Type of
Fine-Tuned Layers

1 VGG16 19 12–19 2D convolution

2 VGG19 22 13–22 2D convolution

3 Xception 132 117–132
depth-wise separable

1D and 2D convolution,
batch normalization

4 MobileNetV2 155 136–155
2D convolution,

depth-wise convolution,
batch normalization

5 ResNet50 175 150–175 2D convolution,
batch normalization

6 InceptionResNetV2 780 631–780 2D convolution,
batch normalization

The VGG network is characterised by the smallest topological depth among the models
implemented in the Keras package and a small convolutional filter of 3 × 3 pixels [38]. The
VGG16 network consists of thirteen convolutional layers and three fully connected layers.
The VGG19 model, on the other hand, consists of 16 convolutionary layers and three fully
interconnected layers (Figure 4). Both networks use 3 × 3 pixel convolution filters. The
results of the VGG network showed that a relatively small number of its layers allows for a
high classification accuracy [47].
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MobileNetV2 is a neural network architecture that uses efficient convolutional opera-
tions called Depthwise Separable Convolution (Figure 5). Depthwise separable convolution
layers spatially convolve each input channel independently and then perform a point
convolution of mixing the channels (1 × 1 convolution). This is equivalent to separating
learning spatial features from learning the features of individual channels. The advan-
tages of this technique are especially important when training small models on a limited
dataset [48].
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In the Xception network, starting blocks are based on deep, separate convolutional
layers. The architecture of the Xception model is built around a linear stack of 36 deep,
separate convolutional layers with linear residual connections (Figure 6). In this configura-
tion, there are two important convolutional layers: a deep convolution layer where spatial
convolution is performed independently on each input channel, and a point convolution
layer where the 1 × 1 layer maps output channels to a new channel space using deep
convolutions [37].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18 
 

 

MobileNetV2 is a neural network architecture that uses efficient convolutional oper-

ations called Depthwise Separable Convolution (Figure 5). Depthwise separable convolu-

tion layers spatially convolve each input channel independently and then perform a point 

convolution of mixing the channels (1 × 1 convolution). This is equivalent to separating 

learning spatial features from learning the features of individual channels. The ad-

vantages of this technique are especially important when training small models on a lim-

ited dataset [48]. 

 

Figure 5. Structure of the MobileNetV2 network model [47]. 

In the Xception network, starting blocks are based on deep, separate convolutional 

layers. The architecture of the Xception model is built around a linear stack of 36 deep, 

separate convolutional layers with linear residual connections (Figure 6). In this configu-

ration, there are two important convolutional layers: a deep convolution layer where spa-

tial convolution is performed independently on each input channel, and a point convolu-

tion layer where the 1 × 1 layer maps output channels to a new channel space using deep 

convolutions [37]. 

 

Figure 6. Structure of the Xception network model [47]. 

The ResNet model is characterised by a very deep network with 152 layers. ResNet 

deep configuration solves the problem of vanishing gradient by taking advantage of deep 

residual learning through additive identity transformations. In particular, the residual 

module uses a direct path between input and output, and each stacked layer matches the 

residual mapping rather than directly matching the desired base mapping. The optimiza-

tion process is much easier for the residual mapping compared to the original unrefer-

enced map. As with the VGG models, 3 × 3 pixel filters are most commonly used in this 

network. However, ResNet has fewer filters of lower complexity. The 1 × 1 convolution 

layers deepen the lattice and increase non-linearity by applying the ReLU function after 

each 1 × 1 convolution layer. In this network, fully interconnected layers are replaced by 

a pooling average layer. This significantly reduces the number of parameters as fully in-

terconnected layers contain a large number of them. The network is, therefore, able to 

Figure 6. Structure of the Xception network model [47].

The ResNet model is characterised by a very deep network with 152 layers. ResNet
deep configuration solves the problem of vanishing gradient by taking advantage of deep
residual learning through additive identity transformations. In particular, the residual
module uses a direct path between input and output, and each stacked layer matches the
residual mapping rather than directly matching the desired base mapping. The optimiza-
tion process is much easier for the residual mapping compared to the original unreferenced
map. As with the VGG models, 3 × 3 pixel filters are most commonly used in this net-
work. However, ResNet has fewer filters of lower complexity. The 1 × 1 convolution
layers deepen the lattice and increase non-linearity by applying the ReLU function after
each 1 × 1 convolution layer. In this network, fully interconnected layers are replaced
by a pooling average layer. This significantly reduces the number of parameters as fully
interconnected layers contain a large number of them. The network is, therefore, able to
learn deeper representations of functions with fewer parameters [49]. The structure of the
ResNet network is shown in Figure 7.
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Figure 7. Simplified structure of the ResNet network model [47].

The InceptionResNetV2 network is built by integrating two models of deep convolu-
tional networks, such as ResNet and Inception. In these networks, normalization is only
applied at the top of traditional layers. The remaining modules allow you to increase
the number of Inception blocks and, thus, increase the depth of the network. The most
problematic issue with very deep networks is the learning phase, which can be solved with
residual connections. The network rescales these connections, which is taken as an effective
approach to solving the learning problem when a large number of filters (over 1000) are
used in the network. In particular, the remaining variants experience instability, and the
network cannot be trained when the number of filters exceeds 1000. Therefore, the residual
connection scaling contributes to stabilizing the network training [50]. Figure 8 shows the
compressed structure of the InceptionResNetV2 network.
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Figure 8. Simplified structure of the InceptionResNetV2 network model [47].

The models consisted of two parts. The first was convolutional bases, and the second
was densely connected classifiers, located at the end of the network. Convolution bases
were used because the representations they learned presented general concepts that are
suitable for solving various image processing problems. Instead of the original classifiers,
the authors used their own classifiers, made of two Dense layers. The representations
they learned were specific to the set of classes tested (HEALTHY and OSTEOPOROTIC
categories) on which these models were trained. Figure 9 shows the general diagram of a
deep network implementation which consists of a convolutional base and a new binary
classifier (2 Dense layers) added at its end.
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Figure 9. A general scheme for the implementation of a deep network that consists of a convolution
base and own classifier. The meaning of the Keras classes is as follows: GlobalAveragePooling2D—
a layer responsible for the global average pooling operation for spatial data; Dense—a densely
connected layer; Dropout—a layer that limits the excessive adjustment of the model to the training
data. The feature map has a shape (samples, height, width, and channels). The first dimension equal
to None means any number of samples.

The models were built as sequential Keras models. After convolution base, the first
layer of the own classifier was GlobalAveragePooling2D. It performed pooling operations
for spatial data based on a global average. Two densely connected layers were added. The
first Dense layer, with 512 neurons in the output and the ReLU (Rectified Linear Unit)
activation function, interpreted the features extracted by the convolution base. The second
Dense layer, with 1 output neuron and the sigmoid activation function, was an output layer
that predicted that an observation belonged to a specific class. One Dropout layer with the
parameter rate = 0.3 was added as well, to limit the excessive adjustment of the model to
the training data.

Model training was performed in two phases:

1. Feature extraction—the convolution base has been frozen, and the added dense
layers, creating a new classifier, were initiated randomly and trained over a period
of 200 epochs using data augmentation. Layer freezing consists of preventing the
update of their weights in the training process, so that the representations previously
learned by the convolution base have not been modified during training.

2. Fine tuning—the upper layers of the convolution base have been unfrozen and trained
for a period of 300 epochs together with the new layers, also using data augmentation.
At the end, the entire convolution base has been unfrozen.

Augmentation consisted of performing random, vertical and horizontal transforma-
tions of the image, rotation, cropping, zooming in, and reflecting half of the image in a
horizontal plane. During models training, binary cross entropy as a loss function was used.
The optimisation algorithm was root mean square propagation (RMSprop) with a low
value of the learning parameter. It was 2 × 10−5 for the feature extraction phase and 10−5

for fine tuning. The low value of this parameter resulted from the fact that modifications
of the representation of the tuned layers of the convolution base had to be minimised.
Excessive changes in these values could negatively impact data representations. Accuracy
was used as a measure of the training process. In the last layer of the classifier, the sigmoid
activation function was used. More detailed information on the settings used during the
model building process is provided in Table 2.
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Table 2. Settings used during the models building process.

Parameter Value

Training epochs 200 (feature extraction), 300 (fine tuning)
batch size 5

Model loss function binary cross entropy
optimizer root mean square propagation (RMSprop)

metrics accuracy

Optimizer learning rate 2 × 10−5 (feature extraction), 10−5 (fine tuning)
rho 0.9

momentum 0.0
epsilon 10−7

centred False

Data augmentation rotation range 40◦

width shift range 0.2
height shift range 0.2

shear range 0.2
zoom range 0.2

horizontal flip True

As an implementation example, Figure 10 shows the detailed structure of the VGG16
network used. RGB images of 50 × 50 pixels are passed to the input of the network.
As part of the preprocessing, a rescaling of RGB pixel intensities to the [0, 1] range was
performed. The convolution base contains 13 Keras objects of the Conv2D class that
form the convolution kernels. At first, the image passes through the first block built of
2 convolution layers, with ReLU activation functions. In these layers, a reception field
of 3 × 3 pixels is used, the convolution stride is 1 pixel, and the padding is also equal to
1 pixel. Each layer of the first block contains 64 filters. The configuration used ensures that
the spatial resolution is maintained, i.e., the size of the output activation map is the same
as the dimensions of the input image. Subsequently, the activation maps are sent through a
max pooling layer with a window size of 2 × 2 pixels and a stride of 2 pixels. As a result,
the size of the activation maps is halved. Thus, the size of the activation maps in the output
of the first block is 25 × 25 × 64. In an identical manner activation maps are sent through
the second block. The only difference is that it contains 128 filters. Therefore, the size of the
activation maps in the output of the second block is 12 × 12 × 128. Then, there is a third
block, containing 3 convolution layers and a max pool layer. In this case, the number of
filters is 256, so that, the size of the activation maps in the output of the block is 6 × 6 × 256.
Further there are two more blocks (the fourth and fifth) containing 3 convolution layers
each with 512 filters. The size of the activation maps in the output of the last block is
1 × 1 × 512. The convolution base is followed by own classifier (Figure 9). At its beginning,
there is a layer responsible for the global average pooling operation. Next, there is a fully
connected layer with the ReLU activation function, containing 512 neurons. Behind it there
is a dropout layer with a rate parameter equal to 0.3, which limits the over-fitting of the
model to the training data. Finally, there is a second fully connected layer, working as an
output layer. It contains 1 neuron and a sigmoidal activation function.
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Figure 10. Structure of the VGG16 network.

3. Results

Network training was performed in two phases. They are described in more detail in
Section 2.2. In the first phase (feature extraction), new network layers (a new classifier) were
trained, while the entire convolution base was frozen. In the second phase (fine tuning), a
certain number of final layers of the convolution base was unfrozen and trained together
with the new classifier. The plots of the training and validation accuracy are shown in
Figure 11.

The final effect of the whole training process was the Keras model containing the
classifier architecture, which was saved to disk as a single HDF5 file. Six such models were
built during the research, one for each type of network architecture. These models were
used to classify new images that did not participate in the training and validation process.
Classification accuracy (ACC), sensitivity (TPR), specificity (TNR), and area under the ROC
curve (AUC) were calculated (Figure 12). In addition, confusion matrices that show the
distribution of correct and incorrect classification cases were built (Figure 13).
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used: V16—VGG16, V19—VGG19, MN—MobileNetV2, X—Xception, RN—ResNet50, and IRN—
InceptionResNetV2.
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Figure 13. Confusion matrices: (a) VGG16; (b) VGG19; (c) MobileNetV2; (d) Xception; (e) ResNet50;
and (f) InceptionResNetV2.

As shown in Figure 3, the tissue image texture of healthy patients is smooth and
homogeneous. In the case of sick patients, the texture of the tissue image is characterised by
porosity and a significant number of dark spots corresponding to osteoporotic lesions. These
texture properties are reflected in the feature maps built by the subsequent convolutional
network layers. For the cases shown in Figure 14, the images of healthy patients (top row)
contain a number of dark spots characteristic of osteoporosis. In contrast, the images of
patients diagnosed with osteoporosis (bottom row) are relatively smooth and homogeneous,
with a small number of darker spots. This situation makes these images more difficult cases
to classify than the other images in the test set. However, this is not an abnormal situation,
as when classifying biomedical images, the possibility of cases that are more difficult to
recognise than the others should always be taken into account.

Table 3 shows the GPU and CPU inference time of the individual models for a single
observation. A computer with Windows 10 64-bit system, Intel Core i7-4770 3.40 GHz
processor, 32 GB RAM, and an NVIDIA GeForce GTX 1660 Ti 6 GB graphics card was used
to measure the inference times. As expected, the fastest model was VGG16, which is due to
its smallest topological depth (Table 1). Additionally, noteworthy is the ResNet50 model,
which, with a relatively low inference time for the GPU (22 ms), experienced only one and
a half times the inference time degradation for the CPU.
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Table 3. Inference time for a single observation.

Model GPU Inference
Time [ms]

CPU Inference
Time [ms]

Latency Increasing
(tCPU / tGPU)

VGG16 5.6 20.6 3.7
VGG19 7.0 26.1 3.7

Xception 25.2 58.0 2.3
ResNet50 22.0 33.9 1.5

MobileNetV2 21.1 65.0 3.1
InceptionResNetV2 93.8 115.0 1.2

4. Discussion

The stage of building classifiers brought very good results. Out of the six models
built, as many as three achieved the classification accuracy at the level exceeding 90%
(Figure 11a). For reference, the VGG16 model achieved ACC = 95%, TPR = 96%, and
TNR = 94%. At the same time, this model can be considered the best because it has the
highest overall classification accuracy (95%), as well as the highest sensitivity (TPR = 96%),
which is medically important for patients. The other two models are also characterised by
very good quality indicators. For the VGG19 classifier, ACC = 94%, with TPR = TNR = 94%,
and for the InceptionResNetV2 model ACC = 94%, TPR = 90%, and TNR = 8%. The high
efficiency of the VGG16, VGG19, and InceptionResNetV2 models is also reflected in the
ROC curve diagram. The AUC parameter, calculated on the basis of this plot, is equal to
0.985, 0.971, and 0.973 for the above models, respectively.

The vast majority of all quality indicators of the above-mentioned models exceeded
the level of 90%. This is a very good result, taking into account the extremely small
number of observations used to train the models. Each class had 200 observations, of
which 100 belonged to the training set, 50 to the validation set, and 50 to the test set. For
deep neural networks, these are very small datasets, because typically sets of thousands of
observations are used for training them. It was possible to obtain very good results owing
to the approach of using classifiers that were pre-trained on a very large ImageNet dataset.
The operation of fine-tuning the top layers of the convolutional basis, together with two
layers of a custom classifier added at the end of the model, proved very successful. The
research confirmed that this approach may be recommended in the case of small datasets.

It should also be emphasised that the best results were obtained for the models with
the smallest topological depth. The convolution base of the VGG16 model consisted of
19 layers, and in the case of the VGG19 model, there were 22 layers. Thus, the models
with the lowest complexity turned out to be the most effective for a very small size of the
training set. This may suggest that the number of observations was too small for the Mo-
bileNetV2, Xception, and ResNet50 models. Nevertheless, although the InceptionResNetV2
model had the greatest complexity (780 layers), it achieved very good quality indicators
(ACC = 94%, TPR = 90%, TNR = 98%). A certain drawback of the method discussed is that
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the extraction of areas of interest was performed manually. However, this issue requires
conducting separate research and will, therefore, become an area of interest in the course of
further work.

A list of the results enabling to make such a comparison is provided in Table 4. As it
can be seen, the results obtained are at a level comparable with the results of other authors,
achieved in solving similar classification problems.

The results presented in this article are easiest to compare with the results of the
studies presented in [51,52], as they concerned the same type of images, i.e., those obtained
as a result of computed tomography. These studies also share the same anatomical object of
interest, i.e., the spine, which is one of the elements of the human skeleton most vulnerable
to osteoporosis. Due to its key role in the structure of the human body and complications
after vertebral fractures leading to immobilisation of the patient and sometimes even
death, the spine is the subject of many experiments aimed at preventing the final stage of
the disease. As a result of the research, the outcome of which are shown in Table 4, the
sensitivity of classifiers ranging from 78.83% to 98.56% obtained in study [16] with the
use of the AlexNET model was obtained. In work [51], the values of the sensitivity and
specificity of the used classifier were also given, which were TPR = 83.9% and TNR = 93.8%.

In contrast, study [53] presents a slightly different approach to the diagnosis of os-
teoporosis, but is also based on artificial neural networks. Instead of images, the research
material consisted of data on the age, weight, height, and T-index of the femoral neck.
The parameters shown were to be used as input data for the osteoporosis risk prediction
algorithm. The achieved results were: ACC = 78.83%, AUC = 0.829, TNR = 90.12%, and
TPR = 51.0%. The low value of the classifier’s sensitivity may indicate the correctness of
the theory about the key importance of the analysis of bone tissue microarchitecture.

Table 4. Comparison with other authors.

Item No. Role Research Material The Method Used Classifier Quality
Assessment Parameter

Our research

Application of deep
convolutional neural

networks in the diagnosis
of osteoporosis

CT images of L1 spongy tissue
from 100 patients (50 healthy

and 50 diagnosed
with osteoporosis)

VGG16, VGG19, MobileNetV2,
Xception, ResNet50,
InceptionResNetV2

ACC = 95%,
TPR = 96%,
TNR = 94%

[54]

Classification of
osteoporosis on the basis

of CR images of phalanges
using DCNN

101 computed radiography
images of phalanges

An undefined convolutional
network model from the

Caffe package

TPR = 64.7%,
FPR = 6.51%

[51]
Identification of vertebral

compression fractures
caused by osteoporosis

3701 CT tests, 2681 (72%)
were negative

for the presence of VCF and
1020 (28%) were marked as

positive for VCF,

Convolutional network and a
classifier based on a
recursive network

ACC = 89.1%,
TPR = 83.9%,
TNR = 93.8 %

[52]
Automatic detection of
osteoporotic vertebral
fractures on CT scans

1432 CT images of the spine

(1) a function extraction module
based on CNN ResNet34 and

(2) an RNN module for
aggregating the extracted
features and making the

final diagnosis.

ACC = 89.2%,
F1 score = 90.8%

[55] Metacarpal screening for
osteoporosis

4000 radiographs of
the metacarpus AlexNet TPR = 82.4%,

TNR = 95.7%

[53]
Diagnostic examination

and prediction of the risk
of osteoporosis in women

Age, weight, height, and
T-score of the femoral neck of

1559 women

Radial basic function of artificial
neural networks with the

2-4-1 architecture

ACC = 78.83%,
AUC = 0.829,
TPR = 51.0%,

TNR = 90.12%
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Table 4. Cont.

Item No. Role Research Material The Method Used Classifier Quality
Assessment Parameter

[56]
Prediction of osteoporosis

from simple hip
radiography

1012 simple hip radiographs VGG16 model

ACC = 81.2%,
TPR = 91.1%,
TNR = 68.9%,
PPV = 78.5%,
NPV = 86.1%

[16]

Predicting osteoporosis
based on the mandibular

cortical index on
panoramic radiographs

Panoramic radiographs
of mandibular

744 female patients

AlexNET, GoogleNET,
ResNET-50, SqueezeNET, and

ShuffleNET
deep-learning models

ACC = 81.14%(AlexNET),
ACC = 88.94%
(GoogleNET),

ACC = 98.56% (AlexNET),
ACC = 92.79%
(GoogleNET)

Figure 15 shows the general scheme of the system for predicting new images using
the VGG16 model, which achieved the highest quality indicators (ACC = 95%, TPR = 96%,
and TNR = 94%). At the same time, this model is characterised by the lowest topological
complexity (the convolution base contains 19 layers). After ROI extraction, new observa-
tions are fed to the input of the VGG16 model. The model analyses the data and calculates
the probability of belonging to a positive class (OSTEOPOROTIC). If this probability is
equal to or greater than 0.5, the classification module assigns the OSTEOPOROTIC label to
the observations. Otherwise, the observation is labelled HEALTHY. Figure 16 shows the
various possible prediction results for the sample test images. These results were obtained
using a prototype system for the diagnosis of osteoporosis, which uses the VGG16 model
for prediction.
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5. Conclusions

The article presents an algorithm for the classification of computed tomography images
of the spongy tissue of the lumbar spine using six different convolutional neural network
models. Out of the convolutional network models built, as many as three achieved the
classification accuracy at a level exceeding 90%. The VGG16 network model turned out to
be the best, because it is characterised by the highest classification accuracy (ACC = 95%)
and the highest sensitivity (TPR = 96%), which is very important from the medical point of
view. This means that properly constructed and trained convolutional neural networks can
be the basis for the creation of an effective method for the diagnosis of spinal osteoporosis,
through the classification of CT images of spongy tissue.
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The plan for further work includes the attempts to create a complete osteoporosis
diagnostic system based on the CT images of the spine and other bone elements exposed
to this disease. The practical implementation of the proposed prototype osteoporosis
diagnostic system based on the VGG16 convolutional network model should be preceded by
tests on a larger number of patients and creation of an algorithm for automatic segmentation
of tissue image samples from the sequence of images in the DICOM format directly from
the CT scanner.
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