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Abstract: Although many studies have been devoted to integrating blockchain into IoT device
management, access control, data integrity, security, and privacy, blockchain-facilitated IoT com-
munication is still much less studied. Blockchain has great potential in decentralizing and securing
IoT communications. In this paper, we propose an innovative IoT service platform powered by the
consortium blockchain technology. The proposed platform abstracts machine-to-machine (M2M)
and human-to-machine (H2M) communications into services provided by IoT devices. Then, it
materializes the data exchange of the IoT network through smart contracts and blockchain transac-
tions. Additionally, we introduce the auxiliary storage layer to the proposed platform to address
various off-chain data storage needs. Our proof-of-concept implementation was tested against vari-
ous workloads and connection sizes under different block configurations to evaluate the platform’s
transaction throughput, latency, and hardware utilization. The experimental results demonstrate
that our solution can maintain high performance with a throughput of approximately 800 reads per
second (RPS), 50–80 transactions per second (TPS), and a latency of 50 ms–2 s under light to moderate
workloads. Our extensive evaluation of the performance impact of batch size, batch timeout, and
connection size also provides valuable insights into the optimization of blockchain configuration for
achieving high performance.

Keywords: Internet of Things; IoT communication; security and privacy; consortium blockchain; smart
contract; Hyperledger fabric

1. Introduction

Integration of the IoT and blockchain began to bloom thanks to distributed ledger
technologies and cryptocurrencies. Previous IoT systems depend on centralized servers
for communication and data storage, which often become the single point of risk to the
security and privacy of the systems. Blockchain technologies, however, enable collaboration
between untrusted parties in a decentralized manner. They eliminate the need for a trusted
intermediary by creating a self-organized transaction network guided by a consensus
protocol. Thanks to the distributed network architecture, data on blockchains not only
have high availability but also strong integrity assured by cryptography algorithms and
the immutable data structure. As a result, blockchain technologies are widely applied to
fields of IoT, such as supply chains [1], power grids [2], healthcare [3], and smart homes [4].

However, prominent blockchain solutions have their performance, security, and pri-
vacy concerns. First, public permissionless blockchains, such as Bitcoin and Ethereum,
oblige no restrictions on the participants who can create blocks and read transactions [5].
In the context of IoT, the openness of such blockchains endangers user privacy and exposes
IoT systems to cyber attacks. In addition, the anonymity of permissionless blockchains
makes it challenging to audit operations and trace in the network. Second, to reach global
state consistency in a trustless environment, public permissionless blockchains use costly
consensus protocols, such as proof of work (PoW), proof of stake (PoS), or protocols that
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require particular hardware (e.g., proof of elapsed time) [6]. Such protocols are often not
suitable for IoT systems where devices are heterogeneous and power-constrained. It is
also difficult for them to meet the throughput and latency requirements of IoT applica-
tions, which often demand hundreds of transactions to be committed to the ledger within
milliseconds to seconds.

Consortium blockchains, in comparison, remedy those disadvantages of public per-
missionless blockchains in a semi-trusted environment. Unlike permissionless blockchains,
a consortium blockchain is operated by a group of collaborating entities, and only au-
thorized nodes of these entities can commit blocks to the ledger [7]. On a consortium
blockchain, the ledger can also be made visible to all members or part of the group via
access control policies. Since participating authorities manage blockchain actors, it is more
feasible to trace transaction flows and construct audit trails. Regarding consensus protocols,
consortium blockchains assume that transaction validators are predefined and semi-trusted.
Less resource-demanding consensus protocols, such as practical byzantine fault tolerance
(PBFT) [8] and raft [9] can be utilized in consortium blockchains to improve scalability.
Therefore, consortium blockchains usually yield much better performance than public
permissionless blockchains [10].

1.1. Motivation

We reviewed existing IoT and blockchain integration in literature and discovered a
research gap in realizing decentralized secure and scalable M2M and H2M communication
with consortium blockchain technology. That is, overcoming the downsides of public
permissionless blockchains for IoT communications by replacing them with consortium
blockchains. A few research groups [11–13] explored the application of permissioned
consortium blockchains and smart contracts in securing IoT communications and sensor
data. However, they are either highly focused on a specific blockchain application of IoT,
lack a robust system design, or miss an extensive evaluation of their proposed approach.
There is a strong need for a more generalized, clearly defined, and extensively evaluated
framework for IoT communications utilizing the consortium blockchain technology.

1.2. Contribution

In this paper, we present a decentralized IoT service platform, called DISP, for secure
M2M and M2H communications inside an IoT environment based on a permissioned con-
sortium blockchain. Instead of implementing a specific application of IoT with blockchain,
the proposed work aims to establish a generic communication framework for various IoT
systems. The consortium blockchain is a secure and scalable communication channel for
IoT devices and applications in our solution. The communication protocol is formulated
as services defined by IoT devices and provided to applications. Meanwhile, exchanging
messages become blockchain transactions and are conveyed through the blockchain net-
work. In addition, optional auxiliary storage is introduced to fit the proposed framework
into diverse application scenarios, such as sensor data archives and real-time messaging.
Finally, the framework provides a lightweight software development kit (SDK) and plat-
form gateways to simplify blockchain operations for resource-constrained IoT devices and
application developers. Compared to related studies, the proposed framework DISP has
the following advantages:

(1) Generality and versatility: DISP is designed to power a wide range of IoT applications.
It abstracts the communication protocol into the services that IoT devices can customize. It
also imposes minimum assumptions about the underlying blockchain features or storage
types. For example, it does not rely on a specific function offered by a particular blockchain
platform or use a dedicated storage solution exclusively. Therefore, it can support various
IoT applications to satisfy communication and data processing requirements.

(2) Interoperability: DISP can be integrated into existing IoT systems smoothly. With
the help of straightforward SDKs and platform gateways, an application developer can not
only bring new IoT devices to the proposed framework but also migrate legacy IoT devices
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or systems easily. Meanwhile, DISP works well with existing IoT identity management and
access control infrastructure and can reuse digital identities already in place.

(3) High performance: As illustrated by the performance evaluation results, our frame-
work has considerable read and write throughputs and reasonable latencies even under
high workloads. DISP works much more efficiently for semi-trusted consortium environ-
ments than permissionless blockchain-based IoT communication solutions, which rely on
heavy consensus protocols.

Our contributions to this work are as follows:
(1) We propose a novel consortium blockchain-based IoT platform, namely DISP,

for secure and decentralized IoT communications. DISP models IoT communications
as services powered by smart contracts and blockchain transactions. In this paper, we
elaborate on the system design and implementation that make DISP capable of supporting
diverse IoT applications.

(2) We evaluate DISP extensively to demonstrate its performance under various work-
loads and block configurations. The experimental results illustrate that DISP can achieve
high read and write throughputs and reasonable latencies for most workloads. This work
also discusses how DISP can address security and privacy concerns.

(3) Two use-case studies, Parrot and Crystal Ball, are presented to showcase the
versatility of DISP. Additionally, the DISP project—including its SDKs, use case demos,
and testbed set-up scripts—is an open-source project to promote the reproducibility of
this research.

1.3. Paper Organization

The remainder of this paper is organized as follows: Section 2 reviews related work of
blockchain-based IoT identity management and access control, data storage and market-
place, and device manipulation. Section 3 describes the proposed IoT service platform’s
architecture and key processes. Section 4 briefly presents the proof of concept platform
implementation and several use-case studies. Then, we evaluate the performance of the
proposed platform with a series of experiments and discuss its security and privacy impli-
cations in Section 5. Finally, Section 6 concludes this paper with future research directions.

2. Related Work

The integration of blockchain and IoT has been extensively studied since the emer-
gence of blockchain technology. Attempts have been made to address the challenges of IoT,
such as distributed and heterogeneous architecture, device, data security, and profitability
utilizing blockchains [14]. In this section, we will review the current development of IoT
blockchain integration in three specific areas related to our proposed service platform: iden-
tity management and access control, data storage and marketplace, and device command
and control.

2.1. Identity Management and Access Control

Identity management (IdM) and access control are keys to security and trust of IoT
devices and data. It is difficult to apply traditional IdM systems to IoT environments,
especially distributed and collaborative ones, due to their centralized nature, security
vulnerabilities, and service fragmentation [15]. IoT’s security, scalability, and interoperabil-
ity requirements call for new IdM and access control paradigms, and blockchain-based
solutions are promising answers.

One approach to building a blockchain-based IdM is recreating public key infrastruc-
ture (PKI) using blockchain and smart contracts [16–19]. A blockchain-based PKI supports
the same critical operations, such as registration, verification, and revocation as a tradi-
tional centralized PKI, with improvements in security and privacy. Other research takes
a different approach by building identity systems tailored to specific blockchain imple-
mentation. For instance, Sovrin [20] and its underlying Hyperledger Indy blockchain [21]
provide a full-stack solution to decentralized, self-sovereign IdM on a public permissioned
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blockchain. Finally, storing identities off-chain (e.g., in traditional PKI) and linking them
back to the blockchain were also discussed and utilized in projects, such as Hyperledger
Fabric [22].

Once identity management has been established for an IoT system, one can further
introduce access control to IoT data and regulate the communications between devices.
Traditional access control methods, including role-based access control (RBAC), attribute-
based access control (ABAC), and capability-based access control (CBAC) are less capable
of supporting the enormous, heterogeneous, and decentralized IoT environments. Consid-
ering how access decisions are made, existing blockchain-based access control methods can
be categorized into (1) transaction-based access control and (2) smart contract-based access
control [23]. Transaction-based access control methods such as FairAccess [24] leverage
blockchain as an immutable, distributed storage for access tokens, while the generation and
verification of those tokens take place off-chain. On the other hand, smart contract-based
access control focuses more on decentralizing the decision-making process with smart
contracts. For example, IoTChain [25] allows resource owners to define smart contracts
for granting client access and generating access tokens. IoT-CCAC [26] presents a consor-
tium blockchain-based CBAC approach for IoT applications that exchange data between
different consortium members.

2.2. Data Storage and Marketplace

The rapid advancement in distributed ledger technology invites new opportunities for
distributed data storage, data sharing, and data monetization. Blockchain is a distributed,
immutable database system where IoT data, such as sensor readings and access logs, may
be stored. However, due to the block size limitation and scalability considerations, storing
IoT data off-chain is more practical. Thus, hybrid blockchain-based storage networks have
been proposed to reduce the chances of a single point of failure (SPOF) as seen in traditional
centralized storage systems, provide data integrity and security, and lower the storage
cost [27].

For instance, general-purpose blockchain-based solutions that support bulk data
storage, such as Storj [28], Sia [29], and FileCoin [30], store only metadata of data blocks
on the blockchain to prevent the bloating issue. On such platforms, files are split into
smaller blocks and sent to the underlying distributed storage network composed of miners
or storage nodes. To encourage participation and prevent dishonest behavior and free-
riding, they also introduce new consensus protocols and cryptocurrencies to compensate
for miners’ storage and bandwidth usage.

The rise of blockchain technology and IoT also accelerates the growth of the mar-
ket of IoT data. With blockchain technology, an IoT data marketplace can become fully
decentralized and autonomous, while reducing cost, improving transaction efficiency,
and promoting data privacy. Research in this area has been centered around ensuring
data authenticity and provenance, secure data transfer, and payment processing [31–34].
Additionally, industry-led initiatives such as IOTA [35], XBR [36], and Streamr [37] also
provide real-world insights into the monetization of IoT data on the blockchain.

2.3. Device Manipulation

Blockchain technology also enables fully decentralized M2M and H2M communi-
cations for IoT systems. With smart contracts, a blockchain-based IoT system is capable
of autonomous decision-making based on business logic [14]. Such systems are relieved
from centralized device management and control and, hence, less vulnerable to a SPOF.
Meanwhile, the blockchain and smart contract ensure communication integrity and provide
an immutable audit trail.

Slock.it [38] is among the first applications that leverage blockchain and smart contracts
for controlling embedded devices. It envisages a blockchain-based economy of things where
people can rent their unused assets, such as bikes, to others through smart contracts. A user
can discover and lease assets on the Slock.it platform, and the whole process is enabled by



Sensors 2022, 22, 8186 5 of 31

smart asset controllers or IoT devices connected to the Ethereum network. Upon successful
payment, an asset will be unlocked by its controller as instructed by smart contracts.

Apart from securely sharing physical assets, Ethereum has been used as a decentralized
M2M channel for IoT, thanks to its popularity and versatility. Fakhri and Mutijarsa [39]
proposed a proof-of-concept demonstration on replacing MQTT [40] with the Ethereum
blockchain for communications between IoT devices. The devices can talk to each other
by reading data from and writing data to the blockchain via a smart contract intermediary.
Wickström et al. [41] introduced an Ethereum-based protocol for IoT device management
and task handling. This protocol utilizes two smart contracts to register an IoT device and
create tasks for it. The authors pointed out that their protocol could reduce network attack
risks to IoT devices because they can use the blockchain as a secure channel for remote
command and control while disallowing other incoming network connections.

Finally, several studies have implemented decentralized IoT device management and
communication using permissioned blockchain framework. Compared to permissionless
blockchains, a permissioned blockchain inherently integrates with identity management
and authentication so that the participation of the consensus can be verified and authorized.
It usually comes with better scalability and energy efficiency because its consensus can
be achieved without computationally expensive mining. Ali et al. [11] discussed a Hyper-
ledger fabric-based IoT architecture for a smart home scenario where every device stores
and shares its data via blockchain transactions. In such an environment, a smart device
can request services from other devices by communicating directly or indirectly through
the cloud. A smart contract also guards the list of devices and their shared secret keys.
Hang and Kim [12] outlined a blockchain platform for securing IoT sensing data integrity.
The platform provides smart contracts for registering and querying IoT devices and creating
and deploying tasks that IoT devices can process. In the end, a device owner can receive
notifications about the events generated by the tasks from the blockchain. The authors also
detailed the implementation of their proposed platform that utilizes Hyperledger Fabric.
Zhang et al. [13] applied Hyperledger Fabric to facilitate secure device communications in
the edge computing environment. However, device communications and manipulations on
their proposed platform are implemented through tasks that are scheduled and executed
outside the blockchain.

2.4. Comparison of DISP and Related Work

A comparison of the proposed platform DISP with the aforementioned related studies
is presented in Table 1. The research domain, research goal, applied blockchain technology,
access control availability, and data storage mechanism are considered in the comparison.
Distinct from other research, DISP focuses on securing the communication between IoT
devices and their users. To realize this goal, we introduce authentication, access control,
and data storage capabilities to DISP. DISP can be integrated into a broad spectrum of
IoT scenarios rather than just a specific area of IoT. Moreover, DISP is the only one that
explicitly considers the multi-organizational environment among all the compared studies.
DISP also outperforms most related work in terms of system throughput and latency. The
detailed performance comparison is given in Section 5.

Table 1. Comparison of DISP to related research.

Related Work Domain Goal Blockchain Access Control Data Storage

[13] Edge computing Access control Hyperledger Fabric Permissioned Off-chain
[19] General IoT Access control Hyperledger Fabric Permissioned On-chain
[26] General IoT Access control BigchainDB Permissioned On-chain
[12] General IoT Data management Hyperledger Fabric Permissioned On-chain
[39] General IoT Communication Ethereum Permissionless On-chain
[41] General IoT Communication Ethereum Permissionless On and off-chain
[11] General IoT Communication Hyperledger Fabric Permissioned On-chain
Our work DISP General IoT Communication Hyperledger Fabric Permissioned On and off-chain
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3. System Design

An architectural overview of our proposed IoT service platform i.e., DISP, is illustrated
in Figure 1. This overview shows the platform paradigm for a consortium composed of
two organizations for demonstration purposes. At its core, the platform is powered by a
consortium blockchain. Peer nodes from two organizations together serve the distributed
ledger and smart contracts. These nodes also execute smart contracts when requested by
the blockchain actors, which can be IoT devices or applications, and endorse blockchain
transactions. IoT devices from any organization within the consortium may connect to
the platform directly or through the platform gateway that handles blockchain operations
on the device’s behalf. To facilitate the integration of various IoT devices and accelerate
application development, we also incorporate an SDK to reduce the complexity of devices
and applications to interact with the platform. At least one identity service is required to
provide digital identities to each IoT device, application, and peer node in every organi-
zation of the consortium, although multiple organizations may share the same identity
service. Finally, auxiliary storage is introduced to enable data sharing between different
organizations. The actual storage types and implementations are affected by individual
application requirements.

Streaming
Server

Message
Queue

Object
Storage

Ledger Service
Registry

Identity
Service

Application

Platform
SDK

Peers

Platform
Gateway

Service
Broker

IoT DevicesIoT Devices Peers

Smart Contracts

Identity
Service

Application

Platform
SDK

Peers

Platform
Gateway

Peers

Consortium Blockchain

Auxiliary Storage

Organization 1 Organization 2

Communication Channel

Data Channel

Communication Channel

Data Channel

Figure 1. Consortium blockchain-based IoT service platform architecture.

The following are the core components of DISP:
(1) IoT devices: IoT devices connect the physical space to cyberspace. Regarding

DISP, they are the primary service providers. Services provided by IoT devices either
measure or affect their environment, given that the device is a sensor or actuator. For
example, a thermometer service reports the temperature of its surroundings, while a
thermostat provides the service of adjusting room temperature. An IoT device may connect
to the blockchain directly or through a platform gateway if its computational resources
are constrained.

(2) Platform gateway: A platform gateway bridges the communication between IoT
devices and the platform. Often, an IoT device is not able to participate in blockchain
transactions directly due to energy or computational power constraints or because it is not
programmable. In this case, it can delegate blockchain operations to the platform gateway
without changing its inherent communication protocols.

(3) Consortium blockchain: At the core of the proposed platform, a consortium blockchain
is employed as the distributed ledger that records all IoT devices and their services. It is also
the primary communication channel between IoT services and their consumers, offering
better performance and scalability compared to permission-less public blockchains. The IoT
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network can become decentralized, meaning there are no longer centralized servers that
are often SPOF. Moreover, the platform can leverage access control features introduced by
consortium blockchains to secure IoT services from unauthorized access. Finally, since all
changes to the IoT services and the service request and responses are recorded immutably
on the ledger, the blockchain can essentially serve as a data historian for data auditing.

(4) Peer: Peers, or peer nodes, are computers that perform blockchain operations or
offer auxiliary storage to IoT devices and applications of the platform. When serving as
blockchain peers, they are responsible for hosting the distributed ledger and executing
smart contracts. They are also essential in transaction endorsement. As for the auxiliary
storage, a peer can be tailored to specific application needs. For instance, it can be a
distributed network storage node, a distributed message queue broker, or a proxy server of
media streams. Any organization in the consortium can contribute peers to the network. It
is crucial to ensure a fair amount of peers from different organizations to achieve meaningful
decentralization, and peers should be placed close to their neighboring IoT devices and
gateways to reduce network overhead.

(5) Service registry and service broker: Service registry and broker are smart contracts
that manage IoT devices and services add process service requests and responses. Dur-
ing device and service registration, the service registry updates the ledger with the latest
device or service information provided by the IoT device. The service registry also pro-
vides interfaces for querying IoT devices and services. When invoked, the service broker
smart contract will append service requests and responses to the ledger. IoT devices and
applications observe and respond to ledger updates, eventually achieving asynchronous
communications between service providers and consumers.

(6) Platform SDK: Platform SDK provides an application programming interface (API)
of the platform to IoT service and application developers. It encapsulates functions for
registering devices and services, sending service requests and responses, querying platform
data, etc. The goal of platform SDK is to conceal the complexity of blockchain operations
from IoT devices and application developers.

(7) Application: An application interacts with IoT devices via the services published
on the platform. For example, an application can be an industrial control system (ICS)
that monitors sensor readings or a smartphone app that displays room temperature and
security camera feed in a smart home environment. Additionally, applications can provide
services to other IoT devices and applications on the platform.

(8) Identity service: Every participating actor of the proposed platform, such as an IoT
device, an application, or a peer node, is recognized by its digital identity. Therefore, we
need an identity service for every organization to issue, renew, and revoke those identities.
The platform allows organizations of the consortium to employ their own identity services
so that each organization has complete control over its assets, such as peers, IoT devices,
and applications. In addition, the consortium blockchain can enforce access control to IoT
services through a set of policies defined for digital identities.

(9) Auxiliary storage: Although IoT devices and applications mainly communicate
through the blockchain, it is sometimes desirable for IoT devices to share data off-chain.
The proposed platform encompasses an optional auxiliary storage system to satisfy various
data storage needs. For example, the auxiliary storage can be a distributed object storage
system that stores historical humidity values, a distributed message queue for sharing
real-time data, such as Particulate Matter (PM) 2.5 readings, or a proxy for streaming
real-time binary data, such as a camera feed. The uniform resource identifier (URI) can be
passed to the data consumer via IoT services. Finally, the data may be encrypted using the
data consumer’s identity to provide confidentiality.

The following sections elaborate on the necessary procedures for the IoT service
platform DISP and explain how DISP takes advantage of the consortium blockchain and
auxiliary storage to secure IoT systems.
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3.1. Device and Service Registration

Figure 2 depicts the life cycle of an IoT device and its service on DISP. To expose
functions to the network, an IoT device first must register itself and its services on the
platform. Before the registration process starts, the device obtains its digital identity from
the identity service of its belonging organization as marked by step 1 in Figure 2. Then,
it announces the device information and services by invoking the service registry smart
contract, which is shown in step 2 in Figure 2. If successfully validated, the device and
service information will be stored on the blockchain. The registration process is required
because device and service information is crucial to the authentication and access control
processes, as described in Section 3.2.

Blockchain

IoT Device

Identity Service

Application

Organization 1 Organization 2

Service Registry Service Broker

3 Service
Request

4 Service
Response

3 Service
Request

4 Service
Response

1 Identity
Issuance 

5 Device/Service
Deregistration

2 Device/Service
Registration

3 Service
Request

4 Service
Response

Figure 2. The life cycle of an IoT device and its service.

(1) Device Registration: The first step for an IoT device to be registered DISP is receiving
its digital identity from the identity service provider of its organization. Unlike many other
blockchain-based IoT platforms in the literature that employ custom device identity and
registration processes, our platform DISP can reuse existing digital identities issued by the
organization’s PKI. Thus, organizations can follow standard procedures of signing and
issuing identity certificates using an off-the-shelf certificate authority (CA). Not only can
DISP benefit from the robust security of a PKI, but also participating organizations can
integrate their IoT device management system easily with DISP. Consequently, IoT devices
can be decommissioned by deregistering the service from the service registry and putting
their identity certificates on the certificate revocation list (CRL).

Next, the IoT device can register itself by invoking the service registry with the required
information. Algorithm 1 is an abstraction of the device registration process executed by
the service registry smart contract. The most important fields that must be provided by an
IoT device are its digital identity and the organization ID, which are used to locate a specific
device on the platform. Other information, such as name, description, and last update
time, are human-readable metadata for platform users. The service registry first generates
the unique device ID from the digital identity. Then, it validates the caller’s identity to
ensure it has sufficient permission to update the blockchain and does not impersonate other
devices. Finally, the registry will serialize the provided device information and add it to
the blockchain using the organization ID and device ID as the key.
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Algorithm 1 Registering a device with the service registry.

Require:
B: Global state of the blockchain.
P: Service registry smart contract caller.
Cdev: Device’s digital identity. Must be unique within an organization.
Iorg: ID of the organization to which the device belongs.
Ndev: Nickname of the device.
Ddev: A short summary of the device’s function and usage.
Tdev: The date and time when the last update is made to the device information.

Ensure:
Device information is saved or updated in the blockchain.

1: if WRITE 6∈ GETCALLERPERMISSIONS(P) then
2: return error . Abort if caller is not allowed to update the blockchain
3: end if
4: Idev ← GENERATEDEVICEID(Cdev) . Generate device ID from its digital identity
5: if Idev 6= GETCONTRACTCALLERID(P) then
6: return error . Abort if caller impersonates another device
7: end if
8: if Iorg 6= GETCONTRACTCALLERORGID(P) then
9: return error . Abort if caller impersonates another organization

10: end if
11: Sdev ← SERIALIZE(Idev, Iorg, Ndev, Ddev, Tdev)
12: B[Iorg, Idev]← Sdev
13: return Sdev

(2) Service Registration: Registered IoT devices publish their services on the network
via the service registry smart contract. Such a service can measure a room’s humidity or
setting a refrigerator’s temperature. An IoT device may declare multiple services on the
blockchain by repeating the registration process. Similar to device registration, an IoT
device is required to provide service information to the service registry for each service.
The service registration process is outlined in Algorithm 2. The service name, device
ID, and organization ID identify a unique service in the network. Therefore, each service
has a unique service name on a device. The service version number and last update time
are useful fields for application developers and system auditors to keep track of service
updates. The description field offers a summary of the service and its usage. Besides
identity and permission validation, the service registry will also check if the provided
device is already registered on the platform. If there is no issue, it will write the serialized
service information to the blockchain with the organization ID, device ID, and service name
as the key. In accordance with the device decommission process, the service registry also
allows IoT devices to deregister their services by calling the corresponding function in the
smart contract, as shown in step 5 in Figure 2.
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Algorithm 2 Registering a service with the service registry.

Require:
B: Global state of the blockchain.
P: Service registry smart contract caller.
Nsrv: Name of the service. Must be unique among all services of the same device.
Idev: ID of the device that provides the service.
Iorg: ID of the organization to which the device belongs.
Vsrv: Version number of the service.
Dsrv: A short summary of the service’s function and usage.
Tsrv: The date and time when the last update is made to the service information.

Ensure:
Service information is saved or updated in the blockchain.

1: if WRITE 6∈ GETCALLERPERMISSIONS(P) then
2: return error . Abort if caller is not allowed to update the blockchain
3: end if
4: if Idev 6= GETCONTRACTCALLERID(P) then
5: return error . Abort if caller impersonates another device
6: end if
7: if Iorg 6= GETCONTRACTCALLERORGID(P) then
8: return error . Abort if caller impersonates another organization
9: end if

10: if GETDEVICE(Iorg, Idev) = ∅ then
11: return error . Abort if device is not registered
12: end if
13: Ssrv ← SERIALIZE(Nsrv, Idev, Iorg, Vsrv, Dsrv, Tsrv)
14: B[Iorg, Idev, Nsrv]← Ssrv
15: return Ssrv

3.2. Authentication and Access Control

DISP enforces authentication and access control to prevent unauthorized access. As
stated in Section 3.1, the platform’s authentication and access control rely on digital iden-
tities issued by the identity service. All the platform actors, such as IoT devices and
applications, must have at least one valid digital identity to interact with the blockchain.
The smart contracts will verify the identity of calling actors to see if they have the necessary
permissions to read or write the distributed ledger. To enable cross-organization opera-
tions, the actors can possess multiple digital identities issued by different identity services,
as depicted in Figure 3. Each identity, including its certificate cert and private key prikey, is
stored in a blockchain wallet W. Therefore, the platform allows an IoT device to register
its service in multiple organizations using different identities stored in the same wallet,
i.e., W = {(certi, prikeyi)|i = 1, 2, . . . , N}.

DISP enforces more granular access control via a multi-layer RBAC model, as shown in
Figure 3. In this model, the digital identity of each actor is assigned a role when it is created.
The first layer, the blockchain-level access control policies, define which organizations
and roles can query or update the ledger using smart contracts. By default, actors of a
participating organization can see all registered IoT devices and services, but only the
actors with the “writer” roles have the right to register or update them. At the next layer,
the transaction level, service registry, and service broker smart contracts can be attached
with transaction validation policies. These policies tell which organizations and actors must
sign the service request transaction for it to be valid. Finally, the smart contracts enforce the
last layer of access control for each IoT device, service, service request, and service response.
The smart contracts check the caller’s identity to ensure that only the service-owning IoT
device can update the device and service information and respond to service requests.
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Figure 3. The proposed multi-layered access control model.

3.3. Service Request and Response

The consortium blockchain provides opportunities for IoT networks to become decen-
tralized and distributed. It also enables sharing of IoT infrastructure among organizations
within a consortium in a scalable and reliable manner. Leveraging the advantages of con-
sortium blockchain, we propose an IoT communication process that utilizes the blockchain
network as the communication channel. In this process, data exchange between parties is
achieved in service requests and responses facilitated by the service broker smart contract.
Figure 4 provides a more detailed depiction of steps 3 and 4 of Figure 2. It illustrates
the communication process between an IoT device and an application, including querying
available services, requesting services, responding to service requests, and retrieving data.

Application

Service Registry

IoT Device

Auxiliary Storage

Service Broker

2 Service
Request

1 Service
Query

5 Service
Response

4 Data
Update 6 Data

Query 

Environment

3 Measuring/
Controlling 

Figure 4. Process of communication between an IoT device and application.
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(1) Service querying: To find out a service’s availability, an application can query the
service registry before initiating a service request, as illustrated by step 1 in Figure 4. Given
the service name, device ID, and organization, the service registry returns information about
the service to the application, such as the service version and last update time. Although
this step is not mandatory, an application is recommended to refresh service information
periodically to stay updated on the service’s information and look for alternative services
when the service is unavailable. Additionally, the last update time of service helps decide
the best time to refresh such information.

(2) Service request and processing: To communicate with an IoT device on DISP, an appli-
cation creates a service request first. Every service request is identified by a universally
unique identifier (UUID) generated by the application. The request ID must be unique
among all requests on the platform. Information about the requested service, such as the
service name, is required so that the service-providing IoT device can retrieve the request
from the blockchain. The request also contains the request creation time used for request
deduplication and auditing purposes. The request body is represented by the method and
arguments fields where the action and its optional arguments are defined.

Next, the application submits the service request to the service broker, which will
validate the request and create a blockchain transaction. Algorithm 3 illustrates the service
request processing at a high level. The service broker smart contract first verifies the contract
caller’s permissions to ensure it can update the blockchain. Additionally, it validates the
requested service and skips duplicated requests. The request is then serialized and saved
in the blockchain through a blockchain transaction. Once the transaction is validated and
endorsed by the network and written to the ledger, the service-providing IoT device will
be notified by the network that its service has been requested. An IoT device can then
fetch request information from the blockchain via the service broker and interact with its
environment as instructed by the request. These processes are depicted in steps 2 and 3
in Figure 4.

Algorithm 3 Creating a service request using the service broker.

Require:
B: Global state of the blockchain.
P: Service broker smart contract caller.
Ireq: UUID of the request.
Treq: Date and time when the request is created.
Nsrv: Name of the requested service.
Idev: ID of the device that provides the service.
Iorg: ID of the organization to which the device belongs.
Mreq: Request method.
Areq: Optional arguments of the request.

Ensure:
Service request information is saved in the blockchain.

1: if WRITE 6∈ GETCALLERPERMISSIONS(P) then
2: return error . Abort if caller is not allowed to update the blockchain
3: end if
4: if GETSERVICE(Iorg, Idev, Nsrv) = ∅ then
5: return error . Abort if requested service is not registered
6: end if
7: if GETSERVICEREQUEST(Ireq) 6= ∅ then
8: return error . Abort if service request already exists
9: end if

10: Sreq ← SERIALIZE(Ireq, Treq, Nsrv, Idev, Iorg, Mreq, Areq)
11: B[Ireq]← Sreq
12: NOTIFYEVENT(Sreq)
13: return Sreq
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(3) Service response and data retrieval: IoT devices can respond to service requests
asynchronously whenever they finish processing them. The process of replying to a service
request is shown in steps 4 to 6 in Figure 4. An IoT device starts by creating the service
response. Besides the UUID of the corresponding request, the response also contains fields
about response creation time, a custom status code indicating the status of processing,
and an optional value to be returned to the requester. The device may also store operational
data in the auxiliary storage and leave a pointer to the data in the return value under
situations where the volume or time sensitivity of the data cannot be met by the blockchain.
Details of the auxiliary storage are further discussed in Section 3.4.

Following its creation, the service response is sent by the IoT device to the service
broker, which creates another blockchain transaction. Algorithm 4 depicts the service
response creation process in the service broker. Similar to the service request creation,
the broker validates the caller’s identity and the existence of the request. It also prevents
service impersonation by matching the caller’s identity against the identity of the requested
service. The service response update transaction will undergo the same process of vali-
dation and endorsement as the service request transaction and eventually be appended
to the distributed ledger. By listening to transaction events on the blockchain, an appli-
cation can act upon the completion of its request, e.g., retrieving the response from the
blockchain. Furthermore, if the return value contains a pointer to data in the auxiliary
storage, the application can perform additional storage operations to retrieve the data.

Algorithm 4 Responding to a service request using the service broker.

Require:
B: Global state of the blockchain.
P: Service broker smart contract caller.
Ireq: UUID of the request to which the response answers.
Tres: Date and time when the response is created.
Ures: The request processing status.
Rres: Optional value to be returned to the service request sender.

Ensure:
Service request information is saved in the blockchain.

1: if WRITE 6∈ GETCALLERPERMISSIONS(P) then
2: return error . Abort if caller is not allowed to update the blockchain
3: end if
4: if GETSERVICE(Iorg, Idev, Nsrv) = ∅ then
5: return error . Abort if requested service is not registered
6: end if
7: Sreq = GETSERVICEREQUEST(Ireq)
8: if Sreq = ∅ then
9: return error . Abort if service request does not exist

10: end if
11: if GETDEVICEID(Sreq) 6= GETCONTRACTCALLERID(P) then
12: return error . Abort if caller impersonates another device
13: end if
14: if GETORGANIZATIONID(Sreq) 6= GETCONTRACTCALLERORGID(P) then
15: return error . Abort if caller impersonates another organization
16: end if
17: Sres ← SERIALIZE(Ireq, Tres, Ures, Rres)
18: B[Ireq]← {Sreq, Sres}
19: NOTIFYEVENT(Sres)
20: return Sres
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3.4. Data Storage

Due to blockchain’s transaction size, throughput, and latency limitations, it is often
preferable to store IoT-generated data off-chain. To meet the storage requirements of
different IoT applications, auxiliary storage can be included to complement the data
exchange on the platform. Figure 5 demonstrates how auxiliary storage facilitates IoT
devices to pass the data to an application. The storage system can be composed of different
types of data storage depending on the communication requirements. For example, non-
real-time structured data can be stored in a cloud, such as AWS S3, or a distributed object
storage, such as the InterPlanetary File System (IPFS). IoT device logs and historical sensor
readings fall into this category. Meanwhile, real-time sensor data (e.g., instantaneous
geolocation coordinates) can be published to message queues such as Apache Kafka for
efficient data delivery. Finally, media streaming servers can be included in the auxiliary
storage to transcode, cache, and stream multimedia captured by IoT devices to their users.
Examples of these data types are surveillance camera feed and audio data collected by
an acoustic gunshot detection system. Each type of storage can be offered by a single
organization of the consortium or hosted by multiple organizations collaboratively. The
design of data storage is out of the scope of this paper.

Application

Door Lock

Stream Server

Distributed Message Queue

Message Queue

OR

Distributed Object Storage

Object Storage

OR

GPS Tracker

Video Camera

Access Logs

Coordinates

Media Stream

Figure 5. Auxiliary storage types and applications.

4. Implementation and Case Studies

This section dives into the implementation details of the proposed platform. We
further showcase the capabilities and usefulness of the platform with two real-world IoT
applications. For the sake of research reproducibility, the source code of our implemen-
tation, the exemplary case study applications, and all the scripts for testbed setup and
benchmarking are made available online (Please refer to the Data Availability Statement).

4.1. Platform Implementation

Considering the feature richness and development support, we selected Hyperledger
Fabric [22] as the consortium blockchain platform for our IoT service platform imple-
mentation. Thanks to its modular architecture and plug-and-play nature, Hyperledger
Fabric has been widely used in industrial environments. Our implementation takes advan-
tage of Hyperledger Fabric’s components to realize the core functionality of DISP in the
following aspects:
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(1) We incorporated device and user identities into the blockchain using Hyperledger
Fabric’s membership service provider (MSP). Each organization on the platform has its ded-
icated MSP, which translates the identities into roles and privileges of the blockchain. Thus,
the platform can authenticate invocations to smart contracts using registered identities.

(2) Hyperledger Fabric defines various policies agreed upon by the consortium mem-
bers, or channel members in Hyperledger Fabric’s terminology, for infrastructure manage-
ment. In our implementation, we limit IoT devices and users to only submitting transactions
or querying the ledger using ACL. We also restrict which organizations must approve or
endorse the transactions with smart contract endorsement policies. In addition, smart
contracts also limit access to write operations, such as responding to service requests to the
device and service owners by checking the caller’s identity.

(3) The smart contracts of the proposed platform were implemented using Fabric
contract API in the Go programming language. All smart contracts are packaged in one
chaincode, a container for smart contracts, so that they share the same world state. In
addition, we created SDK for Go, Java, JavaScript, and TypeScript programming languages
to simplify application development for DISP.

(4) Client communications with the blockchain are simplified using the Hyperledger
Fabric gateway. Instead of directly interacting with the blockchain network and managing
the complexity of transaction proposal, endorsement, and commission, IoT devices and
users delegate most of the heavy-lifting operations to a gateway component running on
peer nodes. This improvement is essential for devices that are energy-constrained or low
on computing power.

4.2. Case Study: Parrot

Parrot is a voice assistant for the smart home lighting system implemented using the
proposed IoT service blockchain. It enables touchless control of home lights using voice
commands, such as “Parrot, turn on the kitchen light”. The architecture of Parrot is shown
in Figure 6. The workflow starts with a user issuing a voice command in a given format to a
smart speaker. A microphone on the smart speaker continuously listens in the background
but only begins recording voice commands on wake words, “Parrot” in this case. It also
determines the duration of the recording and stops when the command ends. This is
done using an onboard wake word detection engine, Porcupine [42], and the voice activity
detector provided by WebRTC [43]. Then, the smart speaker adds the recording to a private
decentralized file storage network, implemented by IPFS, and calls the service exposed
by a remote voice AI engine to the IoT service platform. Next, the AI engine is notified
by the blockchain and retrieves the user’s audio recording from IPFS. The data are then
fed into Rhino [44], a speech-to-intent engine that decodes voice commands and extracts
the location of the light and actions to perform. Finally, the AI engine sends requests for
turning on or off to the corresponding actuator, i.e., the smart light, via the blockchain.

The main advantage of this model is that all communications are securely backed by
the proposed platform DISP. Compared to traditional IoT systems, actors of this system
publish their services only to the blockchain instead of exposing them using other insecure
communication protocols. Moreover, all processes involved are transparent to users since
service activities are recorded on the immutable blockchain. Blockchain transactions leave
an audit trail that is invaluable to incident response and forensic investigation when a
problem arises. Regarding user privacy, the network operator can isolate different user
groups using separate Hyperledger Fabric channels. Audio recordings of the user can
also be set to expire automatically by unpinning and garbage collecting them from the
storage network.
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Figure 6. The architecture and data flow of Parrot.

4.3. Case Study: Crystal Ball

Surveillance cameras are widely deployed nowadays. However, they are often vulner-
able to hackers or malware due to poor security design and improper configuration. An
unprotected surveillance camera can seriously threaten user privacy as the video footage
may be leaked to unauthorized parties. For example, Insecam (http://www.insecam.org
(accessed on 22 September 2022)) is a live camera directory that allows visitors to view
live streams from thousands of unprotected public cameras as of May 2022, and the num-
ber of exposed cameras is still growing. Hackers can also use a compromised camera in
other cyber crimes, e.g., to form a botnet and initiate distributed denial-of-service (DDoS)
attacks [45].

We have built a blockchain-based secure surveillance streaming system called Crystal
Ball using DISP. Figure 7 depicts the architecture and workflow of Crystal Ball. A camera
in the Crystal Ball system does not serve its video and audio feeds on an open network
port. Instead, it publishes them to a secure streaming server that streams camera feeds
only to users with correct access tokens. Meanwhile, the streaming server creates an IoT
service that generates and distributes one-time session access tokens to authorized users
on the blockchain. Finally, users can request access tokens and watch live streams from an
Android streaming client.
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Figure 7. The architecture and data flow of Crystal Ball.
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Crystal Ball eliminates the need for exposing camera feeds from the capturing device.
Unnecessary ports can now be closed to reduce the attack surface of the camera. Further-
more, Crystal Ball protects camera feeds from unauthorized access using device identities
and access tokens. As access tokens are one-time only and tied to each session, a malicious
user cannot reuse previous tokens even if they are leaked. Finally, an administrator can eas-
ily log and analyze camera accesses using transaction history and decommission cameras
that are compromised by invalidating their device identities.

5. Evaluation and Discussion

In this section, we first present the experiment settings under which we evaluated
the proposed IoT service platform DISP. Our evaluation focuses on two core configuration
parameters of the blockchain, transaction batch size, and batch timeout, to discover how
blockchain configuration affects the performance of DISP. We then examine the transaction
performance overhead introduced by additional IoT device connections. Transaction
throughput, transaction latency, and system resource utilization are measured in each test
as the performance indicators of the platform. Finally, we discuss DISP’s security and
privacy and its impact on IoT systems.

5.1. Experimental Setup and Methodology

Figure 8 illustrates the architecture of our testbed and Table 2 details the hardware
and software configuration of each machine used in our experiments. The proposed IoT
service platform ran on a multi-node Hyperledger Fabric blockchain comprising two peer
organizations and one orderer organization. Each peer organization contains two peer
nodes. The orderer organization contains three Raft orderer nodes, and all run Hyperledger
Fabric version v2.4.3. All the organizations form a single consortium, and transactions are
executed and ordered in a single channel. The channel enforces the “MAJORITY” endorse-
ment policy, which means the two peer organizations must both endorse the transaction for
it to be committed to the blockchain. Then, the IoT service blockchain chaincode is installed
on all the peer nodes. To resemble a multi-organizational environment, we deployed the
testing blockchain on bare-metal servers across two Chameleon Cloud [46] data centers.
Compared to deploying all nodes to the same data center, our setup introduces a network
latency of around 30 ms between consortium parties to reflect a network environment of a
real-world blockchain network.

Table 2. Hardware configurations of Hyperledger Fabric nodes and Hyperledger Caliper nodes.

Node Name CPU (Cores) Memory (GB) Disk (GB) Network (Gbps) Location

Hyperledger Fabric Orderer1 24 128 233 1 Chicago, IL, USA
Hyperledger Fabric Orderer2 24 128 233 1 Chicago, IL, USA
Hyperledger Fabric Orderer3 24 128 233 1 Chicago, IL, USA
Hyperledger Fabric Org1 Peer1 48 191 447 10 Austin, TX, USA
Hyperledger Fabric Org1 Peer2 48 191 447 10 Austin, TX, USA
Hyperledger Fabric Org2 Peer1 48 191 447 10 Austin, TX, USA
Hyperledger Fabric Org2 Peer2 48 191 447 10 Austin, TX, USA
Hyperledger Caliper Manager 2 2 40 1 Chattanooga, TN, USA
Hyperledger Caliper Worker1 2 2 40 1 Chattanooga, TN, USA
Hyperledger Caliper Worker2 2 2 40 1 Chattanooga, TN, USA
Hyperledger Caliper Worker3 2 2 40 1 Chattanooga, TN, USA
Hyperledger Caliper Worker4 2 2 40 1 Chattanooga, TN, USA
Hyperledger Caliper Worker5 2 2 40 1 Chattanooga, TN, USA
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Figure 8. IoT service platform testbed architecture.

Apart from the Hyperledger Fabric blockchain nodes, six virtual machines were em-
ployed to establish the Hyperledger Caliper [47] benchmarking environment. Hyperledger
Caliper is a blockchain benchmarking tool that generates synthetic transaction workloads
and measures the performance of the system under test (SUT). Our benchmarking en-
vironment is composed of a Caliper manager and five Caliper workers. The manager
distributes workload parameters to the workers, synchronizes workers during each test,
collects evaluation results, and generates human-readable reports. Each of the five workers
starts two client connections to the blockchain, which simulates ten IoT devices that provide
or request services on the proposed platform. These workers execute the workload scripts
that call the smart contracts and generate transactions guided by the fixed-load rate control
strategy. This strategy guides the workers to send the transactions or queries at a dynamic
rate such that the number of incomplete transactions or queries in the SUT always stays
under a given value. In our experiments, the workers collectively send 2000 transactions or
queries under a fixed load of 100 transactions/queries. Finally, updating the same device,
service, service request, or response in a single test is avoided in order to work around
MVCC_READ_CONFLICT errors in Hyperledger Fabric. Compared to the blockchains such as
Ethereum that have a more serialized approach to transaction processing, Hyperledger
Fabric employs lock-free optimistic concurrency. To prevent the double-spending problem,
Hyperledger Fabric will only process one of all transactions that modify the same data and
reject the rest in the same block [48].

The core metrics inspected in each test include peak read/transaction throughput and
average read/transaction latency. According to the Hyperledger Blockchain Performance
Metrics white paper [49], a read operation does not change the ledger state, while a
transaction operation involves ledger updates. The latency Lread of a read operation
measured in seconds is defined as:

Lread = tresponse − tsubmit, (1)



Sensors 2022, 22, 8186 19 of 31

where tsubmit is the read request submission time and tresponse is the time at which the reply
is received. The throughput Wread of read operations measured in RPS is defined as:

Wread =
Nread
Tread

, (2)

where Nread is the total number of read operations completed in time Tread.
Transaction throughput and latency are measured differently from the read through-

put and latency since the confirmation time of blocks must be considered in transaction
operations. The transaction latency Ltx in seconds is defined as:

Ltx = tcon f irm − tsubmit, (3)

where tcon f irm is the time at which the transaction is confirmed by the network given a
network threshold (e.g., 90% of the network), and tsubmit is the time when the transaction is
submitted by the client. The transaction throughput Wtx measured in TPS is defined as:

Wtx =
Ntx

Ttx
, (4)

where Ntx is the total number of committed transactions at all nodes of the network in
time Ttx.

System resource utilization metrics are also measured during each test. They include
average CPU and memory usage, total data sent to or received from the network, and to-
tal data read from or written to the disk. These metrics are polled and aggregated by
Prometheus [50] periodically from each Hyperledger Fabric node and reported to the
Caliper manager. The read/transaction throughput and latency of the blockchain and the
above resource utilization metrics collectively indicate how well our proposed platform per-
forms under different blockchain configurations. They also provide valuable information
on optimizing the blockchain for various use cases.

5.2. Performance vs. Batch Size

We first examine the impact of transaction batch size on the performance of DISP.
Three parameters constrain the batch size in the Hyperledger Fabric blockchain: maximum
message count Nmax, preferred maximum bytes of messages Sso f t, and absolute maximum
bytes of messages Shard. Therefore, the batch size configuration directly controls the
number of messages Nmsg that can be batched into a block. When the size of each message,
or transaction data, is relatively small, Nmsg is primarily limited by Nmax. Otherwise,
Nmsg will mostly be limited by Sso f t unless there are many huge messages whose sizes
exceed Shard.

In our experiments, we intend to control the batch size solely with Sso f t. So we
assign large constant values to Nmax and Shard to ensure blocks always reach Sso f t first.
Then, we set Sso f t to 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, and 8 MB, respectively,
and evaluate the smart contract operations of DISP. Device registration and deregistration
transaction throughput and latency are omitted from the results since the workers only
start ten blockchain clients for the tests. As each IoT device binds to one client identity,
the workers are limited to registering or deregistering ten devices in total. Therefore, insuf-
ficient transactions can be evaluated for the above two operations to report their accurate
throughput and latency results, and we exclude these operations from the result analysis.
However, we will revisit these operations and their performance in later experiments.

Figures 9 and 10 present the throughput and latency of read and transaction operations
under various batch sizes. The throughput and latency of all read operations stay nearly
unchanged as batch size increases. This is because read operations in Hyperledger Fabric
are not sent to the ordering service for validation and committing to the ledger [51]. Thus,
batch size configuration has no impact on the performance of read operations. On the other
hand, the size of messages has more impact on the performance metrics. The “query all
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requests” and “query all services” operations have lower throughput and higher latency
values as the messages returned to the clients are significantly larger than the singular
queries (e.g., “query a device”) and device queries. It can take more time and bandwidth
for the peers to process and transmit such messages, resulting in lower performance. In
contrast, the performance metrics of transaction operations are tied more closely to batch
sizes. The throughput and latency degrade quickly from 100 TPS and 0.4 s to 25 TPS and
2.4 s as the batch size increases until it reaches 1 MB since larger blocks need more time to
generate and dispatch. Further increasing the batch size will not worsen the performance.
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Figure 9. Throughput and latency of read operations with varying batch sizes.
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Figure 10. Throughput and latency of transaction operations with varying batch sizes.

Before investigating batch size’s impact on system resource utilization of smart contract
operations, we first explore the similarities in resource utilization patterns of different
operations. Figures 11 and 12 present the average CPU, average memory, total network,
and total disk usage of every host of the test Hyperledger Fabric network with 2 MB batches.
The results show that the peer nodes are more utilized than the orderer nodes under most
workloads. Moreover, the utilization levels are even on the same type of nodes. Regardless
of the specific operation performed, all the read operations show similar resource usage
patterns, and so are the transaction operations. Meanwhile, the transaction operations
involve more incoming network traffic and disk writes than the read operations, and the
operations that consume and produce larger messages require more CPU and memory.
Finally, disks are rarely read in all the tests due to ledger data being loaded to memory
before the measurements begin.
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Figure 11. The average CPU usage (a), average memory usage (b), total data received from the
network (c) and sent to the network (d), total data written to disk (e) and read from disk (f) of
orderer1 (O1), orderer2 (O2), orderer3 (O3), org1 peer1 (P11), org1 peer2 (P12), org2 peer1 (P21),
and org2 peer2 (P22) during read operations when Sso f t = 2 MB.

The same resource utilization patterns are also observed in other tests with varying
batch sizes. Therefore, we only present the results of the “request for a service” and “query
a request” operations to demonstrate the relationship between resource utilization and
batch size. Figures 13 and 14 depict the CPU, memory, network, and disk usage of each
test given each batch size. For read operations such as querying a single service request,
there is slight fluctuation in system resource usage as the batch size increases, similar to
their throughput and latency. This result aligns with the fact that those operations do not
go through the ordering process. On the other hand, transaction operations incur a higher
CPU utilization and more disk writes when the batch size is small. It is clear that with
smaller batch sizes, the network needs to create more blocks to commit the same number of
transactions, hence, more overhead in the data to be written to disk and more computing
power required to complete that. The network usage does not change significantly with
batch size because the sizes of incoming and outgoing messages remain the same regardless
of batch size.
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Figure 12. The average CPU usage (a), average memory usage (b), total data received from the
network (c) and sent to the network (d), total data written to disk (e) and read from disk (f) of
orderer1 (O1), orderer2 (O2), orderer3 (O3), org1 peer1 (P11), org1 peer2 (P12), org2 peer1 (P21),
and org2 peer2 (P22) during transaction operations when Sso f t = 2 MB.
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Figure 13. The average CPU and memory usage (a), total data received from and sent to the
network (b), total data written to and read from disk (c) of orderer and peer nodes for handling
“querying a service request” operations with varying batch sizes.
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Figure 14. The average CPU and memory usage (a), total data received from and sent to the
network (b), total data written to and read from disk (c) of orderer and peer nodes for handling
“requesting for service” operations with varying batch sizes.

5.3. Performance vs. Batch Timeout

Batch timeout (Ttimeout) is another essential configuration that controls the generation
of blocks. It is the maximum time to wait before creating a new block after the first
transaction arrives at the ordering service. To estimate the impact of batch timeout on the
performance of the proposed system, we perform the same experiments as the ones in the
previous section, with batch timeout set to 500 ms, 1 s, 2 s, 4 s, and 8 s, respectively. The
throughput and latency of the read and transaction operations are shown in Figure 15 and
Figure 16, respectively. Similar to the results of batch size tests, the throughput and latency
of read operations are unaffected by the change of batch timeout because the ordering
service does not process such operations. Transaction operations show a logarithmic
decrease in throughput and a linear increase in latency regarding batch timeout. Blocks
wait longer to be created when timeout is large, and the commit of transactions is delayed
as a result. However, setting a large timeout also allows more transactions to be batched
into the same block, mitigating the decrease in throughput.
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Figure 15. Throughput and latency of read operations for varying batch timeouts.

Figures 17 and 18 depict the average system resource utilization of orderer and peer
nodes for the tested batch timeouts. Similar to the previous experiments, read operations
exhibit consistent resource usage given different batch timeouts. Transaction operations,
on the other hand, consume more orderer and peer CPU for small batch timeouts. The
CPU usage decreases in the same fashion as the throughput when the timeout increases.
A steady climb in the outgoing network traffic and disk write can also be observed as the
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timeout increases. Other resources, such as memory and incoming network traffic, are
much less affected by the batch timeout.
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Figure 16. Throughput and latency of transaction operations for varying batch timeouts.
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Figure 17. The average CPU and memory usage (a), total data received from and sent to the
network (b), total data written to and read from disk (c) of orderer and peer nodes for handling
“querying a service request” operations with varying batch timeouts.
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Figure 18. The average CPU and memory usage (a), total data received from and sent to the
network (b), total data written to and read from disk (c) of orderer and peer nodes for handling
“requesting for service” operations with varying batch timeouts.
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5.4. Performance vs. Connection Size

A real-world IoT network can be composed of hundreds of devices that actively
provide services simultaneously. The increase in device connections inevitably affects the
responsiveness of our proposed platform. Therefore, our final evaluation focuses on the
impact of client connection size on DISP’s performance and system resource utilization.
We created 2000 client connections to the platform using Hyperledger Caliper in order to
simulate the situation where a massive number of IoT devices communicate through the
platform concurrently. Then, we rerun the tests with the batch size configured to 2 MB
and batch time to 2 s. The results are compared with the previous results where ten client
connections were employed to discover the performance and resource utilization overhead
of DISP with a massive number of connections

Figure 19 presents the throughput and latency of certain operations under two con-
nection size settings. Batch queries such as “query all services” are excluded from the
evaluation. This is because the numbers of devices or services they query are different
under the two testing scenarios, which makes the results incomparable. For the read oper-
ations, the throughput experiences a 5% to 6% decrease in the 2000 connections scenario
while the latency remains the same. For the transaction operations, the throughput suffers
a 30% degradation, and the latency increases by 25% to 38%. These notable overheads
result from massive clients collecting and submitting endorsements from peers. The more
connection established to the peers and orderers, the more congestion there will be hinder-
ing transaction processing. Therefore, a recommendation for performance tuning would be
to limit the number of client connections to each peer.
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Figure 19. Throughput and latency of read and transaction operations for 10 client connections (10×)
and 2000 client connections (2000×).

The system resource utilization also rises in the 2000-connection scenario, as shown
in Figure 20. The most significant increases in relative resource utilization happen in
networking, where a hundred-time growth in outgoing network traffic can be observed.
A drastic usage increase in CPU and memory can also be observed for both read and
transaction operations. Additionally, transaction operations are more fickle to changes in
connection size compared to read operations, and so do peer nodes than orderer nodes.
The disk usage, however, does not vary too much with the connection size. The overhead
observed in system resource utilization could be attributed to the connection overhead
as the nodes have to maintain the connections from each client, verify client identities,
and secure mutual communications using encryption. The results also imply that the
memory and network can quickly become the bottleneck of the blockchain platform for
large IoT networks.
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Figure 20. Average system resource utilization of orderer and peer nodes for 10 client connections
(10×) and 2000 client connections (2000×).

5.5. Performance Comparison with Related Work

We compare the evaluation setup and performance of our proposed platform with
those in other related studies in the literature. The comparison results are shown in Table 3.
Unfortunately, many related studies neither detail the settings for evaluation nor explain
their measurements. Therefore, we mark the missing data as “Not available”. For the stud-
ies that provide performance evaluation results, we capture the average throughputs and
latencies for read and transaction operations. The performance results of some platforms
were measured under different evaluation setups and obtained with different methods
(e.g., round-trip time (RTT) instead of latency). Nevertheless, these results are valuable to
evaluate related blockchain-based IoT platforms at a high level. Finally, we include our
solution’s average read and transaction throughputs and latencies, excluding the results of
batch queries when the batch size is set to 2 MB and timeout set to 2 s.

Table 3. Performance comparison of the proposed platform to related work.

Related Work Network Size Client Size Read Throughput/Latency Transaction Throughput/Latency

[13] 5 orderers + 10 peers 3 Not available Not available/25–183 ms
[19] Not available Not available 7–20 RPS/59.5–69 ms 4–19 TPS/161–205.5 ms
[26] 1 BigchainDB server Not available Not available Not available/640–1210 ms
[12] Not available 50, 150, 250, 500 Not available/271–752 ms Not available/2490–3012 ms
[39] Not available Not available Not available Not available
[41] Not available Not available Not available Not available
[11] Not available Not available 2750–3250 RPS/260–600 ms 2250–3250 TPS/300–700 ms
Our work DISP 3 orderers + 4 peers 10, 2000 700–800 RPS/50 ms 18–25 TPS/2000–2500 ms

As it is shown in Table 3, our proposed platform DISP achieves much better through-
put and latency for read operations than the other platforms while providing comparable
throughput and latency for transaction operations. Our evaluation setup is also closer to a
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real-world distributed system setup than the others, as a geographically distributed consor-
tium with multiple organizations was simulated. Moreover, the scalability of DISP was
evaluated using different client or connection sizes, while most of the other studies do not
provide such information. In summary, the extensive evaluation demonstrates a favorable
performance result of our solution compared to the other solutions in the literature.

5.6. Security and Privacy

It is essential that our proposed platform DISP provides a secure environment for IoT
devices and applications by leveraging blockchain technologies and modern cryptography.
It is also important that we preserve user and data privacy wherever needed. In this section,
we examine the security and privacy of DISP from the perspectives of blockchain, auxiliary
storage, and IoT devices.

(1) Blockchain security and privacy. Ferrag et al. [52] presented a comprehensive review
of the thread models and attacks against blockchain systems. They classified attacks
on blockchain systems into five categories: identity-based attacks, manipulation-based
attacks, cryptanalytic attacks, reputation-based attacks, and service-based attacks. Recent
blockchain systems are designed with these attacks in mind, and most of the attacks can be
defeated if the system is configured following best practices. The design of permissioned
consortium blockchains inherently makes many attacks more difficult. For instance, most
blockchains use unique transaction IDs and nonces to protect transactions from replay
attacks. Permissioned consortium blockchains make Sybil attacks difficult to conduct as
identity management is limited to organization administrators.

Regarding DISP, its blockchain security lies within the design and implementation
of Hyperledger Fabric. Brotsis et al. [53] highlighted four attack surfaces of Hyperledger
Fabric, namely consensus, chaincode, network, and privacy-preserving mechanisms. Hy-
perledger Fabric is protected against most consensus-oriented attacks but it is more vul-
nerable to non-deterministic behaviors in chaincode implementation and compromised
participants. While the latter type of threat can be eased with careful deployment and
maintenance, meticulous attention has been given to the design and implementation of
DISP chaincodes to eliminate non-deterministic behavior and ensure the consistency of
transactional data. For example, the chaincodes use deterministic JavaScript Object Nota-
tion (JSON) serialization libraries to format results. In addition, the application generates
all timestamps in the transactions instead of creating them when chaincodes are executing
on peers. By doing so, we can eliminate failed transactions due to the system clock not
synchronizing across peer nodes. Finally, chaincodes always check the caller’s identity and
input parameters to prevent impersonation attacks and invalid requests.

For privacy, the identities and transactions are visible to all consortium participants.
Although this is usually expected in a trusted environment, users of DISP have the option
to conceal the IoT data with the help of auxiliary storage and encryption. Moreover,
the private data collection feature offered by Hyperledger Fabric and zero-knowledge
proofs [54] are promising approaches that can improve identity and data privacy in our
platform. We leave this as future work.

(2) Auxiliary storage security and privacy. We discuss the security and privacy of the
auxiliary storage systems using the confidentiality, integrity, and availability (CIA) model.
Confidentiality means that the IoT data in the storage should be accessible only to autho-
rized users. In DISP, securely passing sensitive data between a service provider and a
consumer can be achieved using a one-time encryption key or access token in terms of
data streams. A key may be asymmetrically encrypted using the receiver’s identity and
sent via the blockchain. Regarding confidentiality during data transfer, the blockchain
and auxiliary storage enforce encryption through Transport Layer Security (TLS). Integrity
ensures data authenticity, i.e., no unauthorized alteration to data. The data may be modified
accidentally due to system errors or by a malicious party. DISP utilizes blockchain as a
layer of data integrity assurance for data in auxiliary storage by virtue of its immutability.
Therefore, data providers are encouraged to include a digital digest and signature of the
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data alongside URI in the service requests and responses. Finally, availability measures how
often the data are accessible to its users. For IoT data that desire a high level of availability,
distributed storage schemes such as IPFS may be used to facilitate data dissemination and
improve data availability. DISP consortium administrators and application developers
have the flexibility of realizing data availability.

(3) IoT device security and privacy. IoT devices have a long history of being a weak
link to IoT system security. Apart from being exposed to physical attacks such as node
capturing, sleep deprivation, and false-data injection [55], IoT devices are also vulnerable
to network-based attacks. For example, insecurely configured devices are often targeted by
IoT botnets [45]. An attacker can acquire access to such devices by brute force attacks or
exploiting software flaws. Once successful, malware will be injected into these devices to
grow the zombie network or initiate DDoS attacks against other targets.

The proposed DISP can remedy network-based attacks against IoT devices. It offers a
secure communication channel to IoT networks that can replace insecure communication
protocols such as Telnet and HTTP. The attack surface of IoT devices shrinks as the number
of needed services decreases. DISP also eliminates the need for weak credentials by employ-
ing strong cryptographic keys and certificates. It also enables the automatic decommission
of old IoT devices or decommission of compromised devices using certificate revocation
mechanisms. Finally, the use of blockchain and decentralized storage also enhances system
security due to the absence of a centralized server, which is often the SPOF in IoT systems.

6. Conclusions

This paper presented an innovative platform called DISP for secure and decentralized
IoT communications utilizing the consortium blockchain. DISP models IoT communica-
tions as services supported by smart contracts. The service provider, usually an IoT device,
exchanges messages with service users securely through blockchain transactions. To sup-
port a wide range of applications, DISP also incorporates an auxiliary storage system as a
secondary communication channel whose data integrity can be assured by the blockchain.
Meanwhile, the inclusion of platform SDKs and gateway makes it easy to integrate the
proposed platform into existing IoT systems and devices. Furthermore, a prototype imple-
mentation as well as exemplary applications are presented to showcase DISP’s generality
and versatility. This paper also elaborates on the experimental setup, methodology, and met-
rics we used to evaluate the performance of DISP. Since the performance of a blockchain
system is influenced by a variety of factors, we measure the platform’s transaction through-
put, latency, and hardware resource utilization under different blockchain configurations
and connection sizes. The results indicate that the performance of read operations primarily
depends on message size, while the transaction operation performance is subject to batch
size, batch timeout, and connection size. Our proof-of-concept implementation can achieve
a throughput of 800 RPS and latency of 50ms for read transactions, and a throughput
of 80 TPS and latency of 1s for write transactions when the blockchain parameters are
optimized. Overall, our proposed work shows great performance and usability potential as
a blockchain-based secure communication platform for IoT.

For future work, one direction will be focused on improving transaction throughput
and latency for transaction operations on the platform using state-of-the-art lightweight
consensus algorithms. Additionally, we plan to investigate new approaches that integrate
auxiliary storage with the blockchain to provide the same level of data security and integrity
as blockchain transactions. Finally, we will explore new ideas to address privacy concerns
and support private services.
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ABAC attribute-based access control
ACL access control list
API application programming interface
CA certificate authority
CBAC capability-based access control
CIA confidentiality, integrity, and availability
CRL certificate revocation list
DDoS distributed denial-of-service
H2M human-to-machine
ICS industrial control system
IdM identity management
IoT Internet of Things
IPFS InterPlanetary File System
JSON JavaScript object notation
M2M machine-to-machine
MSP membership service provider
PBFT practical byzantine fault tolerance
PM particulate matter
RBAC role-based access control
RPS read per second
RTT round-trip time
SDK software development kit
SPOF single point of failure
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TLS transport layer security
TPS transaction per second
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