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Abstract: Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed sys-
tems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially
causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to
critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and
dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are
still based on a single fault hypothesis and do not provide insights into dependability in the case
of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC
systems based on data from field failure rates and maintenance records. The extended FI framework
supports the injection of multiple faults with exact control of the timing, locality, and values in
fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the
occurrence of different sensor and actuator faults. Comprehensive experimental results provide
insights into the system’s behavior for concrete example scenarios using patterns of multiple faults.
The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such
as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault
with a heater actuator fault increased energy consumption by more than 70%.

Keywords: multiple faults; fault injection framework; fault model; fault occurrence probability;
scenario generation; HVAC system; MATLAB

1. Introduction

Buildings are responsible for 40% of global energy usage and contribute 30% of the
total CO2 emissions [1]. Typically, 20–30% of energy savings in buildings are achievable by
recommissioning the HVAC systems to rectify faulty operations [2,3]. HVAC systems are
the main reason for global energy consumption, electricity consumption, and worldwide
CO2 emissions [4]. For example, the construction and maintenance of building stock are
responsible for 36% of the CO2 emission in the European Union (EU) [5]. In 2018, the build-
ing, construction, and building processes represented 36% of energy consumption, 39% of
energy-related CO2 emissions, and 50% of global electricity consumption [4,6]. In critical in-
frastructure such as airports and hospitals, heating, ventilation, and air-conditioning (HVAC)
systems also play a prominent role in emergency scenarios (e.g., fires, biological hazards).

Faults in HVAC systems can cause temperature fluctuations, occupancy discomfort,
excess ventilation, and overheating. Fault management is a significant component of a build-
ing management system (BMS) for mitigating faults and their high-level symptoms [7,8].
For example, Teraoka et al. [7] proposed a fault management framework, BDSherlock,
based on two lists. One list comprises standard checks, and the other contains rules based
on anomalies. They use data-driven analysis techniques to investigate the energy impact of
the detected faults on the HVAC system.

Fault injection (FI) is an effective experimental method for the validation and depend-
ability evaluation of HVAC systems with such fault management techniques. FI provides
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insights into the system’s behavior by deliberately introducing faults in different scenar-
ios and conditions. FI frameworks for HVAC systems have been introduced in previous
work [8], and the impact of individual faults on system behavior has been evaluated.
However, many HVAC systems (e.g., hospitals, airports, multi-story office buildings) are
large-scale distributed systems with thousands of components, including sensors, actua-
tors, computational nodes, and communication links which are vulnerable and prone to
faults. Therefore, FI must investigate the effects of multiple faults simultaneously. This
is in significant contrast to smaller scale systems (e.g., automotive electronics, medical
equipment) where a single fault hypothesis is predominant [9] and considering a single
fault at a given point in time is sufficient. Today’s FI frameworks for HVAC systems are
based on this single-fault hypothesis. However, systems face multiple faults, in reality [10].

Therefore, this paper provides contributions toward a dependability evaluation of
HVAC systems faced with multiple faults at the same time:

Modeling patterns of multiple faults in DCV and heating systems based on data
from field failure rates and maintenance records: The paper maps insights from main-
tenance records to FI patterns with multiple faults. The fault occurrence probability is
an important parameter in the design of a realistic FI framework because this parame-
ter is affected by environmental conditions, e.g., dust and dirt, seasons and respective
temperatures, working conditions, application areas, and the locality of faults in various
components of a system. Therefore, the fault model is created using statistical parameters
such as fault occurrence probability. Fault occurrence probabilities enable the definition of
scenarios and the performance of FI based on different environmental conditions and fault
type rates.

Injecting multiple faults into a DCV and heating system according to the fault
models: The paper introduces an FI framework where faults are activated by an FI vector
that precisely controls the attributes of multiple faults such as timing, locality, type, persis-
tence, and values. The designed FI framework injects multiple faults into multiple zones
and multiple components with corresponding fault attributes. An automatic FI algorithm
initiates the fault attributes. Fault repetitions and multi-dimensional fault attributes are
assigned in a randomized manner. The framework is generic, and the matrices can be
customized for different structures and buildings. The paper shows how fault patterns for
multiple faults can be established for a particular structure and environmental conditions
based on maintenance records from prior work.

Experimentally evaluating the effects of multiple faults on the behavior of the
DCV and heating systems: The paper provides comprehensive experimental results and
insights into the system behavior upon multiple faults using patterns of multiple faults.
Due to the use of real-world data and maintenance records, the results are realistic. This is
a significant result of research on fault management techniques coping with multiple faults,
for which no experimental data is available today.

2. Related Work
2.1. Fault Injection in HVAC Systems

For the assessment of quality constraints such as resource usage, resource availabil-
ity [10], thermal conditions, occupant comfort, and dependability of a system under faults,
different approaches, including analytical modeling [11] and experimental methods such as
FI [12,13] are discussed in the literature. FI brings high controllability and observability in
a simulation environment. FI techniques are classified into four categories: (1) physical FI,
including hardware-based FI and software-based FI methods; (2) simulation-based FI meth-
ods; (3) emulation-based FI methods; and (4) hybrid FI methods [14,15]. Arlat et al. [16]
have introduced an FI methodology for two main goals: validation and design aid. They
have also described different modeling abstraction levels, including axiomatic, empiri-
cal, and physical models. Axiomatic models emphasize analytic models such as Markov
graphs and fault trees. Empirical models relate to more complex and detailed behavior and
structural descriptions, such as simulation and physical models implemented as hardware
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and software features. Kiamanesh et al. [8] discussed FI methods and presented a realistic,
simulation-based FI framework for evaluating DCV and heating systems. Their intro-
duced FI combines two techniques, simulator command, and simulation code modification,
implemented with Stateflow for single faults.

2.2. Experimental Evaluation in HVAC Systems

The experimental evaluation of HVAC systems in the design phase is an impor-
tant subject [17] to enhance the system’s efficiency, resource usage [18], economic effec-
tiveness [19], thermal comfort [20], and reduce CO2 emissions [6,18–22]. Extensive re-
search has presented experimental evaluations of energy consumption for HVAC systems.
Antonopoulos et al. [23] proposed an experimental assessment of the energy savings of
air conditioning (A.C.). Al-Deen et al. [24] evaluated the energy consumption of HVAC
systems under different climate conditions. Vishwanath et al. [4] investigated the HVAC
cooling energy consumption and cost associated with experiments conducted in large
buildings. Andrés et al. [20] performed a real-scale experimental evaluation for regulating
thermal control in lightweight constructions. Krajcik et al. [25] performed an experimental
evaluation of residential rooms for sustainable heating/cooling and efficient energy con-
sumption. Arteconi et al. [26] introduced an experimental assessment of a ground coupled
heat pump (GCH), an alternative to traditional systems for heating and cooling.

2.3. Multiple Faults in HVAC Systems and Other Domains

Multiple faults have been investigated in domains other than HVAC systems.
Yalcin et al. [27] have injected different hardware faults, such as transient, intermittent,
permanent, and multi-bit faults, in simulations of processors. Multi-bit faults occur when a
fault affects multiple bits simultaneously, such as spatial multi-bit upsets. Stroud et al. [28]
have described single and multiple stuck-at-fault simulations for gate-level faults. Multiple
faults are injected randomly or clustered for testing multiple fault detection capabilities.
A list of fault groups has been considered for injecting multiple faults. Each fault group
contains a number of gate-level stuck-at faults with a number of potential fault sites and
possible combinations of single and multiple stuck signals at the gate level. Faults are
injected randomly or in a cluster-based manner. The selection can be changed from a
random sample to a deterministic function in the clustered FI. It modifies for clustered
defects that tend to form a list of faults that are tightly coupled based on the degree of the
cluster. Tarrilo et al. [29] introduced a multiple-bit-flip FI platform. They triggered multiple
faults in SRAM-based FPGAs, which are sensitive to soft errors, unexpected bit-flips, and
critical errors. They injected single-event upsets (SEUs) and multiple-bit upsets (MBUs)
for functional errors. The location of each malfunction chooses from a list of locations.
Kundu et al. [30] injected multiple faults to diagnose chips at the logic level. Arlat et al. [31]
compared physical and software-based FI for the MARS fault-tolerant distributed real-time
system. They addressed the respective impacts of FI techniques using a testbed and test
scenarios. Zhong et al. [32] investigated operational single and multiple-fault impacts for
HVAC systems under different climates. The effect of faults in HVAC systems may depend
on climate changes. They also evaluated the system’s impacts on thermal comfort, perfor-
mance, and energy usage. They ranked single and multiple faults for each climate condition.
However, they did not carry out simulation-based multiple FI. Sangchoolie et al. [33] eval-
uated the impacts of single and multiple bit-flip errors. They used the open-source fault
injector tool LLFI, which injects faults into the low-level virtual machine (LLVM). To realize
the injection of multiple faults, they extended LLFI to facilitate the injection of multiple
bit-flips. LLFI defines single bit-flip errors as time location pairs. To model multiple bit-flip
errors, they developed the time location parameters that enable clustering of the error
space into different classes of errors. Tadeusiewicz et al. [34] introduced a method for
simulating multiple faults in AC circuits. They used a systematic approach to perform the
combination of multiple faults. The FI procedure uses admittance and impedance matrices
for the faulty circuit nodes and fault combinations. Lisboa et al. [35] described soft errors
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that may appear at the same time. Robust operators are introduced, and the operator’s
behavior is analyzed by simulating single and multiple faults. Papadimitriou et al. [36]
introduced a multiple-fault injection methodology for digital circuits. Fault modeling at
the register transfer level (RTL) can occur early in the design phase and facilitates the
analysis of the gate-level models. They injected multiple faults by partitioning the RTL
description of the circuits. Then, faults inject into two categories. Firstly, faults inject into
one or more flip-flops, and the second group includes faults occurring in the combinational
part of the circuits. Wang et al. [37] discussed hierarchical model-based diagnosis (MBD)
for multiphase faults and hitting calculation sets (MHS), which serve for stability and
reliability in power distribution networks. They calculated the system performance when
the distributed network has multiple multiphase faults. The hierarchical MBD comprises
different parts including an offline model library, fault observations, and online identifi-
cation of faulty elements. Takahashi et al. [38] introduced and simulated the diagnosis of
single and multiple faults in combinational circuits. Kim et al. [39] introduced the model-
ing and simulation of multiple faults. The multiple fault model consists of a set of lines.
For example, the stuck-at fault consists of two lines stuck-at-1 and stuck-at-0. Any fault
combination can be modeled by activating these lines.

2.4. Fault Occurrence Probabilities in HVAC Systems

Dynamic variables such as outdoor weather conditions and indoor occupant behav-
iors influence HVAC systems. Each has its associated occurrence probability. Stochastic
approaches result in a better and more realistic simulation by showing different occurrence
probability values in various components under diverse conditions. However, defining a
fault occurrence probability distribution and a mathematical expression for other faults is
challenging for HVAC systems due to the different types of faults, component fault rates,
and environmental conditions. Some studies have suggested fault occurrence probabilities
based on available maintenance and statistical records [40]. For example, Li et al. [41]
reviewed fault modeling of HVAC systems in buildings and discussed fault occurrence
probability distributions in HVAC systems. They provided probability tables for differ-
ent fault types that describe each component’s fault occurrence rate. Myrefelt et al. [42]
introduced stochastic equations at the component and system level using a sizeable opera-
tional dataset for HVAC components. Otto et al. [43] proposed an approach based on the
probability density function (PDF), such as normal, skewed, quantile-based, and Weibull
distributions [1]. This paper provides the occurrence probabilities based on the values
suggested in these mentioned papers.

2.5. Research Gap and Contributions Discussion

An experimental evaluation for the simulation-based multiple FI framework in DCV
and heating systems has been carried out in this paper, considering a comprehensive
fault model where faults are activated with realistic fault patterns and combinations for
different environmental conditions. The related work section explains various research
fields considered in this paper. The contributions are discussed in the following with
respect to the research gaps.

2.5.1. Modeling Patterns of Multiple Faults in DCV and Heating Systems Based on Data
from Field Failure Rates and Maintenance Records

In prior research [40–42,44,45], fault detection and diagnosis (FDD) techniques were
introduced with fault attributes derived from maintenance records of HVAC systems. How-
ever, only individual faults were addressed whereas the consideration of combinations
of faults is essential for large-scale electronic systems. This paper provides contributions
beyond the state-of-the-art by introducing fault models and patterns for combinations of
multiple faults, which consider fault attributes (e.g., occurrence rates, locality, persistence)
from maintenance records and serve for FI and FDD in HVAC systems. Each fault combi-
nation has a specific occurrence rate based on the fault attributes, such as fault types. The
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fault model and occurrence rate are compatible with different environmental conditions,
by mapping the fault occurrence to the real-world maintenance records.

2.5.2. Injecting Multiple Faults into a DCV and Heating System

In previous works, individual faults were injected into HVAC systems [8,12,13,46,47]
and the injection of multiple faults was considered in other domains, such as semicon-
ductor technology [10,27,30,31,34,35,37,39]. Hence, the injection of multiple faults with
corresponding attributes is a research gap for DCV and heating systems. This paper goes
beyond the state of the art by introducing a framework for injecting multiple faults with
corresponding fault attributes, while observing the propagation of the faults from the
component level to the system level and the manifestation of system-level properties (e.g.,
energy efficiency, occupant comfort). The introduced framework is generic and scalable,
and it can be instantiated for different building structures and fault combinations. The
fault attributes are expressed using matrices, which are extended in their size and their
dimensions to support more complex structures with additional components, zones and
buildings. The FI occurs using an HVAC simulation framework with realistic physical
models of thermodynamics, heat/air flow transfer and environmental conditions.

2.5.3. Experimentally Evaluating the Effects of Multiple Faults on the Behavior of DCV and
Heating Systems

Experimental evaluations of HVAC systems were carried out in [19,20,23,24] to moni-
tor the system behavior in the presence of faults. However, in the field of DCV and heating
systems, the experimental evaluations of multiple faults in combination with different envi-
ronmental conditions have not been published and no such experimental data is available.
This research gap is a barrier for the development of fault-tolerance techniques and the
dependability evaluation of HVAC systems. The FI framework introduced in this paper
monitors the system behavior for different fault patterns and multiple fault combinations
that are defined by the user. The FI framework is generic and enables the evaluation of
quality attributes such as heating cost, energy consumption, occupant comfort, indoor
temperature and air quality.

3. System Model

This section introduces the system model of a DCV and heating system, including its
components, fault classifications, and fault propagation. In addition, the FI framework and
its features, including the fault profiles with the considered fault attributes, are described.

3.1. HVAC Systems

DCV realizes a control strategy based on ventilation to moderate the amount of
fresh air. It also optimizes the air quality in terms of CO2 concentration and temperature
and balanced energy consumption by an automatic adjustment of the volume of the air
exchange. It uses damper actuators according to the captured sensor measurements and
values from air quality sensors and the environment [48].

Figure 1 illustrates an example building plan consisting of several floors. In addition,
a part of the floor shows six typical rooms and a corridor equipped with a DCV and heating
system [48]. Each room is generally equipped with several components, e.g., temperature
sensors, CO2 sensors, occupancy sensors, damper actuators, and heater actuators.

Table 1 lists significant parameters such as the components’ temperature and CO2
signal thresholds and operational statuses. These parameters introduce the component
conditions. They are later used for evaluating the system and scenario definitions.
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Figure 1. Example of a realistic office building sketch including six rooms and one corridor.

Table 1. The main parameters defined and used for the system modeling.

Parameters (System Variables) Values Units

Optimal room temperature 20 ◦C
Optimal CO2 concentration 600 ppm

Lower-threshold temperature 17.5 ◦C
Upper-threshold temperature 22.5 ◦C

Lower-threshold CO2 concentration 400 ppm
Upper-threshold CO2 concentration 700 ppm

Heater on status 1 -
Heater off status 0 -

Damper open status 1 -
Damper closed status 0 -

3.2. Fault Classifications in HVAC Systems

Inaccurate measurements due to hardware faults are inevitable in HVAC systems
and lead to more energy consumption and low air quality. Bondavalli et al. [49] classified
physical faults into two categories (1) permanent and (2) temporary faults. Permanent faults
lead to abnormal behavior and wrong signals which continue constantly. The respective
component should be removed or repaired to handle a permanent fault. Temporary
physical faults are classified into internal (usually intermittent) and external (transient). An
intermittent fault occurs regularly and continuously at the exact location, while a transient
fault arises at random locations [49]. Many reasons exist for intermittent faults in different
systems. Wakil et al. [50] discussed various intermittent fault causes in embedded electronic
modules and explained that most of them are caused by interconnections and marginal
design, e.g., loose or corroded wires, cracked solder joints, corroded or loose connectors,
and broken wires [50,51]. Layali et al. [52] mentioned that the primary cause of intermittent
faults is device wear out or the tendency of solid-state to degrade with time, stress, and
time-dependent dielectric breakdown (TDDB), supposing the stress conditions persist in
the long term.

Such faults may eventually lead to permanent defects. Different transient and in-
termittent faults include short transients, long transients, and short intermittent faults.
Intermittent faults may disappear or become permanent [47]. Faults in HVAC systems can
also be distinguished based on the design, developmental and operational phases in HVAC
systems. For example, Torabi et al. [53] reviewed common human-made errors in different
stages of creation in HVAC systems with multiple zones: preconstruction, construction,
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and operation phases. Frank et al. [54] discussed common faults and their relevance in
the design and operation stages for HVAC systems, rooftop units (RTU), lighting, and
refrigeration faults. The phase of a fault denotes when a fault occurs, e.g., during the design,
development, or operational time of a system’s life cycle:

• Developmental Faults: A developmental fault occurs before the equipment installa-
tion. Developmental faults can be physical faults in production (e.g., inaccurate mask
alignment) or design faults (e.g., incorrect positioning of sensors, improper scheduling
of operations).

• Operational Faults: An operational fault occurs after the equipment installation phase.
An example is wear out electronic components.

Developmental faults in a component can result in multiple faults in that component. It
can also be considered a fault for other components commonly denoted as fault containment
regions (FCRs) of the system. It shows that a root fault in a component leads to failure of
that component which is a fault for other components or the whole system, which can lead
to a system failure. Table 2 illustrates examples of fault propagation in HVAC systems.
This paper considers each fault an event that occurs based on the probabilities of multiple
faults. Faults in FCRs, such as inappropriate programming and improper setpoints, lead
to component faults and potentially propagate to the system level. Each row of Table 2
presents the fault propagation from the component level to system level faults and the
failure impact, such as energy waste or occupant discomfort.

Table 2. Fault propagation examples in HVAC systems [8,55–58].

Nr. Component Faults Phases Component Failure
or System Fault System Failure Impacts

1

Wrong scheduling of the
processing unit, e.g., an

incorrect sequence
of operations

Developmental fault:
design fault

Stuck-at fault
Gain fault

Offset fault
Out-of-bounds fault

Delay
High/low/wrong

sensor measurements

Equipment life
Energy consumption

Thermal comfort
Indoor air quality

2 Programming mistakes Developmental fault:
design fault

Stuck-at fault
Gain fault

Offset fault
Out-of-bounds fault

Delay
High/low/wrong

sensor measurements

Equipment life
Energy consumption

Thermal comfort
Indoor air quality

3 Wrong setpoints too
high/low

Developmental fault:
design fault

Stuck-at fault
Gain fault

Offset fault
Out-of-bounds fault

High/low/wrong
temperature.

High/low/wrong
CO2 concentration

Equipment life.
Occupant thermal comfort.

Energy consumption

4

Oversized equipment at
design phase, e.g.,

incorrect perimeter
heating system sizing

Developmental fault:
design fault

Stuck-at fault
Gain fault

Offset fault
Out-of-bounds fault

High/low/wrong
temperature.

High/low/wrong
CO2 concentration

Equipment life
Occupant thermal comfort.

Energy consumption

5 Improper design Developmental fault:
design fault

Stuck-at fault
Gain fault

Offset fault
Out of bounds

Data loss

Delay
High/low/wrong

sensor measurements

Equipment life
Occupant thermal comfort.

Energy consumption

6

Inaccurate location of
sensors and valves, e.g.,

wrong thermostat
location,

Occupancy-sensor
misplacement

Developmental fault:
design fault

Stuck-at fault
Gain fault

Offset fault
Out of bounds

Data loss

Delay
High/low/wrong

sensor measurements

Equipment life.
Occupant thermal comfort.

Energy consumption

7 Missing insulation for
ductwork or pipes Developmental fault

Stuck-at fault
Gain fault

Offset fault

Delay
High/low/wrong

sensor measurements

Occupant thermal comfort.
Indoor air quality
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Table 2. Cont.

Nr. Component Faults Phases Component Failure
or System Fault System Failure Impacts

8 Poor coordination of the
processing unit Developmental fault

Stuck-at fault
Gain fault

Offset fault
Out of bounds

Data loss

Delay
Missing information

Occupant thermal comfort.
Indoor air quality

Delay

9 Air-duct leakages Operational faults
Stuck-at fault

Gain fault
Offset fault

Wrong actuator
signals

Equipment life
Thermal discomfort

Indoor air quality
Energy consumption

10 Inappropriate voltage Operational faults

Stuck-at fault
Gain fault

Offset fault
Out of bounds

Data loss

Wrong actuator
signals

High/low/wrong
sensor measurements
Missing information

Equipment life
Thermal discomfort

Energy Consumption
Life risk
Fire risk

11 Poor preventive
maintenance Operational faults

Stuck-at fault
Gain fault

Offset fault
Out of bounds

Data loss

Delay
Missing information

Equipment life
Energy consumption

Life risk
Fire risk

3.3. Fault Injection Framework for Multiple Component Faults

An appropriate fault model that covers the relevant fault attributes is required to im-
plement the FI framework. The fault model comprises the fault type, persistence, duration,
interarrival time, fault location, fault occurrence rate, and fault repetitions described below.

3.3.1. Fault Model

HVAC systems are integrated from numerous components, and due to their complex-
ity, many kinds of faults and errors can emerge. This paper focuses on the faults of sensor
and actuator components. To investigate these component faults (representing system
faults) and their consequences on the system behavior, an FI framework with a complete
fault profile is required, which fits the system model and introduces the attributes of each
fault. A fault profile with its attributes, including fault type, fault persistence, fault dura-
tion time, fault interarrival time, fault repetition, and fault location, was described in [13].
This paper considers a new attribute named fault occurrence rate, parameter number 6
of Table 3. In all fault types, faulty values are produced by Equation (1) with defined
relative coefficients.

x′ = βx + α + η (1)

where,

x represents healthy data.
x’ calculates faulty data.
β is the coefficient of gain faults.
α is the coefficient of offset faults.

Table 3. Fault profile consisting of all required attributes for the FI framework.

Nr. Fault Attributes Descriptions

1 Fault type Offset, gain, stuck-at, out of bounds, data loss, and white noise
2 Fault persistence Short intermittent, and permanent
3 Fault duration Fault presence period
4 Fault interarrival time The time interval between faults
5 Fault location Temperature sensor, CO2 concentration sensor, damper actuator, heater actuator
6 Fault occurrence rate Probability of occurrence in case of each fault type
7 System fault repetition Number of repetitions in case of each intermittent FI
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Fault Types in HVAC Systems

Different fault types have been considered in our FI framework, stuck-at-faults for
actuators and all six mentioned faults for sensors.

• Offset fault: A shift value that adds to the actual sensed data due to sensing units’
bias/drift/calibration error. This fault has only been considered for the sensors.

• Gain fault: A gain fault occurs once the change rate of sensed data is different from
the expected rate. This fault has only been considered for the sensors.

• Stuck-at fault: Stuck-at faults may happen in both actuators and sensors as stuck-at
sensed values, stuck-at closed status in damper actuators, and stuck-at-off
in heater actuators.

• Out-of-bounds fault: There are maximum and minimum bounds for each sensor, and
sensor measurements should be in these ranges. There is an out-of-bounds fault when
the observed values are out of the bounds of the expected values.

• White noise fault: A random number is added to the value, which is determined by
Gaussian or uniform probability distributions [8].

• Data loss fault: There is missing data during a specific time interval. In case of
a data loss fault, the last measurement of the sensed data indicates that the actual
measurement is missed.

Fault Persistence in HVAC Systems

Different types of fault persistence have been considered in our proposed FI frame-
work, permanent faults and short intermittent faults for actuators and only permanent
faults for the sensors. A complete description of the fault attributes is explained below.

• Short and long intermittent faults: Permanent and transient faults differ from in-
termittent faults, and few fault models describe intermittent faults with their oc-
currence frequencies [47,49–52,57]. Therefore, there is no reliable timing model for
intermittent faults for the sensors in HVAC systems. Intermittent faults are more
common in actuators. The timing parameters in the literature have been applied in
our fault model [8,58,59]. Short intermittent faults have limited the fault repetitions to
two repetitions. In the case of long intermittent faults, repetitions can increase based
on the designer’s necessities, but faults also disappear eventually. In this paper, inter-
mittent faults have been considered only for the actuators due to the lack of proper
timing models for the sensors in HVAC systems.

• Permanent fault: For sensors and actuators, permanent faults have been considered
during the FI process. After activation, permanent faults remain in the system for the
rest of the execution time.

Fault Occurrence Rate in HVAC Systems

Two principal metrics describe the fault occurrence rate, including fault prevalence
and incidence. Fault prevalence defines the fault occurrence rate of the units for a given
fault at a single point in time. The fault incidence is the frequency of the fault in a specific
period [59]. This paper calculates the fault occurrence rates using maintenance records and
field reports based on the fault type and environmental conditions, such as the season or
month the system is investigated.

• Fault Occurrence Probabilities in HVAC Systems

Components in HVAC systems fail with different probabilities and rates due to various
conditions, e.g., the number of components, environmental conditions, and unit failure
rates. We have used available maintenance records to find the occurrence rates of HVAC
system faults. For instance, Li et al. [41] used maintenance records to calculate the fre-
quency and occurrence of incidents of various HVAC faults for one year. They calculated
the average probability of occurrence around 0.0102 for each associated fault. Ebrahim-
ifakhar [44] proposed the fault occurrence rates of several types of faults with different
metric definitions calculated according to other FDD techniques. They also calculated
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average fault presence percentages for the various units, faults, and months. For instance,
the average fault presence percentage of a stuck discharge air damper is estimated at
approximately 8%, heating failure at 9%, and air temperature abnormality at 18% for HVAC
and air handling units (AHU) in February. Faults are also listed based on their monthly
presence. Hosseini Gourabpasi et al. [45] ranked HVAC-related faults and their frequencies
with data-driven techniques. For example, the limit issue faults had the first rank with
a rate of 15.18%. The stuck-at/partially closed faults had the second rank with a rate of
14.95%, and bias/drift/calibration faults had a probability of 10.94% and were listed in the
fourth rank. Applicable unit faults in our proposed FI framework and their fault rates are
listed and described in Table 4. The average probabilities for the associated fault types over
one month and one day were calculated. In this paper, the fault occurrence rate during
each FI is the disjoint probability of both component failure rates based on Table 4 and the
application of system fault type rates. Fault type occurrence probabilities for the stuck-at
fault, gain fault, offset fault, out-of-bounds and data-loss fault can be defined as 14.95%,
10.94%, 10.94%, 10.94%, 4.46%, 4.46%, respectively [44].

Table 4. The faults and their fault occurrence incidents for the associated fault types.

Nr. Component System Faults

Average
Presence of

Faults in
February

Average Monthly
Presence of Faults

Among the Total of
28 Faults

Total
Monthly

Probability

Total Daily
Probability

1 Temperature Faults

Temperature sensor fault

18%

8%

0.2538 0.0091

Temperature frozen 35%

The mismatch between supply air
temperature and its setpoint 26%

Supply air temperature abnormal 12%

Mix air temperature sensor fault 4%

Mix air temperature abnormal 22%

Return air temperature abnormal 2%

Setpoint fault 4%

Missed control optimization 28%

2 Heater Faults

Heater abnormality

9%

2%

0.0324 0.001157
Heating coil valve leakage 2%

Setpoint fault 4%

Missed control optimization 28%

3 CO2 Faults

Airflow sensors abnormalities
(CO2 sensor)

13%

10%

0.05785 0.00206
Return airflow abnormal 1.5%

Return air CO2 sensor 1%

Missed control optimization 28%

Setpoint fault 4%

4 Damper Faults
Damper stuck

8%
11%

0.0312 0.0028
Missed control optimization 28%

4. Implementation and Simulation
4.1. Implementation

In our previous FI framework proposed in [13], a single fault was introduced out of a
catalog of different fault types. In this paper, the FI framework was designed and extended
to inject multiple faults in multiple zones modeled with varying faults and more dynamicity
regarding the number of faults, their repetitions, and structures. Fault attributes are defined
as multi-dimensional matrices such as FI time, fault duration, fault interarrival time, FI
persistence, FI type, and fault occurrence probability. Each matrix element introduces the
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attribute values for each component and zone. By increasing the number of aspects of each
attribute, the number of dimensions increases, providing multiple FI capabilities.

Figure 2 illustrates the multi-dimensional aspect of the FI framework, where the dimen-
sions increase in the case of system model extension and development. Multi-dimensional
injection attributes are explained below for the faulty rooms and components. Other at-
tributes are activated with the same or more dimensions accordingly. For example, the “Fault
Injection Time Matrix”elements with two fault repetitions can be assigned based on the asso-
ciated faulty rooms and components defined in the “Structure Room Component Combination
Matrix”. This matrix introduces the combinations of faulty rooms and faulty components.
Figure 3 shows an example of the three-dimensional matrix for the FI attributes.

Figure 2. The multi-dimensional aspect of the FI implementation.

Figure 3. An example of the 3-dimensional matrix for the FI attributes.

Structure room component combination matrix (1:number of structures, 1:number of
rooms, 1:number of components) = (1:1, 1:6, 1:4)

Fault injection time matrix (1:number of failures, 1:number of structures, 1:number of
rooms, 1:number of components) = (1:2, 1:1, 1:6, 1:4)

Figure 4 illustrates the FI timeline at the component and system levels (FCRs). Each
fault can be triggered differently or at the same component at various points. A system-level
timeline is a cumulative form of all FI samples in different zones.
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Figure 4. A system-level timeline for multiple-fault injection occurring in multiple FCRs in different zones.

Each fault was considered a sample event that occurs based on the probabilities of
multiple faults. Each fault occurs with a specific, different, and independent probability.
The fault occurrence probability was calculated based on the probabilities of the faults
that happened in one unit (FCR), saved in the matrix below, and calculated according to
Equation (2).

Fault occurrence probability matrix (1:number of failures, 1:number of structures, 1:number
of rooms, 1:number of components) = (1:2, 1:1, 1:6, 1:4).

Probability o f one Fault Event = P(Failure1, Failure2, . . . , Failurei) = Unit′s Probability
×
(

ä
Number o f Failures
1 Failurei

) (2)

4.2. Simulation

A system model can be modeled and evaluated with simulation tools. Its environmen-
tal parameters and conditions are set, and simulation results can be injected and compared
with real-world scenarios [7,13]. MATLAB/Simulink, as a user-friendly tool combined
with Stateflow diagrams, was used to model the behavior of the HVAC system and FI
framework. Furthermore, faults were injected artificially to change the system’s behav-
ior. An automated algorithm was coded to inject the fault attributes randomly according
to the scenario-based injection type. When our algorithm runs randomly, all variables
and attributes, e.g., the number of faulty components, faulty zones, and persistence, are
initiated randomly.

FI blocks were designed to apply multi-dimensional matrices for activating the target
faulty components and zones. Each element of the matrix in a row introduces the compo-
nent indicator. If any element of one row of the matrix is 1, it can activate the faulty target
zone exhibited in Figure 5.

Figure 5. A view of faulty targeted FCR activation.
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Figure 6 shows how the faulty component is activated using a demultiplexer block
to distinguish the matrix elements. For example, in Figure 6, the CO2 sensor and heater
actuator is defective, and the damper actuator and temperature sensor are healthy. In the
Stateflow diagram, with associated values and component numbers (e.g., the component
number of the temperature sensor is 3), the fault is activated in the component for the next
steps of the FI process.

Figure 6. Interior view of faulty targeted component activation.

Figure 7 shows the exterior view of the Stateflow diagram and the input parameters,
including room indicator, component indicator, input data, and system model time.

Figure 7. The exterior view of the Stateflow diagram.

The sequence of the actions and states of the FI was implemented by Stateflow dia-
grams using two states: the healthy state and the faulty state. Figure 8 illustrates the interior
view of the Stateflow diagram shown in Figure 7 with two faulty states and one correct
state. The current and active states in this figure are faulty, as indicated by the blue color.



Sensors 2022, 22, 8180 14 of 24

Figure 8. The interior view of the Stateflow diagram with two faulty and healthy states.

5. Evaluation and Data Analysis for Multiple Faults

In this paper, a table of scenarios was generated to evaluate the FI framework. Each
fault scenario (event) was considered a sample event consisting of other sub-scenarios
(sub-events). Each sub-scenario can also include multiple faults with different attribute
descriptions, e.g., occurrence probabilities or fault type. To illustrate the results, two
scenarios for the multiple FI and one case for more than two fault repetitions are shown in
the Results Section.

5.1. Scenario Generation

A scenario-based approach was considered to evaluate the FI framework. To define
the evaluation scenario, a Fault Injection Vector (FIV), including fault case objects, was con-
sidered and is described in Function 1. Each fault object consists of fault case attributes and
faulty output data generated by the introduced automated FI algorithm. Each fault case is
an object generated from Fault_Object_Generator class described in Table 5 comprehensively.
The evaluation scenario is detailed in in Section 5.2 including the exclusive properties such
as the number of FI cases, which represents the total number of injections, the number
of faulty rooms, which describes the destination of the anomalies, and the number of
faulty components which defines the target components in each room. Fault attributes
were assigned randomly by an automatic FI algorithm. The impact shows each fault’s
consequences on the system’s behavior. The effect is depicted and analyzed concerning the
change ratio for each subevent and event.
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Table 5. FIV consists of fault-case objects.

Fault_Case Obj1 Fault_Case Obj2 Fault_Case Obj .. Fault_Case Obji .. Fault_Case Obj n-1 Fault_Case Objn

Algorithm 1 Fault Object Generator Class

Classdef Fault Object Generator
properties

Activated_Room_component_Combination_Matrix; //Activation of the faulty rooms and
components including subevents

Fault_Injection_Persistence_Matrix; //Assigning the FI persistence for faulty components
Fault_Injection_Time_Matrix; //Assigning the FI time types
Fault_Injection_Duration_Matrix; //Assigning the FI duration times
Fault_Injection_Interarrival_Matrix; //Assigning the FI interarrival times
Fault_Injection_Type_Matrix; //Assigning the FI types for faulty components
Fault_Occurrence_Probability_Matrix; //calculating the FI types for faulty components
Faulty_SystemOutput; //Storing faulty output for each fault case, including system signals
Fault_Repetitions; //Assigning the number of repetitions for each subevent

end
end

5.2. Evaluation and Results

To evaluate the FI framework, the total number of 14 fault cases, including
five scenarios, are defined and described in Table 6. Each scenario comprises some varia-
tions of sub-scenarios that explain the details of fault attributes and their impacts. Each fault
occurrence probability value is bounded to the locality of the component, environmental
conditions, and occurrence time, resulting in different CO2 concentrations, temperatures,
and energy consumption over time. Moreover, some fault cases and their impacts are
described and depicted to show the FI procedure’s accuracy and results. The impact results
show the signal changes of the fault-case scenario compared with the health situation of the
system model in which the up arrowhead shows an increased impact, and the down arrow-
head shows a decreased impact. For some cases of intermittent faults, it was observed that
the signal firstly increased and then decreased. The column of fault occurrence probability
in Table 5 shows the calculated values using Equation (2). The intermittent fault cases were
defined with two repetitions for the scenarios in Table 6.

5.2.1. Results

Two scenarios to exhibit the thermal and energy consumption changes under faulty
conditions and one to show the multiple FI for more repetitions were chosen and are
illustrated below.

Multiple FI in Multiple Components in One Zone (Two Intermittent Stuck-at Faults in
Heater Actuator and One Permanent Offset Fault in CO2 Sensor)

This FI case describes two component faults triggered at different points in time in one zone.
One intermittent fault was activated in the heater actuator, and one permanent offset fault was
initiated at the CO2 sensor. This scenario is related to the items 8 and 9 in Table 6.

Figure 9 shows the two stuck-at “on” faults and the stuck-at “off” faults in the heater
actuator, resulting in changes in the thermal conditions. Figure 10 also depicts the CO2
conditions, which had a permanent offset for the rest of the execution time shown in
Figure 10. Activating both faults simultaneously in one zone resulted in a reduction
of temperature and a change to the “open” status of the damper actuator because with
increasing CO2 concentration, the damper opened to decrease the harmful impact of
the CO2. The open status of the damper actuator decreased the indoor temperature
subsequently. The damper status is illustrated in Figure 11, which remained open. The
open status of the damper could also cause a decrease in the CO2 concentration.
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Table 6. Scenario descriptions for the FI framework in the HVAC system.

Nr. Scenarios
(Events)

Sub
Scenarios

(Sub Event)

Faulty
Room

Faulty
Components

Faults’ Attributes Impacts

Fault Per-
sistence

First
Fault
Type

Second
Fault
Type

Fault
Occurrence
Probability

CO2
Concen-
tration

Changes
(ppm)

Temperature
Changes (◦C)

Energy
Changes

1
1

1 1 Damper
actuator Intermittent Stuck-at

(open)
Stuck-at
(closed) 0.6258 ↑ − ↑

2 2 4 CO2 sensor Permanent Gain fault − 0.0225 ↑ ↓ ↑

3
2

1 2 Temperature
sensor Permanent Out of

bounds − 0.0996 − ↓ ↓

4 2 5 Heater
actuator Intermittent Stuck-at

(on)
Stuck-at

(off) 0.2586 − ↑↓ ↑

5

3

1 4 Damper
actuator Intermittent Stuck-at

(open)
Stuck-at
(closed) 0.6258 ↓↑ − ↑

6 2 5 Temperature
sensor Permanent Out Of

bounds − 0.0996
− ↑ ↓

7 3 5 Heater
actuator Intermittent Stuck-at

(off)
Stuck-at

(on) 0.2586

8

4

1 4 CO2 sensor Permanent Offset
fault − 0.0225

9 2 4 Heater
actuator Intermittent Stuck-at

(on)
Stuck-at

(off) 0.25856
↑ ↑↓ ↑

10 3 5 CO2 sensor Permanent Offset
fault − 0.0225

↑ ↓ ↑
11 4 5 Damper

actuator Intermittent Stuck-at
(open)

Stuck-at
(open) 0.6258

12

5

1 1 CO2 sensor Permanent Stuck-at − 0.0308 ↓ − ↓
13 2 5 Temperature

sensor Permanent Out of
bounds − 0.6258

14 3 5 Damper
actuator Intermittent Stuck-at

(open)
Stuck-at
(closed) 0.0996

↑ ↑↓ ↑

Figure 9. Thermal conditions for the heater actuator and CO2 sensor faults.
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Figure 10. CO2 concentration for the heater actuator and CO2 sensor faults.

Figure 11. Damper actuator statuses for the heater actuator and CO2 sensor faults.

Figure 12 shows the energy consumption condition for this FI case which describes a
substantial growth of around 73.34%. Whenever the damper stays in the open status, the
heater actuator should remain on “on” to mitigate the thermal consequences and balance
the internal temperature.

Multiple FI in Multiple Components in One Zone (Two Intermittent Stuck-at Faults in
Damper Actuator and One Permanent Stuck-at Fault in Temperature Sensor)

This FI case shows two component faults in the damper actuator and temperature sen-
sor. The damper actuator had two stuck-at “open” and stuck-at “closed” faults, illustrated
in Figure 13. This scenario is related to the items 13 and 14 in Table 6.
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Figure 12. Heating cost conditions for the heater actuator and CO2 sensor faults.

Figure 13. Damper actuator status for the damper actuator and temperature sensor faults.

The damper actuator with a stuck-at “open” fault resulted in the “on” status of the heater
actuator and a reduction of the CO2 concentration, as shown in Figures 14 and 15, respectively.

Figure 14. CO2 concentration for the damper actuator and temperature sensor faults.
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Figure 15. Thermal conditions and heater statuses for the damper actuator and temperature sensor faults.

The temperature had a stuck-at value of 35 ◦C for the rest of the execution time,
resulting in the heater actuator’s permanent “Off” status. These conditions are shown in
Figure 15.

Once the heater actuator was stuck at “Off” status, this caused a remarkable reduction
in energy consumption of about 67%, depicted in Figure 16. Although, as the temperature
decreased, it caused thermal discomfort for the occupants.

Figure 16. Heating cost variations for the damper actuator and temperature sensor faults.

Multiple Fault Injection in One Component (Intermittent Fault in Heater Actuator with
10 Repetitions)

This example scenario shows the effect of multiple faults in a single component. This
intermittent fault was injected into the heater actuator with ten repetitions. Figure 17 shows
the heater statuses and temperature sensor behavior. When the heater was stuck at “On,”
the temperature increased, and whenever the heater was stuck at “Off,” the temperature
decreased; thereby, the damper actuator subsequently became closed. The damper and
heater statuses are represented in Figure 18. The number of repetitions can be dynamic and
increase according to the system requirements.
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Figure 17. Heater actuator statuses vs. temperature sensor variations in the case of an intermittent
fault with ten repetitions in the HVAC system.

Figure 18. Heater statuses vs. damper statuses in the case of an intermittent fault with ten repetitions
in the HVAC system.

Figure 19 depicts the costs due to faulty heating during the FI period. The price
decreased by around 13% because the heater was stuck at closed status. It gradually
decreased when the heater went to the “off” position.

Figure 19. Heating cost variations for the healthy and faulty states of the HVAC system in the case of
an intermittent fault with ten repetitions.
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6. Conclusions

HVAC systems in buildings are one of the most important factors for energy consump-
tion. Due to their vulnerabilities and complexities, they have high potential for many kinds
of faults. The experimental evaluation of HVAC systems before the operational phase
of the system can help designers gain insight for them to design more reliable systems.
Simulation-based FI provides the opportunity to evaluate the system under various fault
conditions, especially in emergency scenarios. Therefore, a fault model for multiple faults
in HVAC systems based on field fault occurrence rates from maintenance records was
described. Fault attributes were designed based on multi-dimensional matrices to be exten-
sible for any system structure. A simulation-based multiple FI framework for DCV and
heating systems was developed according to the defined fault model and implemented
in MATLAB/Simulink using Stateflow diagrams. An automatic FI algorithm performed
each fault scenario using the defined fault attributes. Different scenarios were defined to
evaluate the system’s reliability and its quality indicators, such as thermal comfort, CO2
concentration, energy consumption, and heating cost. Each scenario consisted of other
sub-scenarios to activate multiple faults in multiple components and multiple zones. The
results for the scenarios show system impacts and changes in different sub-scenarios. For
example, one sub-scenario showed a rise in the heating cost and energy consumption of
around 70%, and another sub-scenario exhibited a decrease in the energy consumption
of around 67% but a significant increase in thermal discomfort due to the low indoor
temperature. Eventually, it can be concluded that multiple FI in DCV and heating systems
leads to an unexpected insight into the consequences of different fault combinations.

7. Future Works

This FI framework can be extended to different applications, such as stochastic FDD
methods and composable system models. The FI process with statistical approaches is
beneficial and applicable for FDD methods based on probabilistic and stochastic mecha-
nisms such as Bayesian networks and pattern recognition techniques that may need initial
fault probability rates and symptom frequencies to construct the network nodes and their
associated paths. Our proposed framework provides beneficial data for the statistical FDD
approaches. The produced output data consists of the probabilities of each fault occurrence
which can be applied to any FDD technique. Furthermore, the proposed FI is a scalable
and adaptable platform for any fault tolerance technique.

Future work on composable system models could focus on generating a framework
that automatically extends the FI blocks and the FI structure based on an extended system
model. The system model can be extended for distributed and more complex infrastructures
to adapt the FI framework to these systems.
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